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Abstract. We prove that if Σ is a compact hypersurface in Euclidean
space Rn, its boundary lies on the boundary of a convex body C, and
meets C orthogonally from the outside, then the total positive curvature
of Σ is bigger than or equal to half the area of the sphere Sn−1. Also we
obtain necessary and sufficient conditions for the equality to hold.

1. Introduction

It is well-known that the total positive curvature τ+ of a smooth closed
hypersurfaces in Euclidean space Rn is bigger than or equal to the area of the
sphere Sn−1. Further the case of equality has been extensively studied within
the context of the theory of tight immersions [6, 5]. Motivated by applications
to isoperimetric problems [10], we obtain in this paper an analogous sharp
inequality for hypersurfaces whose boundary lies on a convex body, and meets
that convex body orthogonally from the outside, as we describe below.

First we give a general definition for τ+. Let Σ be a compact C0 hypersurface
with boundary ∂Σ in Rn, which is C1-immersed on a neighborhood of ∂Σ (it
is not required that Σ be locally embedded away from ∂Σ). A hyperplane
Π ⊂ Rn is called a restricted support hyperplane of Σ at a point p, if p ∈ Π∩Σ,
Σ lies on one side of Π, and Π is tangent to Σ when p ∈ ∂Σ. An outward normal
of Π is a normal vector to Π which points towards a side of Π not containing
Σ. If Π is a restricted support hyperplane for an open neighborhood Up of p
in Σ, then Π is called a restricted local support hyperplane; furthermore, p is
a locally strictly convex point of Σ, or p ∈ Σ+, provided that Π ∩ Up = {p}.
The total positive curvature τ+ of Σ is defined as the algebraic area of the unit
normals to restricted local support hyperplanes of Σ at points of Σ+, where
by area we mean the n − 1 dimensional Hausdorff measure.

Our definition of τ+ is validated by the fact that when Σ+ is C1,1, the
outward unit normal vector field ν : Σ+ → Sn−1 is well-defined and Lipschitz
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continuous; thus, by the area formula [11, Thm 3.2.3],

τ+(Σ) =

∫
Σ+

|GK|,

where GK := det(dν) is the Gauss-Kronecker curvature of Σ. To state our
main result it only remains to set cn := area(Sn), and recall that the inward
conormal at p ∈ ∂Σ is a unit normal vector of ∂Σ at p which is tangent to Σ
and points inside Σ.

Theorem 1.1. Let Σ be a compact C0 hypersurface in Rn which is C1 im-
mersed on a neighborhood of its boundary ∂Σ. Suppose that ∂Σ lies on the
boundary of a convex set C ⊂ Rn, and at each point p ∈ ∂Σ the inward
conormal σ(p) is an outward unit normal to a support hyperplane of C. Then

τ+(Σ) ≥ cn−1

2
.(1)

Equality holds if and only if (i) ∂Σ lies in a hyperplane Π, (ii) σ(p) ⊥ Π for
all p ∈ ∂Σ, (iii) Σ lies strictly on one side of Π, and (iv) every restricted local
support hyperplane of Σ at each point of Σ+ is a restricted support hyperplane
of Σ.

Note that when ∂C is C1, the boundary hypothesis in the above theorem is
equivalent to the requirement that Σ meet ∂C orthogonally along ∂Σ, and a
neighborhood of ∂Σ in Σ lie outside of the interior of C. Further, when Σ is
C1, condition (iv) above may be replaced by the requirement that Σ+ lie on
the boundary of the convex hull of Σ.

A pair of surfaces which satisfy conditions (i)-(iv) of Theorem 1.1 are illus-
trated in Figure 1. The example on the left is a möbius strip and the other is
an annulus with a bridge and a handle attached. Similarly, one may construct
surfaces of every topological genus which satisfy conditions (i)-(iv) by adding
bridges or handles to an annulus or a möbius strip. In short, equality in (1)
does not restrict the topology of Σ or force it to be embedded.

Figure 1
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As we mentioned earlier, the above theorem mirrors well-known results for
closed hypersurfaces. In particular recall that when Σ is closed, τ+(Σ) ≥
cn−1, because for almost any u ∈ Sn−1, Σ has a strict support hyperplane
with outward unit normal u [18, Thm. 2.2.9]. Further it is easy to see that
τ+(Σ) = cn−1 if and only if every local support hyperplane of Σ at each point of
Σ+ is a support hyperplane of Σ. Such surfaces are called 0-tight ; they satisfy
Banchoff’s two-piece-property (TPP) [4], and, when they are smooth, have
minimal total absolute curvature

∫
Σ
|GK| as studied by Chern and Lashof

[7, 8], Kuiper [13, 14], and others [6, 5]. In particular we should mention
papers of Rodriguez [17] and Kühnel [12] where they prove that (in contrast
to the examples illustrated in Figure 1) a surface with boundary and TPP
lies embedded on the boundary of its convex hull, and therefore has restricted
topology. The earliest study of closed surfaces with τ+ = cn−1 is due to
Alexandrov [3], see Nirenberg [16].

The prime motivation for this work, however, stems from applications to
isoperimetric problems. In particular, Theorem 1.1 is used in [10] to show
that the area of a hypersurface Σ which traps a given volume outside of a
convex body in Rn must be greater than or equal to the area of a hemisphere
trapping the given volume on one side of a hyperplane, and equality holds
only when Σ is itself a hemisphere. See also [9] for a generalization of this
result to Cartan-Hadamard 3-manifolds. Other recent results on the structure
of hypersurfaces whose boundary lies on a convex body have been obtained in
[1, 2]; also see [15].

