
SHORTEST CLOSED CURVE TO INSPECT A SPHERE

MOHAMMAD GHOMI AND JAMES WENK

Abstract. We show that in Euclidean 3-space any closed curve γ which lies outside
the unit sphere and contains the sphere within its convex hull has length ≥ 4π.
Equality holds only when γ is composed of 4 semicircles of length π, arranged in the
shape of a baseball seam, as conjectured by V. A. Zalgaller in 1996.

1. Introduction

What is the shortest closed orbit a satellite may take to inspect the entire surface of
a round asteroid? This is a well-known optimization problem [10, 15, 17, 22, 28, 39] in
classical differential geometry and convexity theory, which may be precisely formulated
as follows. A curve γ in Euclidean space R3 inspects a sphere S provided that it lies
outside S and each point p of S can be “seen” by some point q of γ, i.e., the line segment
pq intersects S only at p. It is easily shown that the latter condition holds if and only
if S lies in the convex hull of γ. The supremum of the radii of the spheres which are
contained in the convex hull of γ and are disjoint from γ is called the inradius of γ.
Thus we seek the shortest closed curve with a given inradius. The answer is as follows:

Theorem 1.1. Let γ : [a, b]→ R3 be a closed rectifiable curve of length L and inradius
r. Then

(1) L ≥ 4πr.

Equality holds only if, up to a reparameterization, γ is simple, C1,1, lies on a sphere of
radius

√
2 r, and traces consecutively 4 semicircles of length πr.

Figure 1.

It follows that the image of the minimal curve is unique up to a rigid motion, and
resembles the shape of a baseball seam as shown in Figure 1, which settles a conjecture of
Viktor Zalgaller made in 1996 [39]. The previous best estimate was L ≥ 6

√
3 r obtained

in 2018 [17]. Here we use some notions from [17] together with other techniques from
integral geometry (Crofton type formulas), geometric knot theory (unfoldings of space
curves), and geometric measure theory (tangent cones, sets of positive reach) to establish
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the above theorem. We also derive several formulas (Sections 3, 6, and 8) for efficiency
of curves, which may be verified with a software package that we have provided [21].

Our main approach for proving Theorem 1.1 is as follows. Since (1) is invariant under
rescaling and rigid motions, we may assume that r = 1 and γ inspects the unit sphere
S2, in which case we say simply that γ is an inspection curve. Then we define the
horizon of γ (Section 3) as the measure in S2 counted with multiplicity of the set of
points p ∈ S2 where the tangent plane TpS

2 intersects γ:

H(γ) :=

∫
p∈S2

#γ−1(TpS
2) dp.

Since γ is closed, TpS
2 intersects γ at least twice for almost every p ∈ S2. Thus

H(γ) ≥ 8π. Next we define the (inspection) efficiency of γ as

(2) E(γ) :=
H(γ)

L(γ)
.

So to establish (1) it suffices to show that E(γ) ≤ 2. Now note that, since H is additive,
for any partition of γ into subsets γi, i ∈ I,

(3) E(γ) =
∑
i

H(γi)

L(γ)
=
∑
i

L(γi)

L(γ)
E(γi) ≤ sup

i
E(γi).

So the desired upper bound for E(γ) may be established through a partitioning of γ
into subsets γi with E(γi) ≤ 2.

To find the desired partition, we may start by assuming that γ in Theorem 1.1 has
minimal length among all (closed) inspection curves, and is parameterized with constant
speed (Section 2). Then we apply an “unfolding” procedure [6] to transform γ into a
planar curve γ̃ with the same arclength and height, i.e., radial distance function from the
origin o of R3 (Section 4). It follows that E(γ) = E(γ̃). Furthermore, the minimality
of γ will ensure that γ̃ is “locally convex with respect to o” [18]. Consequently γ̃ may
be partitioned into a collection of curves γ̃i we call spirals (Section 5). A spiral is a
planar curve which lies outside the unit circle S1, is locally convex with respect to o,
has monotone height, and is orthogonal to the position vector of its closest boundary
point to o. We will show that the efficiency of any spiral is at most 2 by polygonal
approximations and a variational argument (Section 7), which establish (1).

