

TOTAL CURVATURE OF CONVEX HYPERSURFACES IN CARTAN-HADAMARD MANIFOLDS

MOHAMMAD GHOMI AND JOHN IOANNIS STAVROULAKIS

ABSTRACT. We show that if the curvature of a Cartan-Hadamard n -manifold is constant near a convex hypersurface Γ , then the total Gauss-Kronecker curvature $\mathcal{G}(\Gamma)$ is not less than that of any convex hypersurface nested inside Γ . This extends Borbély's monotonicity theorem in hyperbolic space. It follows that $\mathcal{G}(\Gamma)$ is bounded below by the volume of the unit sphere in Euclidean space \mathbf{R}^n .

1. INTRODUCTION

A Cartan-Hadamard manifold M^n is a complete simply connected space with nonpositive curvature. A *convex hypersurface* $\Gamma \subset M$ is the boundary of a compact convex set with interior points. An outstanding question in Riemannian geometry [4, p. 66][22] is whether the total Gauss-Kronecker curvature

$$(1) \quad \mathcal{G}(\Gamma) \geq |\mathbf{S}^{n-1}|,$$

where $|\mathbf{S}^{n-1}|$ is the volume of the unit sphere in Euclidean space \mathbf{R}^n . Establishing this inequality would resolve the Cartan-Hadamard conjecture [15, 20] concerning the extension of the Euclidean isoperimetric inequality to manifolds of nonpositive curvature [2, 7, 19]. It is known that (1) holds for geodesic spheres [15], and Borbély [5] showed that it holds in hyperbolic space \mathbf{H}^n . More generally, he proved that if Γ, γ are convex hypersurfaces in \mathbf{H}^n with γ nested inside Γ , then $\mathcal{G}(\Gamma) \geq \mathcal{G}(\gamma)$. We refine this monotonicity result as follows:

Theorem 1.1. *Let Γ, γ be convex hypersurfaces in a Cartan-Hadamard manifold M^n , with γ nested inside Γ . Suppose that the curvature K of M is constant on a neighborhood of Γ . Then $\mathcal{G}(\Gamma) \geq \mathcal{G}(\gamma)$. If $n = 3$, then it suffices to assume that K is constant on Γ .*

Letting γ in the above theorem be a geodesic sphere yields (1). For $n = 2$, the above theorem follows quickly from the Gauss-Bonnet theorem, without any assumptions on K . For $n \geq 3$, however, it is essential that K be constant on Γ due to examples by Dekster [8]. When Γ is smooth, and the constant in Theorem 1.1 is the supremum of K on the domain Ω bounded by Γ , then K is constant on

Date: January 19, 2026 (Last Typeset).

2010 Mathematics Subject Classification. Primary: 53C20, 53C42; Secondary: 53C45, 53C65.

Key words and phrases. Cartan-Hadamard conjecture, isoperimetric inequality, total Gauss-Kronecker curvature, distance function of convex sets, nonpositive curvature.

The first-named author was supported by NSF grant DMS-2202337.

Ω [14, Thm. 1.2], which reduces the above result to Borbély's theorem; see also [16, 21] for similar rigidity results, which extend “gap theorems” of Greene-Wu [18] and Gromov [4, Sec. 3]. Since the constant in Theorem 1.1 is arbitrary, not to mention that no regularity is assumed on Γ , we need to develop another approach.

We prove Theorem 1.1 via a comparison formula for total curvature of nested hypersurfaces [15]. This formula expresses the difference $\mathcal{G}(\Gamma) - \mathcal{G}(\gamma)$ as an integral over the region between the hypersurfaces, involving components of the Riemann curvature tensor R of M and derivatives of a function u whose level sets interpolate between γ and Γ . The key step is the choice of u , which is built from the distance functions of γ and Γ . Convexity of u ensures that the principal curvatures of its level sets are nonnegative, which control the sign of the leading terms in the comparison formula. When K is constant near Γ , the mixed terms of R vanish, yielding the desired monotonicity. In dimension three, a more delicate estimate shows that these mixed terms can still be controlled if K is constant only along Γ .

2. PRELIMINARIES

Here we gather four lemmas which we need to prove Theorem 1.1. Throughout this work M is a Cartan-Hadamard n -manifold with sectional curvature K and Riemann curvature tensor R .