The proof of Theorem 1.1 presented here is based on successive generaliza-
tions of the simple observation that if X ⊂ Sn−1 is any convex spherical set,
then the intersection of X with any hemisphere centered at a point of X con-
tains at least half of X. This fact is proved in Section 2, and is then extended
to a result for normal cones of finite sets in Section 3. The latter result is used
in turn to prove a still more general proposition for support cones of general
sets in Section 4. Applying the last result to ∂Σ and its conormal vector field
leads to the proof of Theorem 1.1 in Section 5.

In the appendix we discuss a relatively short analytic proof of inequality (1)
when ∂Σ is C2.

Note 1.2. Inequality (1) has an easy proof when C is a sphere. Indeed in
this case it can be shown that for every u ∈ Sn−1, Σ has a restricted support

hyperplane which is orthogonal to u. To see this let Σ̃ be the surface obtained

from Σ by connecting all points of ∂Σ to the center o of the sphere. Then Σ̃

is C1 immersed near ∂Σ. For u ∈ Sn−1, let hu : Σ̃ → R be the height function

hu(·) := 〈·, u〉. Note that since Σ̃ is a closed C0-immersed hypersurface, it does
not lie entirely in a hyperplane, by the theorem on invariance of domain. Thus,
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for every u ∈ Sn−1, hu has a maximum point and a minimum point on Σ̃ which
are distinct. In particular, at least one of these extremum points, which we

denote by vu, must be different from o. So either vu ∈ Σ, or vu ∈ Σ̃−{o}−Σ.
In the former case, TvuΣ is orthogonal to u. In the latter case, vu lies in the

interior of a line segment oq for some q ∈ Σ. Thus, since TvuΣ̃ is a support

hyperplane of Σ̃, it follows that TvuΣ̃ is tangent to Σ at q. So TqΣ = TvuΣ̃ is
the desired hyperplane.

Note 1.3. Unlike the case where C is a sphere, which was addressed in Note
1.2, there are surfaces which satisfy the hypothesis of Theorem 1.1, but do not
have restricted support hyperplanes orthogonal to every direction. See Figure
2 for one such surface whose boundary lies on a cylinder.

Figure 2

Note 1.4. Inequality (1) is an easy consequence of the Gauss-Bonnet theorem
when n = 3, Σ is homeomorphic to a disk, and C has C2 positively curved
boundary. To see this let γ : (−ε, ε) → ∂Σ be a local parametrization of ∂Σ
with γ(0) = p and ‖γ′‖ = 1. Let ν(p) be the unit normal to ∂C, which is
parallel to the mean curvature vector of ∂C at p, and σ(p) be the inward
conormal of ∂Σ at p. Then the geodesic curvature of ∂Σ at p is given by

κg(p) =
〈
γ′′(0), σ(p)

〉
=

〈
γ′′(0),−ν(p)

〉
= − IIp

(
γ′(0), γ′(0)

)
,

where IIp is the second fundamental form of ∂C with respect to ν(p). Since
∂C has positive curvature at p, and ν(p) is parallel to the mean curvature
vector, IIp is positive definite. So κg < 0, and consequently∫

Σ+

GK ≥
∫

Σ

GK = 2πχ(Σ) −
∫

∂Σ

κg ≥ 2πχ(Σ) = 2π.

2. Convex Spherical Sets

We say that a subset X ⊂ Sn−1 is convex if every pair of points of X may be
joined by a distance minimizing geodesic which lies in X. For every u ∈ Sn−1
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we define the (closed) hemisphere centered at u as

Hu :=
{

p ∈ Sn−1 | 〈p, u〉 ≥ 0
}
.

The distance between any pairs of sets X, Y ⊂ Rn is given by

dist(X, Y ) := inf
{
‖x − y‖ | x ∈ X, y ∈ Y

}
.

If p ∈ Rn, we adopt the common convention dist(X, p) := dist(X, {p}).
Proposition 2.1. Let X ⊂ Sn−1 be a closed convex set with interior points
and u ∈ X. Then

area(X ∩ Hu) ≥
1

2
area(X).(2)

Equality holds if and only if −u ∈ X. Further, for every ε > 0 there exists
δ > 0 such that

if area(X ∩ Hu) ≤
(

1

2
+ δ

)
area(X), then dist(X,−u) ≤ ε.(3)

Proof. Let A consist of all geodesic segments connecting u to the points of
X ∩ ∂Hu, where ∂Hu is the set of points of Sn−1 which are orthogonal to
u, and let B be the complement of A in Hu. Further, let A′ and B′ be the
reflections of A and B with respect to the hyperplane which is orthogonal to
u and passes through the origin. Since A ⊂ X,

area(X ∩ A) = area(A) = area(A′) ≥ area(X ∩ A′).

Further note that if B′ contains any point p of X, then the geodesic connecting
p to u belongs to X and crosses ∂Hu at a point x. But this would imply that
the geodesic ux belongs to A, which can happen only if p ∈ A′. Thus

area(X ∩ B′) = 0.

So it follows that

area(X ∩ Hu) = area(X ∩ A) + area(X ∩ B)

≥ area(X ∩ A′) + area(X ∩ B′)

= area(X ∩ H−u),

which establishes the desired inequality (2).
Now suppose that equality holds in (2). Then the first and the last quantities

in the above expression are equal. So the intermediate quantities must be equal
as well. Thus we have

area(X ∩ A) ≤ area(X ∩ A) + area(X ∩ B)

= area(X ∩ A′) + area(X ∩ B′)

= area(X ∩ A′).
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So it follows that

area(X ∩ A′) = area(X ∩ A) = area(A) = area(A′).