The rest of the paper will be devoted to characterizing minimal inspection curves.
First we note that equality holds in (1) only when E(γ) = 2, which forces all the spirals
γ̃i to have efficiency 2 as well. Then we show that a spiral has efficiency 2 only when it
has constant height

√
2 (Section 9) by refining the variational procedure used earlier to

establish (1). Once we know that any minimal inspection curve γ has constant height√
2, we proceed to the final stages of the characterization (Section 10). The simplicity

of γ follows from a Crofton type formula of Blaschke-Santalo. Then a characterization
of C1,1 submanifolds in terms of their tangent cones [19] and reach ensures the regularity
of γ. Finally we show that γ is composed of 4 semicircles by constructing a “nested
partition” of γ [16], which completes the proof of Theorem 1.1. The last technique goes
back to the proofs of the classical 4-vertex theorem due to Kneser and Bose [3,24], which
has been developed further by Umehara and Thorbergsson [33,37].
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The question we study in this work belongs to a circle of long standing optimization
problems for the length of a curve in Euclidean space subject to various constraints on
its convex hull, including bounds on volume, surface area, width, and inradius [14, 17,
32, 38–40] [10, A28, A30]. Most of these problems remain open; see [17, 34] for more
background and references. We should also note that these problems may be posed both
for closed and open curves. In the latter case, there are connections to the “lost in a
forest problem” of Bellman [2], or its dual version, Moser’s “worm problem” [4, 11, 27],
which are well-known in computational geometry.

2. Preliminaries: Minimal Inspection Curves

The central objects of study in this work are rectifiable curves, which become Lipschitz
mappings after reparameterization with constant speed. We begin by recording basic
facts we need in this regard; see [7], [5, Chap. 2], or [1, chap. 4] for more background.
Here Rn is the n-dimensional Euclidean space with origin o, inner product 〈·, ·〉, and

norm | · | := 〈·, ·〉
1
2 ; Sn−1, Bn denote respectively the unit sphere and closed unit ball in

Rn. The interior, closure, and boundary of any set X ⊂ Rn is denoted by int(X), X,
and ∂X respectively. A curve is a continuous map γ : [a, b] → Rn, where [a, b] ⊂ R is
an interval with a < b. We will also use γ to refer to its image, γ([a, b]). We say that
γ is closed if γ(a) = γ(b). A closed curve γ is simple if it is one-to-one on [a, b), and is
C1 provided that it is continuously differentiable with γ′+(a) = γ′−(b); γ is C1,1 if γ′ is

Lipschitz. The length of γ is L(γ) := sup
∑n

i=1

∣∣γ(ti) − γ(ti−1)
∣∣, where the supremum

is taken over all partitions a := t0 ≤ t ≤ · · · ≤ tn := b of [a, b]; γ is rectifiable if
L(γ) <∞, and has constant speed C if L(γ|[t,s]) = C |t−s| for all t < s ∈ [a, b]. A curve
γ̂ : [a, b] → Rn is a reparameterization of γ if there is a nondecreasing continuous map
φ : [a, b] → [a, b] with γ = γ̂ ◦ φ. It is well-known [5, Prop. 2.5.9] that any rectifiable
curve admits a reparameterization with constant speed. If γ : [a, b]→ Rn has constant
speed C, then for all t < s ∈ [a, b],

(4) |γ(t)− γ(s)| ≤ L
(
γ
∣∣
[t,s]

)
= C|t− s|.

So γ is C-Lipschitz, and therefore differentiable almost everywhere by Rademacher’s

theorem. Then L(γ) =
∫ b
a |γ

′(t)| dt [5, Thm. 2.7.6]. Furthermore, (4) implies that

|γ′| ≤ C at all differentiable points of γ. On the other hand,
∫ b
a |γ

′(t)| dt/(b − a) =
L(γ)/(b− a) = C. Thus |γ′| = C almost everywhere. So we record:

Lemma 2.1. Let γ : [a, b] → Rn be a rectifiable curve. Then γ has constant speed if
and only if |γ′| = L(γ)/(b− a) almost everywhere.

In particular, when L(γ) > 0, we may assume after reparameterization with constant
speed that |γ′| 6= 0 almost everywhere. Let C0([a, b],Rn) denote the space of curves
γ : [a, b]→ Rn with the supremum norm or uniform metric [5, p. 47] given by

(5) dist(γ1, γ2) := sup
t∈[a,b]

|γ1(t)− γ2(t)|.
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The functional L : C0([a, b],Rn)→ R is lower semi-continuous [5, Prop. 2.3.4(iv)]. The
convex hull of a set X ⊂ Rn, conv(X), is the intersection of all closed half-spaces con-
taining X. We say γ : [a, b]→ R3 is an inspection curve if it is closed and S2 ⊂ conv(γ).
Lemmas 2.1 together with Arzela-Ascoli theorem [5, Thm. 2.5.14] and semicontinuity
of L yield [20, Prop. 2.3]:

Proposition 2.2. There exists an inspection curve of minimum length.

