A Cartan–Hadamard space M is a complete simply connected Riem. mfd with non-positive curvature.

Example: $\mathbb{R}^n \& \mathbb{H}^n$

Basic properties:

- M is diffeo. to \mathbb{R}^n
- Every pair of points can be joined by a unique geodesic
- CH-mflds are $CAT(0)$ Spaces.

geodesic metric spaces
where triangles are "thinner" than those in \mathbb{R}^n.
Another way to think of nonpositive curvature:

- Exp. map is expansive.

\[d(\lambda x, \lambda y) \leq \lambda d(x, y) \]
$|S| \leq |S'|$

Balls in \mathbb{CH}-fields satisfy the Euclidean isoperimetric inequality.

$S \subset M$

$\tilde{S} \subset \mathbb{R}^n$

$|S| = |	ilde{S}| \implies |B| \leq |\tilde{B}|$

Proof

$r \leq \tilde{r}$
\[|S_t| = \frac{r-t}{r} |S| \]
\[\leq \left(\frac{r-t}{r} \right)^{n-1} |S| \]
\[\leq \left(\frac{\tilde{r}-t}{\tilde{r}} \right)^{n-1} |\tilde{S}| \]
\[= \frac{\tilde{r}-t}{\tilde{r}} |\tilde{S}| \]
\[= |\tilde{S}_t| \]

\[|B| = \int_0^r |S_t| \, dt \leq \int_0^r |\tilde{S}_t| \, dt < |\tilde{B}| \]

co-area formula

Exercise: Why would not the above proof work for convex bodies?

\[\text{CH- Conjecture (Aubin, Brémaud, Burago, Zalgaller)} \]

The Euclidean isoperimetric holds in CH-maths.
\[|\Omega| = |\mathcal{S}| \Rightarrow |\Omega| \leq |\mathcal{B}| \]

CH- Conjecture

Known for:

- \(H^n \) (e.g. Steiner symmetrization)
- \(n=2 \) (Weil), \(n=3 \) (Kleiner), \(n=4 \) (Croke)
- Large volumes, when \(K<0 \) (Vau, Bang-Zabel)
- Small volumes (Johnson-Magen)
- For every \(n \) there is a const \(C_n \) s.t.
 \[\frac{|\Omega|^{n-1}}{|\Gamma|^n} \leq C_n \]
 (Spruck-Hoffman)

Equivalent to Sobolev Ineq. (By the eccentric family)
\[
\left(\sum_{\Omega} + \right) \leq \frac{1}{n/\mathcal{B}^n} \mathcal{D}^f \mathcal{M}
\]

Open even in the convex case

- Convexity is not so convenient in the absence of linear structure.

A couple of Proofs of the Classical Isop. Ineq. in \(\mathbb{R}^n \)

Steiner Symmetrization

(requires existence of a minimizer)

Brunn–Minkowski Ineq.
\[|\Omega_1 + \Omega_2|^n \geq |\Omega_1|^n + |\Omega_2|^n \]

Proof is immediate for rectangles. Follows for all regions by approximation.

\[\Omega_r := \Omega + rB = \{ x \in \mathbb{R}^n \mid \text{dist}(\Omega, x) \leq r \} \]

unit ball

\[|\Omega_r| = |\Omega + rB| \geq (|\Omega|^{\frac{1}{n}} + r|B|^{\frac{1}{n}})^n \geq |\Omega| + nr|\Omega|^{\frac{n-1}{n}}|B|^{\frac{1}{n}} \]

\[|\Gamma| = \lim_{r \to 0} \frac{|\Omega_r| - |\Omega|}{r} \geq n|\Omega|^{\frac{n-1}{n}}|B|^{\frac{1}{n}} \]
Convexity in CH-mfds

- Similarities with \(\mathbb{R}^n \):

 * distance function from a convex set is convex

 (a function \(f: M \to \mathbb{R} \) is convex if its restriction to geodesics is convex)

 * Convex sets have dimension

 (their relative interior is a totally geodesic submfd, Cheeger-Ebin)

- Differences from \(\mathbb{R}^n \):

 * convex hull of 3 points may have interior!
boundary of a convex body
might not be convex in
the interior!