Since A′ and X are both closed convex sets, the last equality above yields that
X ∩ A′ = A′. In particular, −u ∈ X.

Conversely, if −u ∈ X, then the convexity of X implies that X ∩ A′ = A′.
Furthermore, if p ∈ X ∩ B, then by convexity of X the geodesic p(−u) must
also be contained in X. But, since p(−u) lies partly in B′, that would imply
that X ∩ B′ �= ∅, which is a contradiction. So X ∩ B = ∅. Since X ∩ A = A,
we conclude then that

area(X ∩ Hu) = area(A) = area(A′) = area(X ∩ H−u).

So equality holds in (2).
Finally note that if left hand side of (3) holds, then

area(X ∩ H−u) ≥
(

1

2
− δ

)
area(X),

which yields

2δ area(X) ≥ area(X ∩ Hu) − area(X ∩ H−u)

= area(X ∩ A) + area(X ∩ B) − area(X ∩ A′)

≥ area(X ∩ A) − area(X ∩ A′)

= area(A′) − area(X ∩ A′).

In particular, if Bn
ε (−u) denotes the n-dimensional closed ball of radius ε

centered at −u, and we set

δ ≤ area
(
Bn

ε (−u) ∩ A′)
2 area(X)

,

it follows that

area(X ∩ A′) ≥ area(A′) − area
(
Bn

ε (−u) ∩ A′).
So X ∩ Bn

ε (−u) �= ∅, which yields dist(X,−u) ≤ ε, as desired.

Note 2.2. The proof of Proposition 2.1 shows that if X ⊂ Sn−1 is any convex
spherical set of Hausdorff dimension d, then

Hd(X ∩ Hu) ≥
1

2
Hd(X),

where Hd is the d-dimensional Hausdorff measure, and again equality holds if
and only if −u ∈ X
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3. Restricted Normal Cones of Finite Sets

For any subset X ⊂ Rn and point p ∈ Rn, the (unit) normal cone of X at
p is defined as

NpX :=
{

u ∈ Sn−1 | 〈x − p, u〉 ≤ 0, ∀x ∈ X
}
,

i.e., the set of outward unit normals to support hyperplanes of X ∪ {p} at p.
We also set

NX := ∪
p∈X

NpX.

Lemma 3.1. For any set X ⊂ Rn, and point p ∈ Rn, NpX is either a convex
spherical set or consists exactly of a pair of antipodal points.

Proof. Let u0, u1 ∈ NpX. If u0 �= −u1, then the geodesic segment between u0

and u1 may be parametrized by

u(λ) :=
(1 − λ)u0 + λu1

‖(1 − λ)u0 + λu1‖
,

where λ ∈ [0, 1]. Since 〈x − p, u0〉 ≤ 0 and 〈x − p, u1〉 ≤ 0 for all x ∈ X, it
follows that 〈x − p, u(λ)〉 ≤ 0 as well, which yields that u(λ) ∈ NpX.

If u0 = −u1, and NpX contains no other points then we are done. Otherwise
let x be a point of NpX distinct from u0 and u1. Then NpX contains the
geodesic segments u0x and xu1. Let Π be the two dimensional plane spanned
by u0 and x. Then u0x and xu1 both lie on Π, since Π is a plane of symmetry
of Sn−1 and geodesics of length less than π are unique in Sn−1. Thus u0x∪xu1

is a geodesic, and so we conclude that NpX contains a geodesic connecting u0

and u1.

For any subset X ⊂ Rn and mapping σ : X → Sn−1, we define the restricted
normal cone of X at p with respect to σ as

NpX/σ := NpX ∩ Hσ(p),

and set
NX/σ := ∪

p∈X
NpX/σ.

We say that a point p ∈ X is exposed provided that there passes through p a
support hyperplane Π of X such that Π∩X = {p}. The set of exposed points
of X is denoted by XE. The width of a subset X ⊂ Rn is the distance between
the closest pairs of parallel hyperplanes which contain X in between them.

Proposition 3.2. Let X := {x1, . . . , xk} ⊂ Rn be a finite set which lies on
the boundary of a convex body. Choose σ(xi) ∈ Nxi

X. Then

area
(
NX/σ

)
≥ cn−1

2
.(4)
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Equality holds if and only if X lies in a hyperplane Π, and σ(xi) is orthogonal
to Π for all xi ∈ XE. Further, for every ε > 0 there exists δ > 0 such that

if area(NX/σ) ≤
(

1

2
+ δ

)
cn−1, then width(X) ≤ ε.(5)

Proof. First note that, since X is compact, for every u ∈ Sn−1, the height
function 〈·, u〉 has a maximum point in X, which means that X has a support
hyperplane with outward normal u. Thus

NX = Sn−1.

Further a point u ∈ Sn−1 belongs to the interior of some Nxi
X, as a subset of

Sn−1, if and only if there exists a support hyperplane of X at xi with outward
normal u which intersects X only at xi. Thus

intSn−1

(
Nxi

X
)
∩ intSn−1

(
Nxj

X
)

= ∅,
for all i �= j. Since, by Lemma 3.1, each Nxi

X with nonvanishing area is a
convex spherical set, and X is a finite, Proposition 2.1 together with the two
equalities displayed above yields that

area
(
NX/σ

)
=

∑
i

area
(
Nxi

X/σ
)
≥

∑
i

1

2
area

(
Nxi

X
)

=
cn−1

2
.