Any curve given by the above proposition will be called a minimal inspection curve.
Let ∠(v, w) := cos−1(〈v, w〉/(|v||w|)) denote the angle between v, w ∈ Rn \ {o}. For
any rectifiable curve γ : [a, b]→ Rn \ {o}, with L(γ) > 0, we set

α(t) := ∠
(
γ(t), γ′(t)

)
.

By Lemma 2.1, if γ has constant speed, then |γ′| 6= 0 almost everywhere. So α is
well-defined for almost every t ∈ [a, b]. The tangent cone Ttγ of γ at t ∈ [a, b] is the
collection of all rays emanating from γ(t) which are limits of a sequence of secant lines
emanating from γ(t) and passing through points γ(si) as si converge to t. If γ is closed
and t = a or b, then we set Ttγ := Taγ ∪ Tbγ. See [19, Sec. 2] for basic facts on tangent
cones. If Ttγ is a line, then we call it the tangent line of γ at t. When γ is differentiable
at t and |γ′(t)| 6= 0, Ttγ is the line through γ(t) spanned by γ′(t). The following lemma
generalizes an earlier observation [17, Lem. 7.4] for polygonal curves.

Lemma 2.3. Let γ : [a, b] → R3 be a constant speed minimal inspection curve. Then
tangent lines of γ avoid int(B3). In particular, for almost every t ∈ [a, b],

(6) α(t) ≥ sin−1
(
1/|γ(t)|

)
.

Proof. Let T be a tangent line of γ at t ∈ [a, b]. Suppose that T intersects int(B3). Set
X := conv({γ(t)}∪B3). Then T intersects int(X). So there is a open interval U ⊂ [a, b]
of the form (t, s) or (s, t) such that γ(U) ⊂ int(X), and γ(s) lies on ∂X. Let U be
the closure of U . Replacing γ(U) with a line segment connecting γ(t) and γ(s) yields a
closed curve β with L(β) < L(γ). But conv(β) = conv(γ), since γ(U) ⊂ int(conv(X)) ⊂
int(conv(γ)). In particular S2 ⊂ conv(β). So β is an inspection curve shorter than γ,
which is a contradiction. Now (6) follows from basic trigonometry. �

3. The Integral Formula for Efficiency

As mentioned in the introduction, the efficiency of any rectifiable curve γ : [a, b]→ R3

with |γ| ≥ 1 is defined as

E(γ) :=
H(γ)

L(γ)
, where H(γ) :=

∫
p∈S2

#γ−1(TpS
2) dp.

Recall that H(γ) is called the horizon of γ. When γ is an inspection curve it follows
from Caratheodory’s convex hull theorem that #γ−1(TpS

2) ≥ 2 for almost every p ∈ S2

[17, Lemma 7.1]. Thus H(γ) ≥ 8π. So to prove (1) it suffices to show that E(γ) ≤ 2.
To this end we will use the area formula to compute E(γ). This generalizes previous
work [17, Sec. 7.2] where the following proposition had been established for C1,1 curves.
Recall that α := ∠(γ, γ′).
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Proposition 3.1. Let γ : [a, b]→ R3 be a constant speed curve with |γ| ≥ 1. Then

(7) E(γ) =
1

b− a

∫ b

a

∫ 2π

0

1

|γ|2
∣∣∣√|γ|2 − 1 sin

(
α
)

cos(θ) + cos
(
α
)∣∣∣ dθdt.

Proof. Let γ := γ/|γ|. Since γ is Lipschitz, γ is Lipschitz as well. So there exists a point
x ∈ S2 \ γ. Let e1 be a C1 unit tangent vector field on S2 \ {x}, and e2(p) := p× u(p).
Then (e1, e2) is a Lipschitz frame on any compact subset of S2 \ {x}. So if we set
e1(t) := e1(γ(t)), e2(t) := e2(γ(t)), then t 7→ (γ(t), e1(t), e2(t)) is a Lipschitz frame

along γ. Set λ := 1/|γ|, ρ :=
√

1− λ2, and define F : [a, b]× [0, 2π]→ S2 by

F (t, θ) = λ(t)γ(t) + ρ(t)
(

cos(θ)e1(t) + sin(θ)e2(t)
)
.

