Four-Vertex Theorems in Riemannian Surfaces

Mohammad Ghomi
Georgia Institute of Technology
Atlanta, USA

August 18, 2009

Theorem (Kneser, 1912)
Any simple closed curve in \mathbf{R}^{2} has (at least) four vertices (local extrema of curvature)

How about nonsimple curves?

In general they do not have 4 vertices:

How about nonsimple curves?
In general they do not have 4 vertices:

Theorem (Pinkall,1987)
Any closed curve in \mathbf{R}^{2} which bounds an immersed surface has four vertices.

Theorem (Pinkall,1987)
Any closed curve in \mathbf{R}^{2} which bounds an immersed surface has four vertices.

Theorem (Pinkall,1987)
Any closed curve in \mathbf{R}^{2} which bounds an immersed surface has four vertices.

The same result also holds in \mathbf{S}^{2} and \mathbf{H}^{2}, because the stereographic projection $\pi: \mathbf{S}^{2}-\{0,0,1\} \rightarrow \mathbf{R}^{2}$ and the inclusion map $i: \mathbf{H}^{2} \rightarrow \mathbf{R}^{2}$ preserve vertices.

Could Pinkall's theorem be a hint of a purely intrinsic or Riemannian version of the four vertex theorem?

More precisely:
Question
Let M be a compact surface with boundary and constant curvature. Must the boundary of M have 4-vertices (in terms of geodesic curvature)?

Could Pinkall's theorem be a hint of a purely intrinsic or Riemannian version of the four vertex theorem?

More precisely:
Question
Let M be a compact surface with boundary and constant curvature. Must the boundary of M have 4-vertices (in terms of geodesic curvature)?

Theorem
Let M be a compact surface with boundary ∂M. Then every metric of constant curvature induces four vertices on ∂M if and only if M is simply connected.

Indeed, when M is not simply connected, there are elliptic, parabolic and hyperbolic metrics of constant curvature on M which induce only two vertices on ∂M.

Theorem

Let M be a compact surface with boundary ∂M. Then every metric of constant curvature induces four vertices on ∂M if and only if M is simply connected.

Indeed, when M is not simply connected, there are elliptic, parabolic and hyperbolic metrics of constant curvature on M which induce only two vertices on ∂M.

Flat metrics with fewest vertices

First we show that if M is not simply connected, it admits a flat metric with only two vertices on each boundary component.

Recall that M is homeomorphic to a closed surface \bar{M} minus k-disks. There are three special cases that we consider first:
I. $\bar{M}=\mathbf{S}^{2} \& k=2$

II. $\bar{M}=\mathbf{R P}^{2} \& k=1$
III. $g(\bar{M})=1 \& k=1$

where $-\pi \leq t \leq \pi$. More explicitly, $\gamma(t):=\int_{0}^{t} e^{i \theta(s)} d s$, where $e^{i \theta}:=(\cos (\theta), \sin (\theta))$, and $\theta(t):=\int_{0}^{t} \kappa(s) d s$.

In all the remaining cases we will show that \bar{M} admits a flat metric with exactly k conical singularities.

Then we remove these singularities by cutting \bar{M} along simple closed curves which have only two critical points of geodesic curvature each.

If \bar{M} has k singularities of angles θ_{i}, then by Gauss-Bonnet theorem,

$$
\sum_{i=1}^{k}\left(2 \pi-\theta_{i}\right)=2 \pi \chi(\bar{M})
$$

Troyanov has shown that the above condition is also sufficient for the existence of flat metrics with conical singularities of prescribed angles. This quickly yields

Lemma

Suppose $k(\bar{M}) \geq 3,2,2,1$, according to whether $\bar{M}=\mathbf{S}^{2}$, $\bar{M}=\mathbf{R P}^{2}, g(\bar{M})=1$, or $g(\bar{M}) \geq 2$ respectively. Then there exists a flat metric on \bar{M} with exactly k conical singularities.

Lemma

Let C be a cone with angle $\phi \neq 2 \pi$ and Γ be a circle centered at the vertex of C. Then there exists a C^{∞} perturbation of Γ which has only two critical points of curvature.

Proof.
If $\phi=2 n \pi$ (where $n \geq 2$), let

$$
r_{\lambda}(\theta):=1-\lambda \cos \left(\frac{\theta}{n}\right) .
$$

If $\phi \neq 2 n \pi$, we cut a segment of theses curves.