Now suppose that equality holds in (4). Then the middle two quantities in
the above expression are equal. This together with Proposition 2.1 yields that

area
(
Nxi

X/σ
)

=
1

2
area

(
Nxi

X
)
,

whenever Nxi
X has interior points. Since X is finite, this can happen if

and only if xi ∈ XE. So, again by Proposition 2.1, Nxi
X contains a pair

of antipodal points ±σ(xi) for all xi ∈ XE. This yields that X lies in a
hyperplane orthogonal to ±σ(xi).

Conversely, suppose that X lies in a hyperplane and σ(xi) are orthogonal to
that hyperplane for all xi ∈ XE. Then −σ(xi) ∈ Nxi

X, for all xi ∈ XE. Thus,
by Proposition 2.1, the above equality holds for all xi ∈ XE, which yields that
equality holds in (4).

Finally suppose that the left hand side of (5) holds. Then, since area
(
NX/σ

)
is the sum of area

(
Nxi

X/σ
)
, which have disjoint interiors, there must exist an

i such that

area
(
Nxi

X/σ
)
≤

(
1

2
+ δ

)
area

(
Nxi

X
)
.

In particular, by Proposition 2.1, we may choose δ so small that, for any ε > 0,

dist
(
Nxi

X,−σ(xi)
)
≤ 2 sin

(
ε

2 diam(X)

)
,
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for some i, where diam(X) denotes the distance between the farthest points
of X. This implies that there exists an element σ̃i ∈ Nxi

X such that the angle
between −σ(xi) and σ̃i is less than or equal to ε/ diam(X). Consequently
the angle of the ‘wedge’ containing X generated by the support hyperplanes
of X at xi, with outward unit normals σ(xi) and σ̃i, is less than or equal to
ε/ diam(X). So,

width(X) ≤ ε

diam(X)
· diam(X) = ε,

as desired.

4. Restricted Normal Cones of General Sets

For any subset X ⊂ Rn, let Br(X) denote the union of all closed balls of
radius r centered at points of X. The Hausdorff distance between any pairs
of subsets X, Y of Rn is defined as

distH(X, Y ) := inf
{

r ≥ 0 | X ⊂ Br(Y ) and Y ⊂ Br(X)
}
.

We say that a sequence of sets Xi ⊂ Rn converges to X ⊂ Rn, and write
limi→∞ Xi = X, provided that for every ε > 0 there exists an integer k such
that distH(Xi, X) ≤ ε whenever i ≥ k.

Lemma 4.1. Let X ⊂ Rn be compact, and pi ∈ Rn be a sequence of points
which converges to a point p ∈ Rn. Then limi→∞ Npi

(X) ⊂ Np(X). Further,
if p ∈ Rn − X, then limi→∞ Npi

(X) = Np(X).

Proof. Since X is compact, the set of hyperplanes in Rn with respect to which
X lies on both sides or are disjoint from X is open. This implies that the set
of support hyperplanes of X are closed. Thus limi→∞ Npi

(X) ⊂ Np(X).
Now suppose that p ∈ Rn − X. Then Np(X) has nonempty interior (as a

subset of Sn−1). Let u ∈ intSn−1(Np(X)), and Π be the hyperplane through
p and orthogonal to u. Then, Π ∩ X = ∅, and consequently, since X is
compact, dist(X, Π) > 0. In particular, we may choose i so large that the
dist(pi, Π) < dist(pi, X). Then the hyperplane Πi which passes through pi and
is orthogonal to u has X entirely on one side. Thus u ∈ Npi

X for i sufficiently
large, and so we conclude that

intSn−1

(
Np(X)

)
⊂ lim

i→∞
Npi

(X).

But limi→∞ Npi
(X) is closed, because the space of compact subsets of Rn is

locally compact with respect to the Hausdorff metric [18, Thm. 1.8.4]. So
Np(X) ⊂ limi→∞ Npi

(X).

Lemma 4.2. Let X ⊂ Rn be compact. Then, except for a set of zero area,
every u ∈ Sn−1 is the outward normal to a support hyperplane of X which
intersects X only at a single point.
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Proof. See [18, Thm. 2.2.9].

Proposition 4.3. Let X ⊂ Rn be a compact set which is disjoint from the
relative interior of its convex hull. Suppose there exists a continuous mapping
σ : X → Sn−1 such that σ(p) ∈ NpX for all p ∈ X. Then

area
(
NX/σ

)
≥ cn−1

2
.(6)

Equality holds if and only if X lies in a hyperplane Π, and σ(p) is orthogonal
to Π for all p ∈ XE.

Proof. First we show that NX/σ is closed. To see this, note that, by Lemma
4.1, if xi is a sequence of points of X which converges to x, then the limit
of Nxi

X is a subset of NxX. Further, since σ is continuous, the hemispheres
Hσ(xi) converge to Hσ(x). So the limit of Nxi

X/σ is a subset of NxX/σ. Now
suppose that we have a sequence of elements ui ∈ NX/σ which converges to
a point u ∈ Sn−1. Then ui ∈ Nxi

X/σ, for some xi ∈ X. Since X is compact,
xi have an accumulation point x ∈ X. Consequently, as we just argued, the
limit of Nxi

X/σ lies in NxX/σ. So u ∈ NxX/σ, and we conclude that NX/σ
is closed.

