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Theorem (Kneser,1912)

Any simple closed curve in R2 has (at least) four vertices (local
extrema of curvature)
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How about nonsimple curves?

In general they do not have 4 vertices:
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Theorem (Pinkall,1987)

Any closed curve in R2 which bounds an immersed surface has four
vertices.
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Theorem (Pinkall,1987)

Any closed curve in R2 which bounds an immersed surface has four
vertices.

The same result also holds in S2 and H2, because the
stereographic projection π : S2 − {0, 0, 1} → R2 and the inclusion
map i : H2 → R2 preserve vertices.
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Could Pinkall’s theorem be a hint of a purely intrinsic or
Riemannian version of the four vertex theorem?

More precisely:

Question
Let M be a compact surface with boundary and constant
curvature. Must the boundary of M have 4-vertices (in terms of
geodesic curvature)?
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Theorem
Let M be a compact surface with boundary ∂M. Then every
metric of constant curvature induces four vertices on ∂M if and
only if M is simply connected.

Indeed, when M is not simply connected, there are elliptic,
parabolic and hyperbolic metrics of constant curvature on M which
induce only two vertices on ∂M.

Mohammad Ghomi Four-Vertex Theorems in Riemannian Surfaces



Theorem
Let M be a compact surface with boundary ∂M. Then every
metric of constant curvature induces four vertices on ∂M if and
only if M is simply connected.

Indeed, when M is not simply connected, there are elliptic,
parabolic and hyperbolic metrics of constant curvature on M which
induce only two vertices on ∂M.

Mohammad Ghomi Four-Vertex Theorems in Riemannian Surfaces



Mohammad Ghomi Four-Vertex Theorems in Riemannian Surfaces



Mohammad Ghomi Four-Vertex Theorems in Riemannian Surfaces



Mohammad Ghomi Four-Vertex Theorems in Riemannian Surfaces



Flat metrics with fewest vertices

First we show that if M is not simply connected, it admits a flat
metric with only two vertices on each boundary component.
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Recall that M is homeomorphic to a closed surface M minus
k-disks. There are three special cases that we consider first:

I. M = S2 & k = 2

II. M = RP2 & k = 1
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III. g(M) = 1 & k = 1

κ(t) = 1− 3

4
cos(t),

where −π ≤ t ≤ π. More explicitly, γ(t) :=
∫ t
0 e iθ(s)ds, where

e iθ := (cos(θ), sin(θ)), and θ(t) :=
∫ t
0 κ(s)ds.
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In all the remaining cases we will show that M admits a flat metric
with exactly k conical singularities.

Then we remove these singularities by cutting M along simple
closed curves which have only two critical points of geodesic
curvature each.
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If M has k singularities of angles θi , then by Gauss-Bonnet
theorem,

k∑
i=1

(2π − θi ) = 2πχ(M).

Troyanov has shown that the above condition is also sufficient for
the existence of flat metrics with conical singularities of prescribed
angles. This quickly yields

Lemma
Suppose k(M) ≥ 3, 2, 2, 1, according to whether M = S2,
M = RP2, g(M) = 1, or g(M) ≥ 2 respectively. Then there exists
a flat metric on M with exactly k conical singularities.
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Lemma
Let C be a cone with angle φ 6= 2π and Γ be a circle centered at
the vertex of C . Then there exists a C∞ perturbation of Γ which
has only two critical points of curvature.

Proof.
If φ = 2nπ (where n ≥ 2), let

rλ(θ) := 1− λ cos

(
θ

n

)
.

If φ 6= 2nπ, we cut a segment of theses curves.
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Perturbations of Flat Metrics

Proposition

Let M be a compact surface with boundary and flat metric g0.
Then there exists a family gλ of Riemannian metrics on M,
λ ∈ (−ε, ε) for some ε > 0, such that gλ has constant curvature λ,
and λ 7→ gλ is continuous with respect to the C∞ topology.

This is easy when M is simply connected, for then it isometrically
immersed into the plane and we may perturb the whole plane(

gλ
)
ij

(x) :=
δij(

1 + λ
4‖x‖2

)2 .
But how about the general case:
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Perturbations of Flat Metrics

Any compact surface with boundary may be cut along a finite
number of curves to make it simply connected:

Next we are going to immerse the boundary curve into a space
form by using the curvature function along the boundary
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Lemma (Fund. thm. of curves for Riemannian surfaces)

Let M be a complete oriented C∞ Riemannian surface, p ∈ M,
and u ∈ TpM be a unit vector. Suppose that we are given a C∞

function κ : I → R, for some open interval I ⊂ R with 0 ∈ I . Then
there exists a unique unit speed C∞ curve γ : I → M with
γ(0) = p, γ′(0) = u, and geodesic curvature κ(t).