2.1. The comparison formula. Let Γ be a closed $\mathcal{C}^{1,1}$ hypersurface embedded in M . The Gauss-Kronecker curvature GK of Γ is the determinant of the second fundamental form of Γ with respect to the outward normal. The *total curvature* of Γ is given by

$$\mathcal{G}(\Gamma) := \int_{\Gamma} GK,$$

which is well-defined by Rademacher's theorem. A *domain* $\Omega \subset M$ is an open set with compact closure $\bar{\Omega}$. Let Ω be the domain bounded by Γ , and γ be another closed embedded $\mathcal{C}^{1,1}$ hypersurface which bounds a domain D with $\bar{D} \subset \Omega$. Then we say that γ is *nested* inside Γ . Suppose there exists a $\mathcal{C}^{1,1}$ function u on $\bar{\Omega} \setminus D$ with $\nabla u \neq 0$ on $\bar{\Omega} \setminus \bar{D}$, which is constant on γ and Γ . We assume that $u|_{\gamma} < u|_{\Gamma}$ so that $e_n := \nabla u / |\nabla u|$ points outward along the level sets of u . Let κ_i be principal curvatures of the level sets with respect to e_n , and let e_1, \dots, e_{n-1} form an orthonormal set of the corresponding principal directions. The *comparison formula*, first proved in [15] and developed further in [12, 17], states that

$$\mathcal{G}(\Gamma) - \mathcal{G}(\gamma) = - \int_{\Omega \setminus D} \sum_{1 \leq i \leq n-1} \widehat{GK}_i R_{inin} + \int_{\Omega \setminus D} \sum_{1 \leq i \neq j \leq n-1} \widehat{GK}_{ij} \frac{|\nabla u|_j}{|\nabla u|} R_{ijin},$$

where $|\nabla u|_j := \nabla_{e_j} |\nabla u|$, $R_{ijk\ell} = \langle R(e_i, e_j) e_k, e_\ell \rangle$ are components of the Riemann curvature of M , \widehat{GK}_i denotes the product of all principal curvatures other than κ_i , and \widehat{GK}_{ij} is the product without κ_i and κ_j . Note that $R_{inin} \leq 0$ because these are sectional curvatures of M . Furthermore, if u is a *convex function*, i.e., its composition with geodesics in M is convex, then $\kappa_i \geq 0$. Thus the first integral in the comparison formula is nonnegative, which immediately yields:

Lemma 2.1. *Let Γ, γ be $\mathcal{C}^{1,1}$ convex hypersurfaces in M , with γ nested inside Γ , and bounding domains D, Ω respectively. Then*

$$\mathcal{G}(\Gamma) - \mathcal{G}(\gamma) \geq \int_{\Omega \setminus D} \sum_{1 \leq i \neq j \leq n-1} \widehat{GK}_{ij} \frac{|\nabla u|_j}{|\nabla u|} R_{ijin}$$

for any $\mathcal{C}^{1,1}$ convex function u on $\overline{\Omega} \setminus D$ with $|\nabla u| \neq 0$, which is constant on γ and Γ with $u|_{\gamma} < u|_{\Gamma}$.

2.2. The distance function. For any set $X \subset M$, the *distance function* $d_X: M \rightarrow \mathbf{R}$ is defined by

$$d_X(p) := \inf_{x \in X} \text{dist}_M(p, x),$$

where dist_M is the Riemannian distance in M . For basics of distance functions see [15, Sec. 2, 3] and references therein. In particular when X is convex, d_X is convex on M . Furthermore, d_X is locally $\mathcal{C}^{1,1}$ on $M \setminus \overline{X}$ [15, Prop. 2.7] and $|\nabla d_X| = 1$. A function $f: M \rightarrow \mathbf{R}$ is locally $\mathcal{C}^{1,1}$ on $X \subset M$ if it is $\mathcal{C}^{1,1}$ in local charts covering X . When f is \mathcal{C}^1 , an equivalent condition is that ∇f be Lipschitz, i.e.,

$$|\nabla f(p) - \mathcal{T}_{q \rightarrow p} \nabla f(q)| \leq C \text{dist}_M(p, q),$$

for all $p, q \in X$, where $\mathcal{T}_{q \rightarrow p}$ is parallel translation along the geodesic connecting q to p [3]. Throughout this work C denotes a positive constant whose value may change from one occurrence to the next. If f is locally $\mathcal{C}^{1,1}$ on a compact set X , then we say that f is $\mathcal{C}^{1,1}$ on X . The following fact is known in \mathbf{R}^n , see [10, Thm. 4.8 (5)&(9)] or [9, Thm. 6.3]. A set $X \subset M$ is *convex* if it contains the geodesic connecting any pair of its points.