* Boundary of the convex hull
 of a set may not contain
 any geodesic segment!
 (no Carathéodory theorem)
 (no simplices)

* Equivalent notions of convexity
 in \mathbb{R}^n diverge in CFT-molds.

h-convex \subseteq d-convex \subseteq convex

through each
boundary point
there passes
a horosphere

dist function
from boundary
is convex
inside the set.

geod. between
points are
contained
in the set.
More strange things will be mentioned later.

Example

\[H^2 \]

\[H^2 \]

c-convex but not d-convex

tube about a geodesic: d-convex, but not h-convex.

So how are we going to study the isop. problem in CH-mfdgs?

- We can adopt a variational approach, in the sense of Steiner.
which leads to integrals of generalized mean curvature (called quermassintegrals or mixed volumes in \mathbb{R}^n).

Then we can study to what extent various Alexander-Fenchel type inequalities hold.

Let us begin by reviewing

Steiner Polynomial, **Mean curvature integrals**, and **Alexander-Fenchel-Sseg in \mathbb{R}^n**.

Steiner’s Polynomial

How mean curvatures enter the picture

- If $\mathcal{P} \subset \mathbb{R}^n$ is a smooth closed embedded hypersurface
\[l_t := l + t v \]

is well-defined for small \(t \)

\[
|P_t| = |P| + C_1 M_1(P) t + \ldots + C_{n-1} M_{n-1}(P) t^{n-1}
\]

Steiner formula

total (first) mean curvature

\(M_r(p) := \sum_{P} \tau_r(K) \)

\[K = (K_1, \ldots, K_{n-1}) \]

principal curvatures

\[\tau_r(K) = \sum_{i_1 \ldots i_r} K_{i_1} \ldots K_{i_r} \]

down symmetric functions
$S_0 := 1$ (by convention)

So $M_0 = |P|$

Proof [Steiner's polynomial]

$f! P \rightarrow \mathbb{R}^t$

$f(x) := x + tv$

$d f = I + t \, dv$

Ki are the eigen values of dv

$|P_t| = \int_P \det (d f)$

$= \int_P \det (I + t \, dv)$
Crefton's formula for total mean curv.

If \(\Gamma \) is convex, \(M_r(\Gamma) \) have a more geometric description:

\[
M_r(\Gamma) := \sum_{V \in \text{Gr}(n-1-r,n)} |\Pi_r(\Gamma)|
\]

Average size of projections of \(\Gamma \) into \(\text{cn}(n-1-r) \)-dim subspaces.

Eq: \(M_{n-2} \) is the mean width.

\[
M_{n-2}(\Gamma) := |\Omega|
\]
So if \(\mathcal{S} \) is nested inside \(\mathcal{P} \), then

\[
M_k(\mathcal{S}) \leq M_k(\mathcal{P})
\]

Monotonicity Formula

Alexandrov-Fenchel Inequalities

\[
\frac{M_k(\mathcal{P})^{n-k}}{M_{k-1}(\mathcal{P})^{n-k-1}} \geq C_{n,k} \frac{M_k(\mathcal{S}^{h-1})^{n-k}}{M_{k-1}(\mathcal{S}^{h-1})^{n-k-1}}
\]

Examples

\[
\begin{align*}
\text{A} & \quad k = 0 \quad \text{(Isop. Ineq.)} \\
\frac{|T|^n}{|T^{n-1}|} & \quad \geq \quad \frac{|S^{h-1}|^n}{(B^h)^{n-1}}
\end{align*}
\]
\[\frac{M_1(C)^{n-1}}{|P|^{n-2}} \geq \frac{M_1(S^{n-1})^{n-1}}{|S^{n-1}|^{n-2}} \]

among convex hypersurfaces with the same area sphere (only sphere) minimizes total (1st) mean curvature.

In particular, for \(n = 3 \)

\[M_1(C) \geq \sqrt[3]{16\pi |P|} \]

\[M_{n-1}(C) \geq |S^{n-1}| \]

the volume of the Gauss map
Unto CH-molds

* Steiner polynomial holds in CH-molds

with "=" replaced by ».