Perturbations of Flat Metrics

Proposition

Let M be a compact surface with boundary and flat metric g_{0}. Then there exists a family g_{λ} of Riemannian metrics on M, $\lambda \in(-\epsilon, \epsilon)$ for some $\epsilon>0$, such that g_{λ} has constant curvature λ, and $\lambda \mapsto g_{\lambda}$ is continuous with respect to the C^{∞} topology.

This is easy when M is simply connected, for then it isometrically immersed into the plane and we may perturb the whole plane

But how about the general case:

Perturbations of Flat Metrics

Proposition

Let M be a compact surface with boundary and flat metric g_{0}. Then there exists a family g_{λ} of Riemannian metrics on M, $\lambda \in(-\epsilon, \epsilon)$ for some $\epsilon>0$, such that g_{λ} has constant curvature λ, and $\lambda \mapsto g_{\lambda}$ is continuous with respect to the C^{∞} topology.

This is easy when M is simply connected, for then it isometrically immersed into the plane and we may perturb the whole plane

$$
\left(g_{\lambda}\right)_{i j}(x):=\frac{\delta_{i j}}{\left(1+\frac{\lambda}{4}\|x\|^{2}\right)^{2}}
$$

But how about the general case:

Perturbations of Flat Metrics

Proposition

Let M be a compact surface with boundary and flat metric g_{0}. Then there exists a family g_{λ} of Riemannian metrics on M, $\lambda \in(-\epsilon, \epsilon)$ for some $\epsilon>0$, such that g_{λ} has constant curvature λ, and $\lambda \mapsto g_{\lambda}$ is continuous with respect to the C^{∞} topology.

This is easy when M is simply connected, for then it isometrically immersed into the plane and we may perturb the whole plane

$$
\left(g_{\lambda}\right)_{i j}(x):=\frac{\delta_{i j}}{\left(1+\frac{\lambda}{4}\|x\|^{2}\right)^{2}} .
$$

But how about the general case:

Perturbations of Flat Metrics

Any compact surface with boundary may be cut along a finite number of curves to make it simply connected:

> Next we are going to immerse the boundary curve into a space form by using the curvature function along the boundary

Perturbations of Flat Metrics

Any compact surface with boundary may be cut along a finite number of curves to make it simply connected:

Next we are going to immerse the boundary curve into a space form by using the curvature function along the boundary

Lemma (Fund. thm. of curves for Riemannian surfaces) Let M be a complete oriented C^{∞} Riemannian surface, $p \in M$, and $u \in T_{p} M$ be a unit vector. Suppose that we are given a C^{∞} function $\kappa: I \rightarrow \mathbf{R}$, for some open interval $I \subset \mathbf{R}$ with $0 \in I$. Then there exists a unique unit speed C^{∞} curve $\gamma: I \rightarrow M$ with $\gamma(0)=p, \gamma^{\prime}(0)=u$, and geodesic curvature $\kappa(t)$.
which may be rewritten as

Lemma (Fund. thm. of curves for Riemannian surfaces) Let M be a complete oriented C^{∞} Riemannian surface, $p \in M$, and $u \in T_{p} M$ be a unit vector. Suppose that we are given a C^{∞} function $\kappa: I \rightarrow \mathbf{R}$, for some open interval $I \subset \mathbf{R}$ with $0 \in I$. Then there exists a unique unit speed C^{∞} curve $\gamma: I \rightarrow M$ with $\gamma(0)=p, \gamma^{\prime}(0)=u$, and geodesic curvature $\kappa(t)$.