Next note that, Since X is bounded, for any i = 1, 2, . . . , we may cover it by
finitely many balls in Rn of radius 1/i centered at points of X. Let Xi be the
set of the centers of these balls. As i → ∞, Xi converges to X with respect to
the Hausdorff metric, consequently, for any p ∈ X, NpXi converges to NpX.
We claim that, since X is compact, for every δ > 0, there exists k > 0 such
that for all i ≥ k, NpXi is within a Hausdorff distance δ of NpX for all p ∈ X.

To establish this claim note that, since by assumption X is disjoint from
the relative interior of its convex hull, there exists for every i, a convex set X i

such that X i ⊂ conv(Xi), X i ∩ X = ∅, and dist(X i, X) ≤ 2/i. Further, after
passing to a subsequence, we may assume that X i ⊂ X i+1. For every i define
fi : X → R by

fi(p) := distH

(
NpX, NpX i

)
.

Since p ∈ X and X i∩X = ∅, the mapping p �→ NpX i is continuous, by Lemma
4.1, with respect to the Hausdorff metric. Further recall that, again by Lemma
4.1, that if pk converge to p then the limit of Npk

X is a subset of NpX. Thus
fi is lower semicontinuous. Consequently, since X is compact, fi achieves its
supremum on X, i.e., there exists pi ∈ X such that sup(fi) = fi(pi). But
fi+1(pi+1) ≤ fi(pi+1), because NpX i ⊂ NpX i+1 ⊂ NpX, since X i ⊂ X i+1 ⊂
conv(X). Thus sup(fi) is a decreasing sequence:

sup(fi+1) = fi+1(pi+1) ≤ fi(pi+1) ≤ sup(fi).
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So, since sup(fi) > 0, limi→∞ sup(fi) exists. Since X i → X, this limit must be
zero. This proves the claim, because, since X i ⊂ conv(Xi), we have fi(p) ≥
distH

(
NpX, NpXi

)
.

Since σ is continuous, it follows that, for any δ > 0, NpX/σ is within a
(Hausdorff) distance δ of NpXi/σ for all p ∈ X, provided that i is sufficiently
large. This yields that NX/σ is within an arbitrarily small δ distance of
NXi/σ, once i is large.

Now suppose towards a contradiction that the area of NX/σ is less than
cn−1/2. Then the area of the complement of NX/σ is bigger than cn−1/2.
Since NX/σ is closed, its complement is open, and therefore the complement
contains a compact subset, say A, whose area is also bigger than cn−1/2. Since
A is at a finite distance away from NX/σ, by the above discussion it is disjoint
from NXi/σ as well once i is sufficiently large; therefore, NXi/σ has area less
than cn−1/2. But since Xi is a finite set, by Proposition 3.2 the area of NXi/σ
is at least cn−1/2, and we have our contradiction.

Next suppose that equality holds in (6). Then, choosing i large enough, we
can make sure that the area of NXi/σ is as close to cn−1/2 as desired. So,
by Proposition 3.2, the upper bound for the width of Xi becomes arbitrarily
small as i grows large. But

width(X) ≤ width(Xi) +
2

i
.

So we conclude that X lies in a hyperplane.
Finally we show that for all p ∈ XE, σ(p) is orthogonal to the hyperplane,

say Π, which contains X. To see this suppose that Π is the set of points in
Rn whose nth coordinate is zero. Let en := (0, 0, . . . , 1) denote the ‘north
pole’ of Sn−1, and A ⊂ X be the set of points p where 〈σ(p), en〉 < 0. Define
σ : X → Sn−1, by σ(p) = σ(p) if p ∈ X − A, and let σ(p) be the reflection of
σ(p) with respect to Π otherwise. Note that NA/σ is the reflection of NA/σ
with respect to Π. Thus

area(NX/σ) = area(NX/σ) =
cn−1

2
.

Let u ∈ Hen and p be a maximum point of the height function 〈·, u〉. Then
u ∈ NpX. So u ∈ NpX ∩ Hen . But σ(p) ∈ NpX ∩ Hen as well. This yields
that 〈u, σ(p)〉 ≥ 0, because, since X ⊂ Π, {en,−en} ⊂ Np(X); consequently,
either NpX = {en,−en} or Np(X) is a ‘lune’ with vertices at en and e−n, i.e.,
NpX is the intersection of two (closed) hemispheres the boundaries of which
passes through en and −en. So we conclude that u ∈ NpX/σ, which yields

Hen ⊂ NX/σ.

But area
(
NX/σ

)
= cn−1/2. So NX/σ ⊂ Hen except for a subset of area 0. In

particular, NXE/σ ⊂ Hen except for a subset of area 0. But if there exists a
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point u ∈ NXE/σ such that u �∈ Hen , then since Hen is closed, σ is continuous,
and NXE is dense in Sn−1, it follows that there exists an open neighborhood
U of u in NXE which is disjoint from Hen . But almost every point of Sn−1

belongs to NXE, thus U has nonzero area, which is a contradiction. So it
follows that

NXE/σ ⊂ Hen .

In particular, for all p ∈ XE, NpX/σ ⊂ Hen , which can happen only if σ(p) =
en. So we conclude that, when equality holds in (6), σ(p) = ±en, i.e., σ(p) is
orthogonal to Π for all p ∈ XE.

Conversely suppose that X lies in a hyperplane Π and σ(p) is orthogonal to
Π for all p ∈ XE. Then we claim the equality holds in (6). To see this first note
that, by Lemma 4.2, area(NXE/σ) = area(NX/σ). Let σ(p) := σ(p) if σ(p) =
en, and σ(p) := −σ(p) otherwise. Then area(NXE/σ) = area(NXE/σ). Next
recall that, as we argued above, NpX

E is a lune with vertices at ±en. Thus
NpX

E/σ(p) = NpX
E ∩ Hen . So NXE/σ = NXE ∩ Hen = Hen , which yields

that area(NXE/σ) = cn−1/2.