* Alexander Fenchel Ineq. have been extended to H^n, via harmonic curvature flow, but not always in their sharpest form. (Anders, Hu, Li, Wang, Xia, ...)

* Sharp Minkowski ineq. is not known even in H^3!
Almost all fundamental questions are open in CH-molds:

- Isop. Ineq. is open (CH conjecture)

- Gauss-Kronecker ineq is open
 (not even known that $M_{n-1}(R^n) > 3!$)

- Minkowski ineq is open
 (for $K < a < 0$)
 (But for $K \leq 0$, solved recently) in dim 3

\[G^- \text{ ineq} \rightarrow \text{Isop. Ineq.} \]

\[\text{Minkowski ineq.} \xrightarrow{\text{G-S}} \text{Isop. Ineq.} \]

assuming d-concavity
* Warning: More strange convexity phenomena in C^1-mflds:

- Monotonicity fails for \(M_{n-1} \):
 \[M_{n-1}(\emptyset) \neq M_{n-1}(\emptyset) \]

Delešter's Example (JP, 1981)

\[\mathbb{H}^2 \]

Warped product of \(\mathbb{H}^2 \)'s

Nareira-Solanes Example

\[M_1(\mathbb{R}) \] in \(\mathbb{H}^3 \) is not
minimal biholomorphic
Suppose Minkowski ineq. holds for d-convex hypersurfaces $P \subset M$, i.e.

\[M_1(P) \geq M_1(S) \]

Sphere in \mathbb{R}^n with $|S| = |P|$ and "" equal only if P bounds an n-dimensional Euclidean ball.

Then isop. ineq.

holds in M for d-convex hypersurfaces.
Ingredients of the proof

Reach (in the sense of Federer)

Reach of a convex hypersurface $\Gamma \subset M$, is the sup radii of balls which roll freely inside Γ.

\[\text{reach}(\Gamma) = \text{dist} \left(\Gamma, \text{cut}(\Gamma) \right) \]

Inner and outer parallel hypersurfaces

Let Γ^+_t, Γ^-_t be the inner and outer parallel hypersurfaces (level sets) of Γ.
\[t \leq \text{reach}(\mathbb{P}) \Rightarrow \left| (\mathbb{P}_+)_t \right| = \left| \mathbb{P} \right| \]
\[t > \text{reach}(\mathbb{P}) \Rightarrow \left| (\mathbb{P}_-)_t \right| < \left| \mathbb{P} \right| \]

Coarea formula

\[f : \Omega \rightarrow [a, b], \text{ Lipschitz} \]

\[\left| \nabla f \right| = 1 \]

\[\left| \Omega \right| = \int_a^b \left| f^{-1}(t) \right| dt \]

Proof:

Let \(S \) be a sphere in \(\mathbb{R}^n \) with \(|S| = \left| \mathbb{P} \right| \). Then
Inradius (P) ≤ radius (S)

We know that Isop Ineq holds for spheres. So suppose that P is not a sphere. Then

\[M_1(P) > M_1(S) \]

⇒ \[|P_t| < |S_t| \], for small \(t > 0 \) (\(\blacklozenge \))

If \(|P_t| ≤ |S_{t+}| \), for all \(t \in [0, \text{inradius}(P)] \)

we are done by the coarea formula.

Suppose then that

\[|P_{t_0}| > |S_{t_0}| \]

for some \(t_0 \).

Let

\[\bar{s} := \sup \{ s \mid |(P_{s+})_t| > |S_{s+t}| \} \].
Then

\[|(\Gamma_{-t_0})_S| = |S_{-t_0 + \bar{s}}| \] (**)

\[\Rightarrow \quad M_1((\Gamma_{-t_0})_S) > M_1(S_{-t_0 + \bar{s}}) \]

\[\Rightarrow \quad \bar{s} = t_0 \quad \text{(otherwise we can push higher)} \]

There are now two cases to consider:

1. \(t_0 > \text{reach}(\Gamma) \)
2. \(t_0 \leq \text{reach}(\Gamma) \)

Case 1

\[|(\Gamma_{-t_0})_S| < |\Gamma_{-t_0 + s}| = |\Gamma| = |S| = |S_{-t_0 + \bar{s}}| \]

\(\text{violates (**)} \)