Proof.
This follows from basic ODE theory:
which may be rewritten as

Lemma (Fund. thm. of curves for Riemannian surfaces) Let M be a complete oriented C^{∞} Riemannian surface, $p \in M$, and $u \in T_{p} M$ be a unit vector. Suppose that we are given a C^{∞} function $\kappa: I \rightarrow \mathbf{R}$, for some open interval $I \subset \mathbf{R}$ with $0 \in I$. Then there exists a unique unit speed C^{∞} curve $\gamma: I \rightarrow M$ with $\gamma(0)=p, \gamma^{\prime}(0)=u$, and geodesic curvature $\kappa(t)$.
Proof.
This follows from basic ODE theory:

$$
g\left(\nabla_{\gamma^{\prime}(t)} \gamma^{\prime}, J\left(\gamma^{\prime}(t)\right)\right)=\kappa(t)
$$

which may be rewritten as

Lemma (Fund. thm. of curves for Riemannian surfaces) Let M be a complete oriented C^{∞} Riemannian surface, $p \in M$, and $u \in T_{p} M$ be a unit vector. Suppose that we are given a C^{∞} function $\kappa: I \rightarrow \mathbf{R}$, for some open interval $I \subset \mathbf{R}$ with $0 \in I$. Then there exists a unique unit speed C^{∞} curve $\gamma: I \rightarrow M$ with $\gamma(0)=p, \gamma^{\prime}(0)=u$, and geodesic curvature $\kappa(t)$.
Proof.
This follows from basic ODE theory:

$$
g\left(\nabla_{\gamma^{\prime}(t)} \gamma^{\prime}, J\left(\gamma^{\prime}(t)\right)\right)=\kappa(t)
$$

which may be rewritten as

$$
\begin{aligned}
& v_{1}^{\prime}=-\sum_{i, j=1}^{2} v_{i} v_{j} \Gamma_{\Gamma j}^{1}\left(\gamma_{1}, \gamma_{2}\right)-\frac{\kappa}{2 G v_{2}}, \\
& v_{2}^{\prime}=-\sum_{i, j=1}^{2} v_{i} v_{j} \Gamma_{i j}^{2}\left(\gamma_{1}, \gamma_{2}\right)+\frac{\kappa}{2 G v_{1}} .
\end{aligned}
$$

Now we immerse the boundary curve in a space form with small curvature:

The key is to start at a point belonging to the original boundary, not the extra cuts. Then a gluing closes the curve without introducing new vertices.

The sides of the resulting region may now be glued in pairs to obtain the desired surface with constant nonzero curvature.

Now we immerse the boundary curve in a space form with small curvature:

The key is to start at a point belonging to the original boundary, not the extra cuts. Then a gluing closes the curve without introducing new vertices.

The sides of the resulting region may now be glued in pairs to obtain the desired surface with constant nonzero curvature.

Now we immerse the boundary curve in a space form with small curvature:

The key is to start at a point belonging to the original boundary, not the extra cuts. Then a gluing closes the curve without introducing new vertices.

The sides of the resulting region may now be glued in pairs to obtain the desired surface with constant nonzero curvature.

A Four vertex theorem for complete Riemannian surfaces

> Recall that by Kneser's theorem, and its extension to \mathbf{H}^{2} and \mathbf{S}^{2}, any simple closed curve in a simply connected space form has four vertices.

Question
Are there any other complete Riemannian surfaces where Kneser's theorem holds?

A Four vertex theorem for complete Riemannian surfaces

Recall that by Kneser's theorem, and its extension to \mathbf{H}^{2} and \mathbf{S}^{2}, any simple closed curve in a simply connected space form has four vertices.

Question

Are there any other complete Riemannian surfaces where Kneser's theorem holds?

A Four vertex theorem for complete Riemannian surfaces

Recall that by Kneser's theorem, and its extension to \mathbf{H}^{2} and \mathbf{S}^{2}, any simple closed curve in a simply connected space form has four vertices.

Question

Are there any other complete Riemannian surfaces where Kneser's theorem holds?

Theorem
No!

It has been shown that Kneser's four vertex property has local consequences:

> Theorem (S. B. Jackson, 1945)
> Let M be a Riemannian surface with curvature K and let p be a point of M. Suppose that $d K_{p} \neq 0$. Then sufficiently small metric circles centered at p have only two vertices.