5. Proof of Theorem 1.1

5.1. The inequality. Let RNΣ denote the set of outward unit normals to
restricted support hyperplanes of Σ. By Lemma 4.2, almost every element of
RNΣ is an outward normal to a support hyperplane of Σ which intersects Σ
at a point of Σ+. Thus

τ+(Σ) ≥ area
(
RNΣ

)
.(7)

By assumption, σ(p) ∈ Np∂Σ for all p ∈ ∂Σ. Thus if u ∈ Np∂Σ/σ, the
height function 〈·, u〉 either has a maximum point in the interior of Σ, or
u ⊥ σ(p). In either case u ∈ RNΣ, which yields that N∂Σ/σ ⊂ RNΣ.

Thus, by Proposition 4.3,

area
(
RNΣ

)
≥ area

(
N∂Σ/σ) ≥ cn−1

2
,(8)

which establishes inequality (1).

5.2. Necessary conditions for equality. Suppose that equality holds in
(1). We show then that the following conditions hold.

5.2.1. ∂Σ lies in a hyperplane. If equality holds in (1), then the last two quan-
tities in (8) are equal. So, by Proposition 4.3, ∂Σ lies in a hyperplane Π.

For convenience we assume from now on that Π is the hyperplane of the first
n − 1 coordinates in Rn. In particular, Π is orthogonal to en := (0, 0, . . . , 1),
the ‘north pole’ of Sn−1. Further we may assume that Σ ∩ Π+ �= ∅, where Π+

denotes the half-space where the nth coordinate of points of Rn is nonnegative.
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5.2.2. Every restricted local support hyperplane of Σ at a point of Σ+ is a
restricted support hyperplane of Σ. Let A ⊂ Sn−1 be the set of unit normals
to restricted local support hyperplanes of Σ, and A+ ⊂ A be the set of unit
normals to restricted local support hyperplanes of Σ at points of Σ+. It follows
from Lemma 4.2 that area(A − A+) = 0. In particular, every nonempty open

subset of A+ has positive area. Now let Ã+ be those elements of A+ which are

not unit normals to restricted support hyperplanes of Σ. Then Ã+ is open in

A+. So if Ã+ �= ∅, then area(Ã+) > 0. On the other hand, If equality holds in
(1), then it follows from (7) and (8) that τ+(Σ) = area(RNΣ), which means

that area(Ã+) = 0. So we conclude that Ã+ = ∅.

5.2.3. Σ ⊂ Π+. Let Σ′ be the reflection of Σ with respect to Π, and σ′ be the
inward conormal of ∂Σ′. Then if, for some p ∈ ∂Σ, σ(p) lies in the ‘northern
hemisphere’ Hen , σ′(p) must lie in the ‘southern hemisphere’ H−en and vice
versa. Suppose that there exists a support hyperplane Π′ of Σ ∪ Σ′ at a
point p ∈ ∂Σ = ∂Σ′. Let u be the outward normal of Π′. Then 〈σ(p), u〉 ≤
0, and 〈σ′(p), u〉 ≤ 0. Now recall that σ(p), σ′(p), and u are all outward
unit normals to support hyperplanes of ∂Σ, i.e., they are elements of Np∂Σ.
Further, since ∂Σ is C1, has codimension 2, and lies in a hyperplane, Np∂Σ
is half of a great circle connecting the north and south poles of Sn−1. So
it follows that 〈σ(p), u〉 = 0 = 〈σ′(p), u〉. Thus if a support hyperplane of
Σ ∪Σ′ intersects a point of ∂Σ, then it is tangent to Σ. In other words, every
support hyperplane of Σ∪Σ′ is a restricted support hyperplane of Σ or Σ′. So
τ+(bd conv(Σ ∪ Σ′)) = τ+(Σ ∪ Σ′). Consequently Σ+ ⊂ bd conv(Σ ∪ Σ′). So
Σ+ ∩ int conv Σ′ = ∅, because int conv Σ′ ⊂ int conv(Σ ∪ Σ′). This yields that
S := bd conv Σ∩ int conv Σ′ = ∅, because otherwise S is a nonflat convex cap,
and so it must have strictly convex points. Thus we conclude that conv Σ =
conv Σ′, or int conv Σ ∩ int conv Σ′ = ∅.

Suppose that conv Σ = conv Σ′. Then conv Σ is symmetric with respect to
Π. If there exists a point p ∈ ∂Σ ∩ bd conv Σ, let u be the outward normal
of ∂Σ at p in Π, and note that, since σ(p) ∈ Np∂Σ, 〈σ(p), u〉 ≥ 0. On the
other hand, since conv Σ is symmetric with respect to Π, u is an outward unit
normal to a support hyperplane of conv Σ at p, which yields 〈σ(p), u〉 ≤ 0. So
〈σ(p), u〉 = 0. Thus we conclude that if p ∈ ∂Σ∩ bd conv Σ, then any support
hyperplane of Σ at p is orthogonal to Π, and is therefore tangent to Σ at p.
So any support hyperplane of bd conv Σ is a restricted support hyperplane of
Σ. But since bd conv Σ is a closed surface, τ+(bd conv Σ) ≥ cn−1, whereas, by
assumption, τ+(Σ) = cn−1/2. Hence we have a contradiction.