Case 2
\[|(\Gamma_{t+t})_s| = |\Gamma_{t+t+s}|, \forall s \in [0, t] \]

\[\text{riodnets (\ast)} \]

Afterword

We have actually proved something stronger than the isoperimetric inequality:

1. \[\Omega \]
2. \[\Gamma \subset M \]
3. \[S \subset S_t \]

\[|\Omega| = |S| \]

- \(\Lambda_t \): Annular domain between \(\Gamma \) and \(\Gamma_t \)
- \(A_t \): “ “ “

\[|\Lambda_t| \leq |A_t| \]

for all \(t \in [0, \text{inrad}(S)] \)

In particular,

\[|\Omega| \leq |A_t| \]
Bonnesen style

isop. Ineq.

Questions

★ Can one prove this annular isop. ineq. without Mink. Ineq?

★ Even in H^n, or \mathbb{R}^n?

★ Does it just follow from the main isop. ineq.?

★ In dimensions 3, 8, 4 we already have the isop. ineq. in CT1-mflds. So can we get the Mink. Ineq out of that?
How to compare $M_r(\mathcal{C})$ $\&$ $M_r(\mathcal{B})$ in \mathcal{C} \setminus m-hulls.

\[\alpha: M \rightarrow \mathbb{R}, \quad C'_{11} \]

\[\forall u \neq 0 \quad \text{on} \quad \mathbb{S} - \mathcal{D} \]

\[u \equiv \text{const.} \quad \text{on} \quad \mathcal{F} \cup \mathcal{B} \]

\[K^n = (K^u_1, \ldots, K^u_{n-1}) \quad \text{principal curvatures} \]

\[E_1, \ldots, E_{n-1} \quad \text{principal directions} \]

\[M_r(\mathcal{C}|_{\mathcal{M}} - M_r(\mathcal{B}) = (r+1) \int_{\mathbb{S} - \mathcal{D}} \sigma_{r+1}(K^n) \]

\[+ \int_{\mathbb{S} - \mathcal{D}} (-\sum_{i=1}^{n-1} k^u_i \cdot k^u_{n-i} \cdot k^u_{n} + \frac{1}{|\Delta n|} \sum_{i=1}^{n-2} k^u_i \cdot k^u_{i+1} \cdot \left(\text{R}_{i, n-1} \cdot k^u_{n} \right)) \]
The "good term"

\[\Delta \omega_i := D E_i \left(D \omega \right) \]

\[R_{ijkl} = R(E_i, E_j, E_k, E_l) \] (Riemann tensor)

\[K_{ij} := R_{ijij} \] (Sectional curvature)

Note: For \(r = 0 \),

\[\left| \mathcal{P} \mathcal{L} \mathcal{B} \mathcal{L} - r \right| = 2 \int_{\Omega \setminus D} \mathcal{O}_1(K^u) \]

This is a well-known formula which follows from Stokes' theorem.

Because

\[\mathcal{O}_1(K^u) = \text{div} \left(\frac{Da}{|D\omega|} \right) \]

Proof of the Comparison Formula
Proof 1: Divergence of Newton Operators

developed by Reilly

\[P(\nabla u) := \text{div} \left(\mathbf{\nabla} \nabla \ n - \mathbf{D}^2 u \right) \]

Hessian of \(u \)

\[Tr^u := \text{Truncation of } P(\mathbf{D}^2 u) \text{ by} \]

\text{removing terms of order higher than } r.

\[\Rightarrow \quad Tr^u (K^u) = \frac{\left< \text{Tr}(\mathbf{D}u), \mathbf{D}u \right>}{1 |\mathbf{D}u|^r} \]

\[\text{div}(\text{Tr}^{u-1}(\frac{\mathbf{D}u}{|\mathbf{D}u|^r})) \]

\[= \left< \text{div}(\text{Tr}^{u-1}), \frac{\mathbf{D}u}{|\mathbf{D}u|^r} \right> + r \frac{\left< \text{Tr}^u (\mathbf{D}u), \mathbf{D}u \right>}{1 |\mathbf{D}u|^{r+2}} \]

\text{Divergence identity for Newton operators. Integrating this formula yields the}
Proof 2: Chern's Formulas