Lemma 2.2. *Let X be a convex set in M . Then d_X^2 is locally $\mathcal{C}^{1,1}$ on M .*

Proof. Since $d_X = d_{\overline{X}}$, we may assume that X is closed. Also note that, since d_X is convex on M , and is \mathcal{C}^1 on $M \setminus \partial X$, the same holds for d_X^2 . Let $\log_p: M \rightarrow T_p M$ be the inverse of the exponential map, $\pi_X: M \rightarrow X$ be the nearest point projection, and set $\bar{p} := \pi_X(p)$. Then

$$\nabla d_X(p) = -\frac{\log_p(\bar{p})}{d_X(p)}$$

for $p \in M \setminus X$ [15, Lem. 2.2]. Let $p_0 \in \partial X$, and set $f(p) := \text{dist}_M^2(p, p_0)$. Since $0 \leq d_X^2(p) \leq f(p)$, and $f(p_0) = 0$, it follows that d_X^2 is differentiable at p_0 with $|\nabla d_X^2(p_0)| = 0$. Thus ∇d_X^2 is continuous, and so d_X^2 is \mathcal{C}^1 on M . Since $\nabla d_X^2(p) = 2d_X(p)\nabla d_X(p) = -2\log_p(\bar{p})$, for $p \in M \setminus X$, and $|\nabla d_X^2| = 0$ on X ,

$$\nabla d_X^2(p) = -2\log_p(\bar{p}),$$

for all $p \in M$. By the triangle inequality,

$$\begin{aligned} |\nabla d_X^2(p) - \mathcal{T}_{q \rightarrow p} \nabla d_X^2(q)| &= 2 |\log_p(\bar{p}) - \mathcal{T}_{q \rightarrow p} \log_q(\bar{q})| \\ &\leq 2 |\log_p(\bar{p}) - \log_p(\bar{q})| + 2 |\log_p(\bar{q}) - \mathcal{T}_{q \rightarrow p} \log_q(\bar{q})|. \end{aligned}$$

Since $K_M \leq 0$, \log_p is nonexpansive. Furthermore, π_X is nonexpansive as well [6, Cor. 2.5]. Thus

$$|\log_p(\bar{p}) - \log_p(\bar{q})| \leq \text{dist}_M(\bar{p}, \bar{q}) \leq \text{dist}_M(p, q).$$

It now suffices to show that $|\log_p(\bar{q}) - \mathcal{T}_{q \rightarrow p} \log_q(\bar{q})| \leq C \text{dist}_M(p, q)$, for p, q in any given compact set $Y \subset M$. More generally, for any fixed point o of M , and p, q in Y we claim that

$$|\log_p(o) - \mathcal{T}_{q \rightarrow p} \log_q(o)| \leq C \text{dist}_M(p, q),$$

that is, the vector field $p \mapsto \log_p(o)$ is Lipschitz on Y . This is indeed the case because

$$\log_p(o) = -\frac{1}{2} \nabla \text{dist}_M^2(p, o),$$

and $\text{dist}_M^2(p, o)$ is smooth, which completes the proof. \square

2.3. Mixed curvature terms. The Riemann curvature tensor R may be viewed as a symmetric bilinear form \mathcal{R} on the space of 2-forms $\Lambda^2 TM$. More explicitly, let e_i be an orthonormal basis for $T_p M$. Then $e_i \wedge e_j$, for $1 \leq i < j \leq n$, form a basis for $\Lambda^2 T_p M$. There is a natural inner product on $\Lambda^2 T_p M$ given by $\langle e_i \wedge e_j, e_k \wedge e_\ell \rangle := \delta_{ik} \delta_{j\ell} - \delta_{i\ell} \delta_{jk}$. In particular, $e_i \wedge e_j$ are orthonormal. We may then define $\mathcal{R}: \Lambda^2 T_p M \rightarrow \Lambda^2 T_p M$ by

$$\langle \mathcal{R}(e_i \wedge e_j), e_k \wedge e_\ell \rangle := R_{ijkl} = \langle R(e_i, e_j) e_k, e_\ell \rangle.$$

The *mixed curvature terms* are the coefficients R_{ijkl} when $\{i, j\} \neq \{k, \ell\}$, or the off-diagonal components of \mathcal{R} . We say K is constant on $X \subset M$, or $K = k$ on X , if for all $p \in X$ and planes $\Pi \subset T_p M$, $K(\Pi) = k$.