Proof.
This follows from basic ODE theory:

g
(
∇γ′(t)γ

′, J
(
γ′(t)

))
= κ(t)

which may be rewritten as

v ′1 = −
2∑

i ,j=1

vivjΓ
1
ij

(
γ1, γ2

)
− κ

2Gv2
,

v ′2 = −
2∑

i ,j=1

vivjΓ
2
ij

(
γ1, γ2

)
+

κ

2Gv1
.
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Now we immerse the boundary curve in a space form with small
curvature:

The key is to start at a point belonging to the original boundary,
not the extra cuts. Then a gluing closes the curve without
introducing new vertices.

The sides of the resulting region may now be glued in pairs to
obtain the desired surface with constant nonzero curvature.
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A Four vertex theorem for complete Riemannian surfaces

Recall that by Kneser’s theorem, and its extension to H2 and S2,
any simple closed curve in a simply connected space form has four
vertices.

Question
Are there any other complete Riemannian surfaces where Kneser’s
theorem holds?

Theorem
No!
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It has been shown that Kneser’s four vertex property has local
consequences:

Theorem (S. B. Jackson, 1945)

Let M be a Riemannian surface with curvature K and let p be a
point of M. Suppose that dKp 6= 0. Then sufficiently small metric
circles centered at p have only two vertices.

So the four-vertex-property forces the curvature to be constant.

There are global consequences as well ...
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Theorem
The only complete Riemannian surfaces M where every simple
closed curve has more than two vertices are the the space forms
with finite fundamental group (i.e., R2, S2, H2, and RP2, up to a
rescaling).

Proof.
Suppose that M has Kneser’s four vertex property.

Then by Jackson’s theorem M has constant curvature K = 1, 0, or
−1.

Then M = X/G , where X = R2, S2, or H2.
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I: The elliptic case (K = 1)

By a theorem of Mobiüs, every simple closed noncontractible curve
Γ in RP2 has at least three inflection points. So, it must have at
least three vertices as well.

If, on the other hand, Γ is contractible, then it lifts to a pair of
closed curves Γ1 and Γ2 in S2 and the covering is one-to-one on
each of these curves.

So, by Kneser’s theorem on S2, Γ must have at least four vertices.

In each of the remaining cases, we will construct a curve with less
than 3 vertices on M.
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II: The parabolic case (K = 0)
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III: The hyperbolic case (K = −1)

(
λt sin

(π
L

ln(t)
)
, t
)
.
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Another four-vertex theorem for complete surfaces

Recall that by Pinkall’s theorem, and its extension to H2 and S2,
any closed curve bounding a compact surface in a simply
connected space form has four vertices.

Question
Are there any other complete Riemannian surfaces where Pinkall’s
theorem holds?

Theorem
No!

Mohammad Ghomi Four-Vertex Theorems in Riemannian Surfaces



Another four-vertex theorem for complete surfaces

Recall that by Pinkall’s theorem, and its extension to H2 and S2,
any closed curve bounding a compact surface in a simply
connected space form has four vertices.

Question
Are there any other complete Riemannian surfaces where Pinkall’s
theorem holds?

Theorem
No!

Mohammad Ghomi Four-Vertex Theorems in Riemannian Surfaces



Another four-vertex theorem for complete surfaces

Recall that by Pinkall’s theorem, and its extension to H2 and S2,
any closed curve bounding a compact surface in a simply
connected space form has four vertices.

Question
Are there any other complete Riemannian surfaces where Pinkall’s
theorem holds?

Theorem
No!

Mohammad Ghomi Four-Vertex Theorems in Riemannian Surfaces



I:The elliptic case (K = 1)
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II: The parabolic case (K = 0)

So how does one construct a closed curve with only two vertices
which bounds a compact immersed surface on a cylinder?
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It is not so hard to construct one on a torus:
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It is not so hard to construct one on a torus:

But for a cylinder this will be more complicated:
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1

a2 + 2a cos
`

t
5

´
cos(t) + cos

`
t
5

´2

“
a + cos

“ t

5

”
cos(t), cos

“ t

5

”
sin(t)

”

Mohammad Ghomi Four-Vertex Theorems in Riemannian Surfaces



r(θ) = cos

„
θ

5

«
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„
θ

5

«
, sin(θ) cos

„
θ

5

««
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III: The hyperbolic case (K = −1)
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Theorem
The only complete Riemannian surfaces where every closed curve
which bounds a compact embedded surface has more than two
vertices are orientable space forms of genus zero, flat tori, and
rescalings of RP2.
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Theorem
Let Γ be a closed geodesic of length L in a Riemannian 2-manifold
of constant curvature K , which is orientable near Γ.

Then, every neighborhood of Γ contains a closed curve which has
only two vertices, and may be required to be arbitrarily C∞-close
to Γ, if, and only if, K 6= (2π/L)2.
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The End
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