> So the four-vertex-property forces the curvature to be constant.
> There are global consequences as well

It has been shown that Kneser's four vertex property has local consequences:

Theorem (S. B. Jackson, 1945)
Let M be a Riemannian surface with curvature K and let p be a point of M. Suppose that $d K_{p} \neq 0$. Then sufficiently small metric circles centered at p have only two vertices.
So the four-vertex-property forces the curvature to be constant.
There are global consequences as well

It has been shown that Kneser's four vertex property has local consequences:

Theorem (S. B. Jackson, 1945)
Let M be a Riemannian surface with curvature K and let p be a point of M. Suppose that $d K_{p} \neq 0$. Then sufficiently small metric circles centered at p have only two vertices.
So the four-vertex-property forces the curvature to be constant.
There are global consequences as well

It has been shown that Kneser's four vertex property has local consequences:

Theorem (S. B. Jackson, 1945)
Let M be a Riemannian surface with curvature K and let p be a point of M. Suppose that $d K_{p} \neq 0$. Then sufficiently small metric circles centered at p have only two vertices.
So the four-vertex-property forces the curvature to be constant.
There are global consequences as well ...

Theorem
The only complete Riemannian surfaces M where every simple closed curve has more than two vertices are the the space forms with finite fundamental group (i.e., $\mathbf{R}^{2}, \mathbf{S}^{2}, \mathbf{H}^{2}$, and $\mathbf{R} \mathbf{P}^{2}$, up to a rescaling).

Proof.
Suppose that M has Kneser's four vertex property.
Then by Jackson's theorem M has constant curvature $K=1,0$, or -1

Theorem

The only complete Riemannian surfaces M where every simple closed curve has more than two vertices are the the space forms with finite fundamental group (i.e., $\mathbf{R}^{2}, \mathbf{S}^{2}, \mathbf{H}^{2}$, and $\mathbf{R} \mathbf{P}^{2}$, up to a rescaling).

Proof.
Suppose that M has Kneser's four vertex property.
Then by Jackson's theorem M has constant curvature $K=1,0$, or -1

Theorem

The only complete Riemannian surfaces M where every simple closed curve has more than two vertices are the the space forms with finite fundamental group (i.e., $\mathbf{R}^{2}, \mathbf{S}^{2}, \mathbf{H}^{2}$, and $\mathbf{R} \mathbf{P}^{2}$, up to a rescaling).

Proof.
Suppose that M has Kneser's four vertex property.
Then by Jackson's theorem M has constant curvature $K=1,0$, or -1 .

Theorem

The only complete Riemannian surfaces M where every simple closed curve has more than two vertices are the the space forms with finite fundamental group (i.e., $\mathbf{R}^{2}, \mathbf{S}^{2}, \mathbf{H}^{2}$, and $\mathbf{R} \mathbf{P}^{2}$, up to a rescaling).

Proof.
Suppose that M has Kneser's four vertex property.
Then by Jackson's theorem M has constant curvature $K=1,0$, or -1 .

Then $M=X / G$, where $X=\mathbf{R}^{2}, \mathbf{S}^{2}$, or \mathbf{H}^{2}.

I: The elliptic case $(K=1)$

By a theorem of Mobiüs, every simple closed noncontractible curve Γ in $\mathbf{R} \mathbf{P}^{2}$ has at least three inflection points. So, it must have at least three vertices as well.

If, on the other hand, Γ is contractible, then it lifts to a pair of closed curves $\bar{\Gamma}_{1}$ and $\bar{\Gamma}_{2}$ in \mathbf{S}^{2} and the covering is one-to-one on each of these curves.

So, by Kneser's theorem on \mathbf{S}^{2}, Γ must have at least four vertices.
In each of the remaining cases, we will construct a curve with less
than 3 vertices on M.

I: The elliptic case $(K=1)$

By a theorem of Mobiüs, every simple closed noncontractible curve Γ in $\mathbf{R P}^{2}$ has at least three inflection points. So, it must have at least three vertices as well.

If, on the other hand, Γ is contractible, then it lifts to a pair of closed curves $\bar{\Gamma}_{1}$ and $\bar{\Gamma}_{2}$ in \mathbf{S}^{2} and the covering is one-to-one on each of these curves.

So, by Kneser's theorem on S^{2}, Γ must have at least four vertices.
In each of the remaining cases, we will construct a curve with less than 3 vertices on M.

I: The elliptic case $(K=1)$

By a theorem of Mobiüs, every simple closed noncontractible curve Γ in $\mathbf{R P}^{2}$ has at least three inflection points. So, it must have at least three vertices as well.

If, on the other hand, Γ is contractible, then it lifts to a pair of closed curves $\bar{\Gamma}_{1}$ and $\bar{\Gamma}_{2}$ in \mathbf{S}^{2} and the covering is one-to-one on each of these curves.