Then θ 7→ F (t, θ) parameterizes the horizon circle H(γ(t)), i.e., the set of points in S2

generated by the rays which emanate from γ(t) and are tangent to S2. So, for all p ∈ S2,
F−1(p) = γ−1(TpS

2). Thus, since F is Lipschitz, the area formula [13, Thm 3.2.3] yields

H(γ) =

∫
p∈S2

#F−1(p) dp =

∫ b

a

∫ 2π

0
JF (t, θ) dθdt,

where JF := |∂F/∂t×∂F/∂θ| is the Jacobian of F . Next, for every differentiable point

t ∈ [a, b] of γ let Eγ(t) :=
∫ 2π

0 JF (t, θ) dθ. By the Lebesgue differentiation theorem, for

almost every t ∈ [a, b], Eγ(t) = limε→0
1
2ε

∫ t+ε
t−ε Eγ(s) ds = limε→0

1
2εH(γ|[t−ε,t+ε]). So

Eγ(t) does not depend on the choice of the frame (e1, e2). We claim that for almost
every point t0 ∈ [a, b] of γ we may choose a frame so that

(8) JF (t0, θ) =
1

|γ(t0)|2
∣∣∣√|γ(t0)|2 − 1 sin

(
α(t0)

)
cos(θ) + cos

(
α(t0)

)∣∣∣ |γ′(t0)|.

This would complete the proof because E(γ) = (
∫ b
a Eγ(t) dt)/L(γ), and since the speed

is constant |γ′| = L(γ)/(b− a). To establish (8) note that if t0 is a differentiable point
of γ, then it is a differentiable point of γ as well. There are two cases to consider:
either γ′(t0) 6= 0 or γ′(t0) = 0. First suppose that γ′(t0) 6= 0. Let C be the great
circle in S2 which is tangent to γ at γ(t0). Set e1(γ(t0)) := γ′(t0)/|γ′(t0)|. We may
extend e1 smoothly to a unit tangent vector field in a neighborhood of γ(t0) on S2

so that e1(p) is tangent to C when p ∈ C. Let v := |γ′(t0)|. Then γ′(t0) = ve1(t0),
e′1(t0) = −vγ(t0), and e′2(t0) = 0. Using these rules one may compute [20, 21] that at
t = t0, JF = |ρv cos(θ)−λ′| which is equivalent to (8). If γ′(t0) = 0, then for any choice
of frame, e′1(t0) = e′2(t0) = 0 by the chain rule. Then a computation [20,21] shows that
JF = |γ′|/|γ|2, which establishes (8) since α = 0 or π. �

If γ : [a, b]→ R3 has constant speed C, then
∣∣ |γ(s)|−|γ(t)|

∣∣ ≤ |γ(t)−γ(s)| ≤ C|t−s|.
So the function |γ| : [a, b]→ R, which we call the height of γ, is Lipschitz. In particular,
|γ| is differentiable almost everywhere. Furthermore note that if t is a differentiable
point of both γ and |γ|, then |γ|′ = 〈γ, γ′〉/|γ| at t. Thus for almost every t ∈ [a, b]

(9) α(t) = cos−1(|γ|′(t)/C).

This shows, via Proposition 3.1, that E(γ) depends only on |γ|. Hence we conclude
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Corollary 3.2. Let γ1, γ2 : [a, b] → R3 be constant speed curves with L(γ1) = L(γ2).
Furthermore suppose that |γ1(t)| = |γ2(t)| ≥ 1 for all t ∈ [a, b]. Then E(γ1) = E(γ2).

4. Unfolding of Minimal Inspection Curves

Here we describe a natural “unfolding” procedure [6] which transforms a space curve
into a planar one. This operation preserves the arclength and height of the curve, and
thus preserves its efficiency due to the results of the last section. Furthermore we will
show that the unfolding of any minimal inspection curve satisfies a certain convexity
condition. Let γ : [a, b] → R3 \ {o} be a rectifiable curve. We set γ := γ/|γ|, and let

θγ(t) := L
(
γ
∣∣
[a,t]

)
=
∫ t
a |γ
′(t)|dt denote the arclength function of γ (θγ measures the

“cone angle” [6] or “vision angle” [8, 9] of γ from the point of view of o). The (cone)

unfolding of γ is the planar curve γ̃ : [a, b] → R2 given by γ̃(t) := |γ(t)|eiθγ(t), where
eiθγ = (cos(θγ), sin(θγ)). In other words, γ̃ is generated by the isometric immersion (or
unrolling) into R2 of the conical surface generated by the line segments oγ(t). Note
that |γ̃(t)| = |γ(t)|. Assuming γ is reparameterized with constant speed,

(10) γ̃′ = (|γ|′ + i|γ|θ′γ)eiθγ , and θ′γ = |γ′| = 1

|γ|2
√
|γ|2|γ′|2 − 〈γ, γ′〉2,

almost everywhere. Thus it follows that, for almost all t ∈ [a, b],

|γ̃′|2 = (|γ|′)2 + |γ|2(θ′γ)2 =
〈γ, γ′〉2

|γ|2
+

1

|γ|2
(
|γ|2|γ′|2 − 〈γ, γ′〉2

)
= |γ′|2.