$\sigma_r(K) = \Phi_r(E_1, \ldots, E_{n-1})$

Chern-type forms

$\Phi_r = \sum_{\epsilon_1, \ldots, \epsilon_{n-1}} \omega_{n}^{\epsilon_1} \wedge \cdots \wedge \omega_{n}^{\epsilon_{n-1}} \wedge \theta^{i_1} \wedge \cdots \wedge \theta^{i_{n-1}}$

the sum ranges over $1 \leq i_1, \ldots, i_{n-1} \leq n-1$

with $i_1 < \cdots < i_r$ and $i_{r+1} < \cdots < i_{n-1}$

$\theta^i(E_j) = \delta^i_j$

dual one-forms θ to E_i

$\omega^i_j(\cdot) := \langle D(\cdot) E_i, E_j \rangle$

connection one forms

$\omega^i_j(r \cdot, \cdot)$
\[\Phi_r(\tilde{\alpha}) = \text{Stokes thm} \]

\[d \Phi_r = (-1)^{k-1} (r+1) \Phi_{r+1} \Lambda \Theta^n + (-1)^{k-1} \sum \varepsilon(i_1 \cdots i_{n-1}) \omega_{i_1} \Lambda \cdots \Lambda \omega_{i_{n-1}} \Lambda \omega_{i_k} \Lambda \theta_i \Lambda \cdots \Lambda \theta_{i_{n-1}} \]

\[\Omega^i_j (\cdot, \star) := -< R(\cdot, \star) E_i, E_j > \]

\[\Omega^i_n (E_n) = \frac{< D E_n (D u), E_i >}{|D u|} = \frac{\text{uni}}{|D u|} \]

Applications of the Comparison Formula

The "bad term" (involving mixed curvatures) drops out when...
- \(R = 1 \)
- \(K_m = \text{const} \)
- \(\gamma, \zeta \) are parallel.

Leading to several new inequalities.

- Let \(M \) be a CH-mfd

\[\& \quad \xi, \theta \subset C^1 \text{ convex hypersurfaces,} \]

then we have the following applications.

\[\text{A. Monotonicity for total mean curvature:} \]

\[M_1(\gamma) - M_1(\theta) = 2 \int_{\Omega} \omega(k^n) - (n-1) \int_{\Omega} \text{Ric}(\frac{1}{\omega}) \]

\[\geq 0 \]

\[\Rightarrow K \leq \alpha \]

\[M_1(\gamma) \geq -(n-1)\alpha |\Omega| \]
(generalizes Gallego-Soares in H^3)

* Monotonicity for parallel Surfaces

If P, S are parallel (and S is still smooth, i.e., within reach(P))
then $10u_i = 0$. So

$$M_r((P - M_r(S)) \geq (r+1) \int_{\Omega_D} \sigma_{r+1}(k^n) - a(\nu - 1) \int_{\Omega_D} \sigma_{r-1}(k^n) \geq 0$$

(generalizes Schroeder-Strake)

for $r = n-1$

* Monotonicity for constant curvature:

$$M_r(P) - M_r(S) = (r+1) \int_{\Omega_D} \sigma_{r+1}(k^n) - a(\nu - 1) \int_{\Omega_D} \sigma_{r-1}(k^n) \geq 0$$

(C established earlier by Soares,)

Sharp for $n=3$.
* Rigidity than for curvature

Thm: Let Γ be a st. convex in

CH-mld M^3 with $K \leq a \leq 0$

Suppose $K = a$ on Γ. Then

$K \equiv a$ on Ω

(Refines Gromov, Green-Wu, Ziller, Shroeder,
Strake, Seshadri, for $a = 0$)

- Generalized very recently by G. Petraxin
 to hypersurfaces with semi-def. 2nd fund. form
 in all dimensions.

Proof: After replacing Γ by another
convex surface in Ω may assume that
$K \leq a$ at some point in every ngbd of Γ in Ω.
Let Ω be an inner parallel surface.

Choose δ so close to P s.t. $K < a$ at some point of δ.