So, by Kneser's theorem on \mathbf{S}^{2}, Γ must have at least four vertices.
In each of the remaining cases, we will construct a curve with less than 3 vertices on M.

I: The elliptic case $(K=1)$

By a theorem of Mobiüs, every simple closed noncontractible curve Γ in $\mathbf{R P}^{2}$ has at least three inflection points. So, it must have at least three vertices as well.

If, on the other hand, Γ is contractible, then it lifts to a pair of closed curves $\bar{\Gamma}_{1}$ and $\bar{\Gamma}_{2}$ in \mathbf{S}^{2} and the covering is one-to-one on each of these curves.

So, by Kneser's theorem on \mathbf{S}^{2}, Γ must have at least four vertices.
In each of the remaining cases, we will construct a curve with less than 3 vertices on M.

II: The parabolic case $(K=0)$

III: The hyperbolic case $(K=-1)$

Another four-vertex theorem for complete surfaces

> Recall that by Pinkall's theorem, and its extension to \mathbf{H}^{2} and \mathbf{S}^{2}, any closed curve bounding a compact surface in a simply connected space form has four vertices.

Question
Are there any other complete Riemannian surfaces where Pinkall's theorem holds?

Another four-vertex theorem for complete surfaces

> Recall that by Pinkall's theorem, and its extension to \mathbf{H}^{2} and \mathbf{S}^{2}, any closed curve bounding a compact surface in a simply connected space form has four vertices.

Question

Are there any other complete Riemannian surfaces where Pinkall's theorem holds?

Another four-vertex theorem for complete surfaces

Recall that by Pinkall's theorem, and its extension to \mathbf{H}^{2} and \mathbf{S}^{2}, any closed curve bounding a compact surface in a simply connected space form has four vertices.

Question

Are there any other complete Riemannian surfaces where Pinkall's theorem holds?

Theorem
No!

$\mathrm{I}:$ The elliptic case $(K=1)$

II: The parabolic case $(K=0)$
So how does one construct a closed curve with only two vertices which bounds a compact immersed surface on a cylinder?

It is not so hard to construct one on a torus:

It is not so hard to construct one on a torus:

It is not so hard to construct one on a torus:

It is not so hard to construct one on a torus:

It is not so hard to construct one on a torus:

It is not so hard to construct one on a torus:

But for a cylinder this will be more complicated:

$$
\frac{1}{a^{2}+2 a \cos \left(\frac{t}{5}\right) \cos (t)+\cos \left(\frac{t}{5}\right)^{2}}\left(a+\cos \left(\frac{t}{5}\right) \cos (t), \cos \left(\frac{t}{5}\right) \sin (t)\right)
$$

$$
r(\theta)=\cos \left(\frac{\theta}{5}\right)
$$

$$
\left(\cos (\theta) \cos \left(\frac{\theta}{5}\right), \sin (\theta) \cos \left(\frac{\theta}{5}\right)\right)
$$

$$
\left(0.9+\cos (\theta) \cos \left(\frac{\theta}{5}\right), \sin (\theta) \cos \left(\frac{\theta}{5}\right)\right)
$$

$$
\left(0.9+\cos (\theta) \cos \left(\frac{\theta}{5}\right), \sin (\theta) \cos \left(\frac{\theta}{5}\right)\right)
$$

$$
\frac{1}{a^{2}+2 a \cos \left(\frac{t}{5}\right) \cos (t)+\cos \left(\frac{t}{5}\right)^{2}}\left(a+\cos \left(\frac{t}{5}\right) \cos (t), \cos \left(\frac{t}{5}\right) \sin (t)\right)
$$

III: The hyperbolic case $(K=-1)$

Theorem
The only complete Riemannian surfaces where every closed curve which bounds a compact embedded surface has more than two vertices are orientable space forms of genus zero, flat tori, and rescalings of $\mathbf{R P}^{2}$.

Theorem

Let Γ be a closed geodesic of length L in a Riemannian 2-manifold of constant curvature K, which is orientable near Γ.

Then, every neighborhood of Γ contains a closed curve which has only two vertices, and may be required to be arbitrarily C^{∞}-close to Γ, if, and only if, $K \neq(2 \pi / L)^{2}$.

The End