So γ and γ̃ have equal height and length. Hence, by Corollary 3.2,

Proposition 4.1. Let γ : [a, b] → R3 be a rectifiable curve with |γ| 6= 0, and γ̃ be the
unfolding of γ. Then E(γ) = E(γ̃).

Next we develop some geometric properties of γ̃.

Lemma 4.2. Let γ : [a, b] → R3 be a minimal inspection curve with constant speed.
Then γ̃ is locally one to one.

Proof. It suffices to show that θ′γ > 0 almost everywhere. The formula for θ′γ in (10), via
the Cauchy-Schwartz inequality, shows that θ′γ ≥ 0, and θ′γ = 0 only when γ′ vanishes,
or else γ and γ′ are parallel. But γ′ can vanish only on a set of measure zero, since γ
has constant speed. Furthermore if γ and γ′ are parallel, then α = 0. But by Lemma
2.3, α 6= 0 almost everywhere, which completes the proof. �

A convex body K ⊂ R2 is a compact convex set with interior points. A planar curve
γ : [a, b]→ R2 is locally convex if it is locally one-to-one and each t ∈ [a, b] has an open
neighborhood U ⊂ [a, b] such that γ(U) lies on the boundary of a convex body. A local
supporting line ` for γ at t is a line passing through γ(t) with respect to which γ(U) lies
on one side. If ` does not pass through o and γ(U) lies on the side of ` which contains
o, then ` lies above γ. If γ is locally convex and through each point of it there passes a
local support line which lies above γ, then γ is locally convex with respect to o.

Proposition 4.3. Let γ : [a, b]→ R3 be a minimal inspection curve with constant speed.
Then γ̃ is locally convex with respect to o.
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Proof. By Lemma 4.2, every t ∈ [a, b] has a neighborhood U ⊂ [a, b] such that γ̃ is
one-to-one on U . Assuming that U is small, γ̃(U) will be star-shaped with respect to
o, i.e., for every s ∈ U the line passing through o and γ̃(s) intersects γ̃(U) only at γ̃(s).
Thus connecting the end points of γ̃(U) to o yields a simple closed curve, say Γ. We
call the segments which run between o and end points of γ̃(U) the sides of Γ, and let θ
denote the interior angle of Γ at o. We may assume that U is so small that θ ≤ π. Then
we claim that the region K bounded by Γ is convex, which will complete the proof. To
this end let p0, p1 ∈ int(K). There exists a curve p : [0, 1] → int(K) with p(0) = p0,
and p1 = p(1), since int(K) is path connected by Jordan curve theorem. Let t ∈ [0, 1]
be the supremum of all points t ∈ [0, 1] such that the line segment p(0)p(t) ⊂ int(K). If
t = 1, for all pairs of points p0, p1 ∈ int(K), then the line segment p(0)p(1) ⊂ int(K).
So int(K) is convex, which implies that K is convex, and we are done.

Suppose that int(K) is not convex. Then t < 1 for some pair of points p0, p1 ∈ int(K).
Note also that t > 0 since p0 ∈ int(K). So an interior point x of p(0)p(t) intersects
∂K = Γ, while p(0)p(t) ⊂ K. Since θ ≤ π, x cannot lie on a side of Γ, for then either p(0)
or p(1) will be forced to lie on a side of Γ as well, which is not possible as they are interior
points of K. So x must lie on γ̃(U). Now we may slightly perturb the segment p(0)p(t)
so that a point of it leaves K while its end points remain in int(K). Then we obtain a
line segment σ whose end points lie on γ̃(U) while its interior lies outside K. Thus if we
replace the segment of γ̃(U) which lies between the end points of σ with the line segment

σ, we obtain a star-shaped curve β̃ with L(β̃) < L(γ̃). Parameterize β̃ by letting β̃(t)

be the point where the ray generated by γ̃(t) intersects β̃. Then |β̃(t)| ≥ |γ̃(t)|. Now

set β(t) := |β̃(t)|
|γ̃(t)|γ(t). Then β̃ is the unfolding of β. So L(β) = L(β̃) < L(γ̃) = L(γ).