By the comparison formula

$$M_2(\Omega) - M_2(\delta) \geq -a \int_{\Omega} \Sigma_1 = -a(|P| - |\delta|)$$

$$\Sigma_2 = K_\Omega - K_M$$

Gauss' Eq.

$$\Rightarrow M_2(\Omega) = \int_{\Omega} \Sigma_2$$

Gauss-Bonnet Thm

$$= \int_{\Omega} K_\Omega - \int_{\Omega} K_M$$

$$= 4\pi - \int_{\Omega} K_M$$

$$= 4\pi - a |P|$$

So

$$4\pi - a |P|$$
\[M_2(x) \leq 4n - a|\beta| \]

But
\[M_2(x) = 4n - 3\kappa \geq 4n - a|\beta| \]

So
\[M_2(x) = 4n - a|\beta| \]

\[\Rightarrow k = a \text{ on } 8 \]

Contradiction.

Minkowski inequality in CH-3 mfld

\[M_1([\gamma]) \leq \sqrt{16n^2 - 2a|\gamma|^2} \]

- Sharpest ineq. known in CH-3 mflds, even H
- Sharp for \(a = 0 \)
Examples in H satisfy

$$M_1(r) > \sqrt{\frac{16n l^2 r^2 + 6 l^4 r^4}{4}}
> 2.47$$

So if the sharp Minkowski inequality is of the form

$$M_1(r) > \sqrt{16nl^2 (1 - \lambda) l^2}$$

then

$$2 < \lambda < 2.47$$

Proof: uses harmonic mean curvature flow

the only flow known to deform convex hypersurfaces to a point in CH-molds.

$$X : \mathbb{R} \times [0, T) \to M \ , \ X_t(\cdot) := X(\cdot, t)$$

$$X_t'(p) = -F_t(p)\nu_t(p) \ , \ X_0(p) = p$$
\[F_+ := \left(\frac{1}{k_1^+} + \cdots + \frac{1}{k_{n-1}^+} \right)^{-1} \]
\[= \frac{S_{n-1}^+}{\sigma_{n-2}} \]

\[\Phi(\tau) := \frac{M_2(\mathcal{P}_+)}{16 \Omega(\mathcal{P}_+) + 2a \Omega(\mathcal{P}_+)^2} \]

We compute \(\Phi' \) as follows:

By the comparison & coarea formula:

\[M_1'(\mathcal{P}_+) = -2 \int_{\mathcal{P}_+} \left(\frac{\sigma_{n-1}^+}{\sigma_{n-2}^+} - \text{Ric}(\mathcal{P}_+) \right) F_+ \, d\mu \]
\[\leq -2 \int_{\mathcal{P}_+} \left(\frac{\sigma_{n-1}^+}{\sigma_{n-2}^+} \right) \, d\mu + 2a \int_{\mathcal{P}_+} \frac{\sigma_{n-1}^+}{\sigma_{n-2}^+} \, d\mu \]
\[1 \mathcal{P}_+ = -M_2(\mathcal{P}_+) \]

\[\Phi' + 1 = 2 M_1(\mathcal{P}_+) M_1'(\mathcal{P}_+) - 16 \Omega(\mathcal{P}_+) \]

\[+ 4a \Omega(\mathcal{P}_+) \]

\[\leq 4 M_2(\mathcal{P}_+) \left(-M_2(\mathcal{P}_+) + 4 \Omega \right) \]
$$J_2^+(p) = K_{g_+}(p) - K_M(T_p \mathbb{R}^n)$$

Gauss' Equation

$$\int_{\mathbb{R}^n} K_p = 4\pi$$

Gauss-Bonnet

$$\Rightarrow \quad \mathcal{N}_2(\mathbb{R}^n) > 4\pi - \alpha |\mathbb{R}^n|$$

$$\Rightarrow \quad \mathcal{O}' \leq 0$$

But \(\lim \mathcal{O}(\mathbb{R}^n) = 0 \)

\(t \to 0 \)

\[\mathcal{O}(\mathbb{R}^n) > 0 \]

\[\square \]

Note: If \(p \) is h-cone, we can show that...
\[M_1 (p) \geq \sqrt{16 \|p\|^2 - \frac{7}{2} \|p\|^4} \]

But it is not known if HMCF preserves h-convexity.