Lemma 2.3. *Let $X \subset M$ be a compact set. Suppose that K is constant on X . Then there exists a neighborhood U of X such that for any orthonormal frame field on U , the absolute values of the mixed curvature terms on U are bounded above by Cd_X .*

Proof. Suppose that $K = k$ on X , and let e_i be a smooth orthonormal frame field on a neighborhood V of X . Let $\tilde{\mathcal{R}}$ be the matrix representation of \mathcal{R} with respect to $e_i \wedge e_j$. Then $\tilde{\mathcal{R}} = kI$ on X , where I is the identity matrix. Since X is compact and $\tilde{\mathcal{R}}$ is smooth, it follows that

$$|\tilde{\mathcal{R}} - kI|_\infty \leq Cd_X,$$

on a neighborhood $U \subset V$, where $|\cdot|_\infty$ is the supremum of the absolute values of the coefficients. More explicitly, the above inequality follows from applying the mean value theorem to $\tilde{\mathcal{R}} - kI$ restricted to geodesic segments originating from points of X . If $\tilde{\mathcal{R}}'$ is the matrix representation of \mathcal{R} with respect to $e'_i \wedge e'_j$, for any other frame field e'_i , then $\tilde{\mathcal{R}}' = O^T \tilde{\mathcal{R}} O$ for an orthogonal matrix O at each point. Thus

$$|\tilde{\mathcal{R}}' - kI|_\infty = |O^T (\tilde{\mathcal{R}} - kI) O|_\infty \leq C |\tilde{\mathcal{R}} - kI|_\infty,$$

where C depends only on n . So $|\tilde{\mathcal{R}}' - kI|_\infty \leq Cd_X$, which completes the proof. \square

2.4. Continuity of total curvature. For a general convex hypersurface $\Gamma \subset M$, the total curvature $\mathcal{G}(\Gamma)$ is defined as follows. Let Ω be the domain bounded by Γ . The *outer parallel hypersurface* of Γ at distance $t \geq 0$ is given by $\Gamma_t := d_\Omega^{-1}(t)$. For $t > 0$, Γ_t is $\mathcal{C}^{1,1}$ [15, Lem. 2.6] and thus $\mathcal{G}(\Gamma_t)$ is well defined. We set

$$\mathcal{G}(\Gamma) := \lim_{t \searrow 0} \mathcal{G}(\Gamma_t).$$

By the comparison formula, $t \mapsto \mathcal{G}(\Gamma_t)$ is nondecreasing [17, Cor. 4.4]. Furthermore, since Γ_t is convex, $\mathcal{G}(\Gamma_t) \geq 0$. Thus $\mathcal{G}(\Gamma)$ is well-defined and finite. We record the following known fact [15, Note 3.7], which can be established via the theory of smooth valuations [1], and convergence of normal cycles [11, 23]. See [13] for a more direct proof.

Lemma 2.4 ([13]). *The total curvature functional \mathcal{G} is continuous with respect to Hausdorff distance on the space of convex hypersurfaces $\Gamma \subset M$.*

3. PROOF OF THEOREM 1.1

3.1. The general case. Let Ω, D be the domains bounded by Γ, γ , and d_Ω, d_D be the corresponding distance functions respectively. For $\lambda \in [0, \lambda_0]$, set

$$u^\lambda := \lambda d_D + d_\Omega^2.$$

Recall that d_D is locally $\mathcal{C}^{1,1}$ on $M \setminus \overline{D}$. Furthermore, d_Ω^2 is locally $\mathcal{C}^{1,1}$ on M by Lemma 2.2. Thus u^λ is locally $\mathcal{C}^{1,1}$ on $M \setminus \overline{D}$. Since d_D and d_Ω are convex, so is u^λ . Fix $\varepsilon > 0$ so small that the outer parallel hypersurface γ_ε is nested inside Γ . Let D_ε and Ω_ε be the domains bounded by γ_ε and Γ_ε respectively. Set