On the other hand, o ∈ conv(β); otherwise there exists u ∈ S2 such that 〈β(t), u〉 > 0
for all t ∈ [a, b], which in turn yields that 〈γ(t), u〉 > 0, which is not possible since
o ∈ conv(γ). So λβ(t) ∈ conv(β) for all 0 ≤ λ ≤ 1. In particular γ ⊂ conv(β). It follows
that conv(β) ⊃ conv(γ) ⊃ S2. Thus β is an inspection curve shorter than γ, which is
the desired contradiction. �

5. Spiral Decomposition of the Unfolding

Using the local convexity property established in the last section, we will show here
that the unfolding of a minimal inspection curve admits a partition into certain segments
we call spirals. Note that a locally convex curve is rectifiable, and therefore may be
reparameterized with constant speed C. Then |γ′| = C at almost all differentiable
points of γ by Lemma 2.1. Furthermore, local convexity also ensures [20, Lem. 5.1]:

Lemma 5.1. Let γ : [a, b]→ R2 be a locally convex curve with constant speed C. Then
one sided derivatives of γ exist at all points. Furthermore, |γ′+(a)| = |γ′−(b)| = |γ′±(t)| =
C for all t ∈ (a, b).

Let γ : [a, b]→ R2 \ {o} be a locally convex curve with constant speed. If t ∈ (a, b) is
a differentiable point of γ then γ′+(t) = γ′−(t) = γ′(t). Thus the above lemma shows that
|γ′(t)| 6= 0 at differentiable points of γ, since C = L(γ)/(b − a) > 0. In particular the
angle α is well defined at differentiable points of γ. We count a, b among differentiable
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points of γ, and set γ′(a) := γ′+(a), γ′(b) := γ′−(b). We say that γ is a spiral if (i) γ
is locally convex with respect to o, (ii) |γ| is nondecreasing, (iii) α(a) = π/2, and (iv)
|γ(a)| ≥ 1. Note that condition (ii), via (9), implies that

(11) α(t) ≤ π/2
at differentiable points t ∈ [a, b] of γ. We say that γ is a strict spiral if |γ| is increasing.
By a spiral decomposition of a constant speed curve γ : [a, b]→ R2 we mean a collection
Ui of mutually disjoint open subsets of [a, b] such that (i) γ|U i is a strict spiral, after

switching the direction of γ if necessary, and (ii) |γ|′ = 0 almost everywhere on [a, b] \
∪iU i. By a parameter shift we mean replacing t with (t + x) mod (b − a) for some
x ∈ [a, b]. The main result of this section is:

Proposition 5.2. Let γ : [a, b]→ R3 be a minimal inspection curve. Then the unfolding
of γ admits a spiral decomposition, after a parameter shift.

We may assume that γ has constant speed. Let γ̃ be the unfolding of γ and x ∈ (a, b)
be a local minimum point of the height function |γ| = |γ̃|. Then γ̃ is locally supported
from below by a circle of radius |γ̃(x)| centered at o. Thus, since γ̃ is locally convex with
respect to o, there can pass only one local support line of γ̃ through γ̃(x). Consequently
γ̃ is differentiable at x [31, Thm. 1.5.15]. Furthermore, the local support line at γ̃(x)
must be orthogonal to γ̃(x), since x is a local minimum of |γ̃|. So 〈γ̃′(x), γ̃(x)〉 = 0.
Now if we shift the parameter of γ̃ by x, it follows that γ̃ is orthogonal to γ̃(a) and γ̃(b).
Thus to prove Proposition 5.2 it suffices to show:

Lemma 5.3. Let γ : [a, b]→ R2 be a constant speed curve which is locally convex with
respect to o. Suppose that α(a) = π/2 = α(b), and |γ| ≥ 1. Then γ admits a spiral
decomposition.

To prove this lemma first recall that, as we had mentioned at the end of Section 3, the
height function |γ| of a constant speed curve is Lipschitz. In particular |γ| is absolutely
continuous and so it satisfies the fundamental theorem of calculus:

(12) |γ(s)| − |γ(t)| =
∫ s

t
|γ|′(t)dt

for every pair of points s < t ∈ [a, b]. Furthermore, let us reiterate that by (9) if the
speed of γ is equal to C then for almost every t ∈ [a, b], α(t) = cos−1(|γ|′(t)/C).

Proof of Lemma 5.3. Let X be the set of points t ∈ [a, b] such that γ has a local support
line at γ(t) which is orthogonal to γ(t). Then it follows from (9) that |γ|′ = 0 almost
everywhere on X. Also note that X is closed, since the limit of any sequence of support
lines of a convex body is a support line. Consequently each (connected) component U
of [a, b] \X is an open subinterval of [a, b]. We claim that γ|U is a strict spiral, possibly
after switching the direction of γ|U , which will complete the proof.