So we conclude that int conv Σ∩ int conv Σ′ = ∅, which yields that Σ lies on
one side of Π. In particular, since by assumption a point of Σ lies in Π+, we
have Σ ⊂ Π+.
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5.2.4. Σ ∩Π = ∂Σ and σ(p) ⊥ Π. Let Σ be the closure of bd conv Σ ∩ int Π+.
Then, since Σ lies on one side of Π, ∂Σ = bd conv ∂Σ. Let σ be the inward unit
normal of ∂Σ, and Π′ be the support hyperplane of Σ which passes through a
point p ∈ ∂Σ and contains σ(p). Then, since Π ∩ Π′ is a support hyperplane
of ∂Σ as a subset of Π, and ∂Σ = bd conv ∂Σ, Π′ must contain an extreme
point q of conv ∂Σ, i.e., a point which does not lie in the relative interior of
any line segment of conv ∂Σ. This is due to the general fact that any support
hyperplane of a convex body contains an extreme point of that body (which
is proved easily by induction on the dimension of C). By Carathéodory’s
theorem [18, Thm 1.1.4], every point of conv ∂Σ lies in a simplex with vertices
on Σ. Thus any extreme point of conv ∂Σ must belong to ∂Σ. In particular
q ∈ ∂Σ. But by Straszewicz’s theorem [18, Thm 1.4.7], each extreme point of
conv ∂Σ is a limit of its exposed points (which again must be elements of ∂Σ,
since each exposed point is extreme). Further, by Proposition 4.3 and since
Σ ⊂ Π+, σ = en at exposed points of ∂Σ. So, since σ is continuous, it follows
that σ(q) = en. Since Π′ supports Σ at q, it follows then that 〈u, en〉 ≤ 0,
where u is the outward unit normal to Π′. This yields that Hen ⊂ RNΣ.
But RNΣ ⊂ RNΣ, and recall that area(RNΣ) = τ+(Σ) = cn−1/2. Thus
RNΣ = Hen , which yields that σ is orthogonal to Π. Further, RNΣ = Hen ,
which yields that Σ∩Π = ∂Σ. Thus every point of ∂Σ which lies on bd conv ∂Σ
is a point of ∂Σ. So σ(p) = en at all such points. This completes the proof
because if a point of ∂Σ lies in int conv ∂Σ, then, since σ is by assumption an
outward normal of ∂Σ, it follows that σ(p) = en.

5.3. Sufficient conditions for equality. Suppose that the conditions we
established above hold. Let Σ′ be the reflection of Σ with respect to Π. Then
at each locally strictly convex point of Σ∪Σ′, every local support hyperplane
of Σ ∪ Σ′ is a support hyperplane of Σ ∪ Σ′. Thus

2 τ+(Σ) = τ+(Σ ∪ Σ′) = area
(
N(Σ ∪ Σ′)

)
= cn−1,

which completes the proof.

Appendix: Analytic Proof of Inequality (1) When ∂Σ is C2

Let

U∂Σ :=
{

(p, u) | p ∈ ∂Σ, u ∈ Sn−1, u ⊥ Tp∂Σ
}

denote the unit normal bundle of ∂Σ, and ν : U∂Σ → Sn−1, given by

ν(p, u) := u,
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be its Gauss map. Define I ⊂ J ⊂ U∂Σ by

I :=
{

(p, u) ∈ U∂Σ | 〈x − p, u〉 ≤ 0, ∀x ∈ Σ
}
,

J :=
{

(p, u) ∈ U∂Σ | 〈x − p, u〉 ≤ 0, ∀x ∈ ∂Σ
}
.

Note that if (p, u) ∈ J − I, then the height function x �→ 〈x−p, u〉 achieves its
maximum in the interior of Σ, and thus Σ has a restricted support hyperplane
with outward normal u. Hence

τ+(Σ) ≥ area ν(J − I),

since almost every support hyperplane of Σ intersects Σ at a single point [18,
Thm. 2.2.9]. So to prove (1) it suffices to show that

area ν(J − I) ≥ cn−1

2
.(9)

To this end note that, since, again by [18, Thm. 2.2.9], almost every element
of ν(I − J) has multiplicity one,

area ν(J − I) =

∫
J−I

Jac ν =

∫
J

Jac ν −
∫

I

Jac ν,

where Jac ν denotes the Jacobian of ν, which may be defined as the pull back
via ν of the volume element of Sn−1. Further note that, since every unit vector
u ∈ Sn−1 is the outward normal to some support hyperplane of ∂Σ,∫

J

Jac ν = area ν(J) = cn−1.

Thus to establish (9) it suffices to show that∫
I

Jac ν ≤ 1

2

∫
J

Jac ν.

In particular, if Ip and Jp denote the fibers of I and J respectively, then, by
Fubini’s theorem, it suffices to show that∫

Ip

Jac ν ≤ 1

2

∫
Jp

Jac ν,(10)

for all p ∈ ∂Σ.
The above inequality is trivially satisfied whenever Ip = ∅ or ν(Ip) consists

only of a pair of antipodal points of Sn−1. Thus, by Lemma 3.1, we may
assume that Ip is nonempty and connected, which in turn yields that Jp is
nonempty and connected as well.

For every u ∈ Sn−1, let hu : ∂Σ → Sn−1 be the height function given by

hu(p) := 〈p, u〉.