$$\Gamma_\varepsilon^\lambda := (u^\lambda)^{-1}(\varepsilon^2).$$

So $\Gamma_\varepsilon^\lambda \rightarrow \Gamma_\varepsilon$ as $\lambda \rightarrow 0$. In particular, choosing λ_0 sufficiently small, we may assume that $\Gamma_\varepsilon^\lambda$ lies in the annular region $\Omega_{2\varepsilon} \setminus \Omega$. Hence if $\Omega_\varepsilon^\lambda$ is the domain bounded by $\Gamma_\varepsilon^\lambda$, then $\Omega \subset \Omega_\varepsilon^\lambda \subset \Omega_{2\varepsilon}$. We may choose ε so small that K is constant on $\Omega_{2\varepsilon} \setminus \Omega$. Then the mixed curvature terms $R_{ijin} = 0$ on $\Omega_{2\varepsilon} \setminus \Omega$. Hence $\mathcal{G}(\Gamma_\varepsilon^\lambda) - \mathcal{G}(\gamma_\varepsilon) \geq 0$ by Lemma 2.1. Letting $\lambda \rightarrow 0$ followed by $\varepsilon \rightarrow 0$ completes the proof by Lemma 2.4.

3.2. The case of $n = 3$. When $n = 3$, by Lemma 2.1 we have

$$\mathcal{G}(\Gamma_\varepsilon^\lambda) - \mathcal{G}(\gamma_\varepsilon) \geq \int_{\Omega_\varepsilon^\lambda \setminus D_\varepsilon} F_\lambda, \quad \text{where} \quad F_\lambda := \sum_{1 \leq i, j \leq 2} \frac{|\nabla u^\lambda|_j}{|\nabla u^\lambda|} R_{ijin}.$$

Since $\Omega_\varepsilon^\lambda \setminus D_\varepsilon = (\Omega_\varepsilon^\lambda \setminus \Omega) \cup (\Omega \setminus D_\varepsilon)$, $u^\lambda = \lambda d_D$ on $\Omega \setminus D_\varepsilon$, and $|\nabla d_D| = 1$, it follows that F_λ vanishes identically on $\Omega \setminus D_\varepsilon$. Thus

$$\mathcal{G}(\Gamma_\varepsilon^\lambda) - \mathcal{G}(\gamma_\varepsilon) \geq \int_{\Omega_\varepsilon^\lambda \setminus \Omega} F_\lambda \geq - \left| \int_{\Omega_\varepsilon^\lambda \setminus \Omega} F_\lambda \right| \geq - \int_{\Omega_\varepsilon^\lambda \setminus \Omega} |F_\lambda| \geq - \int_{\Omega_{2\varepsilon} \setminus \Omega} |F_\lambda|.$$

Next we show that $|F_\lambda|$ is uniformly bounded above (almost everywhere) on $\Omega_{2\varepsilon} \setminus \Omega$, by the following three estimates. Since $\nabla u^\lambda = \lambda \nabla d_D + \nabla d_\Omega^2$ is uniformly Lipschitz,

$$|\nabla u^\lambda|_j \leq C,$$

for C independent of λ . By Lemma 2.3, we also have

$$|R_{ijin}| \leq Cd_\Omega,$$

where again C does not depend on λ . Next note that $\langle \nabla d_\Omega, \nabla d_D \rangle \geq 0$, because level sets of d_Ω are convex, and ∇d_D is tangent to geodesic rays which originate in Ω . Thus

$$|\nabla u^\lambda| = \sqrt{4d_\Omega^2 + \lambda^2 + 4\lambda d_\Omega \langle \nabla d_\Omega, \nabla d_D \rangle} \geq 2d_\Omega.$$

So we conclude that $|F_\lambda| \leq C$ on $\Omega_{2\varepsilon} \setminus \Omega$, which yields

$$\mathcal{G}(\Gamma_\varepsilon^\lambda) - \mathcal{G}(\gamma_\varepsilon) \geq -C|\Omega_{2\varepsilon} \setminus \Omega|.$$

Again letting $\lambda \rightarrow 0$ followed by $\varepsilon \rightarrow 0$ completes the proof by Lemma 2.4.

ACKNOWLEDGMENT

We thank Mario Santilli for comments on proving Lemma 2.2. Thanks also to Joel Spruck and Joe Hoisington for useful communications.