To establish the above claim first note that by (9), |γ|′ cannot vanish at any differen-
tiable point of |γ| on U , for any such point would belong to X. We will show that either
|γ|′ > 0 almost everywhere on U or else |γ|′ < 0 almost everywhere on U . To this end
we start by orienting each local support line ` of γ consistent with the orientation of γ at
the point of contact with `, so that the angle between any support line ` and the position
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vector of its point of contact will be consistently defined along γ. Now suppose, towards
a contradiction, that there are subsets X and Y of U with nonzero measure such that
|γ|′ > 0 on X and |γ|′ < 0 on Y . Since X ∪ Y is dense in U , there exists a point r ∈ U
which is a limit both of X and Y . More specifically, there are sequences of differentiable
points ti, si converging to r such that |γ|′(ti) > 0 and |γ|′(si) < 0, which in turn implies
that α(ti) < π/2 and α(si) > π/2 by (9). Hence, since the limit of support lines to a
convex body is a support line, there exists a local support line through r which makes
an angle ≤ π/2 with r, and there also exists a support line through r which makes an
angle ≥ π/2 with r. So we conclude that there exists a local support line orthogonal
to r, which is not possible by definition of U . Hence |γ|′ is always positive or always
negative at differentiable points of |γ| in U as claimed.

Now it follows from (12) that |γ| is strictly monotone on U . Next, let t0 be the
boundary point of U which forms the minimum point of |γ| on U . We have to show
that γ|U is orthogonal to γ(t0). If t0 = a, b this already holds by assumption. So
suppose that t0 ∈ (a, b). Then t0 ∈ X, and so γ has a local support line ` at γ(t0) which
is orthogonal to γ(t0). Since γ is locally convex with respect to o, locally γ lies below
`. On the other hand, since t0 is the minimum point of |γ| on U , then, near γ(t0), γ|U
lies above the circle S with radius |γ(t0)| centered at o. Thus γ|U must be orthogonal
to γ(t0) as desired. We conclude then that γ|U is a spiral, after switching the direction
of γ|U if necessary, so that γ(t0) becomes its initial point. �

6. Efficiency of Line Segments

Here we derive some formulas for the horizon and therefore efficiency of line segments,
which may be checked using [21]. Suppose that we have a line segment p0p1 (with
p0 6= p1) such that the line generated by p0p1 avoids int(B3), see Figure 2. For each

p0

p1

H(p0) H(p1)

q

q′

q

q′

Figure 2.

point p on p0p1, let Cp be the (inspection) cone generated by all rays which emanate
from p and pass through a point of B3. Let H(p) be the set of points where ∂Cp touches
S2, i.e., the horizon circle from the point of view of p. Then H(p0p1) is the area of the
union of all horizon circles H(p). Let Ci := Cpi , Hi := H(pi), and {q, q′} := H0 ∩H1;
it is possible that q = q′ which happens precisely when the line through p0 and p1 is
tangent to S2. Note that all horizon circles H(p) pass through q and q′, because the
triangles p0p1q and p0p1q

′ lie on planes which are tangent to S2. Thus H(p0p1) consists
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of the two lunar regions determined by H0 and H1, if q 6= q′; otherwise, H(p0p1) is the
region lying inside one of the circles and outside the other. More precisely, if Di denote
the (inspection) disks in S2 bounded by Hi, which lie inside Ci, then

(13) H(p0p1) = A(D0) +A(D1)− 2A(D0 ∩D1),

where A stands for area. We may use basic spherical trigonometry to compute H(p0p1)
as follows. To start, note that if we set hi := |pi|, and ` := |p0p1| then the radii of Di and
the distance in S2 between the centers of Di are given respectively by ρi := cos−1(1/hi),
and d := cos−1((h2

0 + h2
1 − `2)/(2h0h1)). It is a basic fact that A(Di) = 4π sin2(ρi/2).

The formula for A(D0 ∩ D1) is also known in terms of ρi and d [20, 35]. Substituting
these formulas in (13) yields the following formula for H(p0p1):

H(h0, h1, `) = 4
( 1

h0
sin−1

(
h21 − h20 − `2√

(h20 − 1) ((h0 + h1)2 − `2) (`2 − (h1 − h0)2)

)
+

1

h1
sin−1

(
h20 − h21 − `2√

(h21 − 1) ((h0 + h1)2 − `2) (`2 − (h1 − h0)2)

)
+ cos−1

(
h20 + h21 − `2 − 2

2
√

(h20 − 1) (h21 − 1)

))
.

Note that h1 =
√
h2

0 + `2 + 2h0` cos(α), where α := ∠(p0, p0p1). In particular, if
α = π/2 then we obtain a formula for the horizon of one-edge spirals:

(14) H(h0, `) = 4

(
cos−1

( √
h2

0 − 1√
h2

0 + `2 − 1

)
− 1√

h2
0 + `2

sin−1

(
`

h0

√
h2

0 + `2 − 1

))
.