16 J. CHOE, M. GHOMI, AND M. RITORÉ

Then we have the following well-known identity

Jac ν(p,u) =
∣∣ det(Hess hu)p

∣∣,
where (Hess hu)p : Tp∂Σ × Tp∂Σ → R denotes the Hessian of hu at p. (To see

this one may note that U∂Σ can be identified with a hypersurface U∂Σ of Rn

via the endpoint map (p, u) �→ p + u. Then the Gauss map ν of U∂Σ, is given
by ν(p + u) := u = ν(p, u). Consequently Jac ν(p,u) = Jac νp+u = | det(IIp+u)|,
where IIp+u is the second fundamental form of U∂Σ at p + u. But IIp+u =

(Hess hu)p+u, where hu : U∂Σ → R is the height function hu(p+u) := 〈p+u, u〉.
In particular, hu(p + u) = hu(p) + 1, which yields that det(Hess hu)p+u =
det(Hess hu)p.)

Next let σ⊥(p) be a unit normal vector of ∂Σ at p which is orthogonal to
σ(p), and is chosen so that the function 〈x − p, σ⊥(p)〉 is positive for some
x ∈ Σ or vanishes for all x ∈ Σ. For θ ∈ [π,−π] define

u(θ) := cos θ σ(p) + sin θ σ⊥(p), and Hθ := (Hess hu(θ))p.

Then, since ‖∂u/∂θ‖ = 1, the change of variables formula allows us to rewrite
(10) as ∫ θ1

θ0

| det(Hθ)| dθ ≤ 1

2

∫ φ1

φ0

| det(Hθ)| dθ,

where [θ0, θ1] ⊂ [φ0, φ1] ⊂ [−π, π], and u([θ0, θ1]) = ν(Ip), u([φ0, φ1]) = ν(Jp).
Note that if u ∈ ν(Ip), then 〈u, σ(p)〉 and 〈u, σ⊥(p)〉 must both be non-

positive. Thus [θ0, θ1] ⊂ [−π,−π
2
]. Further, since 0 ∈ [φ0, φ1], it follows that

[θ0, 0] ⊂ [φ0, φ1]. Hence to prove the above inequality it is enough to show that∫ −π
2

θ0

| det(Hθ)| dθ ≤
∫ 0

−π
2

| det(Hθ)| dθ.(11)

To this end note that for any tangent vectors Xp, Yp ∈ Tp∂Σ, with local
extensions X, Y ,

Hθ(Xp, Yp) = Xp

(
Y hu(θ)

)
=

〈
DXpY, u(θ)

〉
= cos θ

〈
DXpY, u(0)

〉
+ sin θ

〈
DXpY, u

(π

2

)〉
= cos θ H0(Xp, Yp) + sin θ Hπ

2
(Xp, Yp),

where D denotes the standard covariant derivative, or Levi-Civita connection
on Rn.

Also note that H0 is negative semidefinite because by assumption u(0) =
σ(p) ∈ ν(Jp). Further, since θ0 ∈ [−π,−π

2
] ∩ [φ0, φ1], and 0 ∈ [φ0, φ1], it

follows that −π
2
∈ [φ0, φ1]. So u(−π

2
) ∈ ν(Jp), which yields that Hπ

2
is positive
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semidefinite. For any θ ∈ [−π,−π
2
], let θ′ := −π − θ ∈ [−π

2
, 0]. Then cos θ′ =

− cos θ < 0, and sin θ′ = sin θ < 0. Thus

−Hθ′(Xp, Xp) ≥ −Hθ(Xp, Xp).

Hence the eigenvalues of −Hθ′ are bigger than or equal to those of −Hθ. But
for all θ ∈ [θ0,−π

2
], Hθ and Hθ′ are both negative semidefinite, because u(θ),

u(θ′) ∈ ν(Ip). So −Hθ and −Hθ′ are positive semidefinite. Consequently

| det(Hθ′)| = det(−Hθ′) ≥ det(−Hθ) = | det(Hθ)|,
which yields that ∫ −π

2

θ0

| det(Hθ)| dθ ≤
∫ θ′0

−π
2

| det(Hθ)| dθ.(12)

Since θ′0 ≤ 0, this yields (11), which in turn completes the proof of (1).
Now suppose that equality holds in (1), then equality holds in the above

inequalities. In particular, equalities hold in (11) and (12), which yields∫ θ′0

−π
2

| det(Hθ)| dθ =

∫ 0

−π
2

| det(Hθ)| dθ.

So we conclude ∫ 0

θ′0

| det(Hθ)| dθ = 0.

This implies that (Hess hu(θ))p ≡ 0 for all θ′0(p) ≤ θ ≤ 0, as p ranges over
∂Σ. But it is a well-known consequence of Sard’s theorem that hu is a Morse
function [6], i.e., it has nondegenerate Hessian, for almost all u ∈ Sn−1. So we
must have θ′0 = 0, which yields that θ0 = −π, for some p. So u(−π) ∈ ν(Jp).
But −u(−π) = u(0) = σ(p) ∈ ν(Jp) as well. Hence ∂Σ lies in a hyperplane.

Note 5.1. If ∂Σ is a C3 closed curve with nonvanishing curvature, and γ : R →
∂Σ is a unit parametrization of ∂Σ, then its unit normals may be parametrized
by

ν(t, θ) := − cos θ N(t) + sin θ B(t),

where N(t) and B(t) are, respectively, the principal normal and binormal
vectors of ∂Σ at γ(t). A computation, using Frenet-Serret formulas, shows
that

Jac ν(t,θ) =

∣∣∣∣∂n

∂t
× ∂n

∂θ

∣∣∣∣ = κ(t) | cos θ|,

where κ is the curvature of ∂Σ. Then the observation that −N(t) lies in
ν(Jγ(t)) − ν(Iγ(t)) yields a quicker proof of (10).
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