REFERENCES

- [1] S. Alesker, *Theory of valuations on manifolds: a survey*, Geom. Funct. Anal. **17** (2007), no. 4, 1321–1341. MR2373020 ↑5
- [2] T. Aubin, *Problèmes isopérimétriques et espaces de Sobolev*, C. R. Acad. Sci. Paris Sér. A-B **280** (1975), no. 5, Aii, A279–A281. MR0407905 ↑1
- [3] D. Azagra and J. Ferrera, *Regularization by sup-inf convolutions on Riemannian manifolds: an extension of Lasry-Lions theorem to manifolds of bounded curvature*, J. Math. Anal. Appl. **423** (2015), no. 2, 994–1024. MR3278185 ↑3
- [4] W. Ballmann, M. Gromov, and V. Schroeder, *Manifolds of nonpositive curvature*, Progress in Mathematics, vol. 61, Birkhäuser Boston, Inc., Boston, MA, 1985. MR823981 ↑1, 2
- [5] A. Borbély, *On the total curvature of convex hypersurfaces in hyperbolic spaces*, Proc. Amer. Math. Soc. **130** (2002), no. 3, 849–854. MR1866041 ↑1
- [6] M. R. Bridson and A. Haefliger, *Metric spaces of non-positive curvature*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR1744486 ↑4
- [7] Yu. D. Burago and V. A. Zalgaller, *Geometric inequalities*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988. Translated from the 1980 Russian original by A. B. Sosinskii, Springer Series in Soviet Mathematics. MR936419 ↑1
- [8] B. V. Dekster, *Monotonicity of integral Gauss curvature*, J. Differential Geom. **16** (1981), no. 2, 281–291. MR638793 ↑1
- [9] M. C. Delfour and J.-P. Zolésio, *Shapes and geometries*, Second, Advances in Design and Control, vol. 22, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. Metrics, analysis, differential calculus, and optimization. MR2731611 ↑3
- [10] H. Federer, *Curvature measures*, Trans. Amer. Math. Soc. **93** (1959), 418–491. MR0110078 (22 #961) ↑3
- [11] J. H. G. Fu, *Curvature measures of subanalytic sets*, Amer. J. Math. **116** (1994), no. 4, 819–880. MR1287941 ↑5
- [12] M. Ghomi, *Comparison formulas for total mean curvatures of Riemannian hypersurfaces*, Adv. Nonlinear Stud. **24** (2024), no. 1, 97–102. MR4727582 ↑2
- [13] ———, *Continuity of total curvatures of Riemannian hypersurfaces*, preprint, arXiv:2511.15955 (2025). <https://arxiv.org/abs/2511.15955>. ↑5

- [14] ———, *Convexity and rigidity of hypersurfaces in Cartan-Hadamard manifolds*, to appear in Asian J. Math (2025). Preprint available at <https://arxiv.org/abs/2308.15454>. $\uparrow 2$
- [15] M. Ghomi and J. Spruck, *Total curvature and the isoperimetric inequality in Cartan-Hadamard manifolds*, J. Geom. Anal. **32** (2022), no. 2, Paper No. 50, 54pp. MR4358702 $\uparrow 1, 2, 3, 5$
- [16] ———, *Rigidity of nonpositively curved manifolds with convex boundary*, Proc. Amer. Math. Soc. (2023). $\uparrow 2$
- [17] ———, *Total mean curvatures of Riemannian hypersurfaces*, Adv. Nonlinear Stud. **23** (2023), no. 1, Paper No. 20220029, 10. MR4530499 $\uparrow 2, 5$
- [18] R. E. Greene and H. Wu, *Gap theorems for noncompact Riemannian manifolds*, Duke Math. J. **49** (1982), no. 3, 731–756. MR672504 $\uparrow 2$
- [19] M. Gromov, *Metric structures for Riemannian and non-Riemannian spaces*, Birkhäuser Boston Inc., Boston, MA, 1999. MR2000d:53065 $\uparrow 1$
- [20] B. Kleiner, *An isoperimetric comparison theorem*, Invent. Math. **108** (1992), no. 1, 37–47. MR1156385 $\uparrow 1$
- [21] V. Schroeder and M. Strake, *Local rigidity of symmetric spaces of nonpositive curvature*, Proc. Amer. Math. Soc. **106** (1989), no. 2, 481–487. MR929404 $\uparrow 2$
- [22] T. J. Willmore and B. A. Saleemi, *The total absolute curvature of immersed manifolds*, J. London Math. Soc. **41** (1966), 153–160. MR185553 $\uparrow 1$
- [23] M. Zähle, *Integral and current representation of Federer’s curvature measures*, Arch. Math. (Basel) **46** (1986), no. 6, 557–567. MR849863 $\uparrow 5$

SCHOOL OF MATHEMATICS, GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA, GA 30332

Email address: ghomi@math.gatech.edu

URL: www.math.gatech.edu/~ghomi

SCHOOL OF MATHEMATICS, GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA, GA 30332

Email address: jstavroulakis3@math.gatech.edu