Finally, if we set ` =
√
h2

1 − h2
0 in the last expression we obtain another formula for the

horizon of one-edge spirals in terms of h0 and h1:

H(h0, h1) := 4

(
cos−1

(√
h2

0 − 1√
h2

1 − 1

)
− 1

h1
sin−1

( √
h2

1 − h2
0

h0

√
h2

1 − 1

))
.

The graph of the corresponding efficiency function E(h0, h1) := H(h0, h1)/
√
h2

1 − h2
0,

for h1 ≥ h0 ≥ 1 is shown in Figure 3. Note that E(h0, h1) ≤ 2, and equality holds only

Figure 3.

when h0 = h1 =
√

2, or the spiral has constant height
√

2. Below we will prove that all
spirals satisfy these properties.
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7. Upper Bound for Efficiency of Spirals

Here we apply formulas of the last section to bound the efficiency of spirals via a
variational argument applied to polygonal curves. First we need to show that spirals
form a locally compact space on which the efficiency functional is continuous. To this
end we start by extending the definition of a spiral as follows. We say that γ : [a, b]→ R2

is a (generalized) spiral provided that either γ is a spiral as defined in Section 5, or else
γ is a constant map with |γ| ≥ 1. We also extend the definition of efficiency by setting

(15) E(γ) :=
4
√
|γ|2 − 1

|γ|2
, when L(γ) = 0.

So by Proposition 3.1, when L(γ) = 0, E(γ) is the efficiency of a curve of constant
height |γ|. Note that then E(γ) ≤ 2, and E(γ) = 2 only when |γ| =

√
2. The space of

spirals γ : [a, b] → R2, with the topology induced on it by the uniform metric (5), will
be denoted by S([a, b]). To show that E is continuous on S([a, b]) first we observe that:

Lemma 7.1. Let γ : [a, b]→ R2 be a constant speed spiral with L(γ) 6= 0. Then

(16) α(t) ≥ sin−1
(
|γ(a)|/|γ(t)|

)
,

at all differentiable points t ∈ [a, b] of γ.

Proof. We may assume, for convenience, that the speed of γ is 1. Then taking the cosine
of both sides of (16) and squaring yields

(17) 〈γ, γ′〉2 ≤ |γ|2 − r2.

Recall that by (11), α(t) ≤ π/2 which in turn yields that 〈γ, γ′〉 ≥ 0. Thus (17) is
equivalent to (16). To establish (17), first assume that γ is C1,1. Then the left hand side
of (17) is Lipschitz; therefore, it is differentiable almost everywhere and satisfies the
fundamental theorem of calculus. Furthermore, since γ is locally convex with respect
to o, 〈γ, γ′′〉 ≤ 0 almost everywhere. So, since 〈γ′(a), γ(a)〉 = 0, and 〈γ, γ′〉 ≥ 0,

〈γ(t), γ′(t)〉2 = 2

∫ t

a
〈γ(s), γ′(s)〉

(
1+〈γ(s), γ′′(s)〉

)
ds ≤ 2

∫ t

a
〈γ(s), γ′(s)〉ds = |γ(t)|2−r2,

as desired. To establish the general case we consider the outer parallel curves γε of γ
at distance ε > 0. These curves are given by setting γε(a) := γ(a) + εγ(a)/|γ(a)|, and
requiring that γε maintain constant distance ε from γ. Since γ is locally convex, γε is
C1,1 [23, Prop. 2.4.3]. Furthermore, it is not difficult to see that γε is a spiral. So γε
satisfies (17). Next note that for each differentiable point γ(t) of γ there exists a unique
point γε(tε) of γε which is closest to γ(t). Then α(t) = αε(tε) where αε := ∠(γε, γ

′
ε).

Thus α(t) = αε(tε) ≥ sin−1
(

r+ε
|γε(tε)|

)
. Letting ε→ 0 completes the proof. �

Since for a spiral γ(t) with L(γ) 6= 0, α(t) ≤ π/2, the last lemma shows that α(t)→
π/2 as γ(t)→ γ(a). This observation, together with some basic convex analysis, yields:

Lemma 7.2. The efficiency functional E is continuous on the space of spirals S([a, b]).
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Proof. For convenience we may assume that [a, b] = [0, 1]. Let γk : [0, 1] → R2 be
a sequence of spirals converging to a spiral γ : [0, 1] → R2. We have to show that
E(γk)→ E(γ). To this end, we may assume that all spirals have constant speed. First
suppose that L(γ) = 0. If L(γk) = 0 as well, then we are done by (15). So we may
assume that L(γk) > 0, by passing to a subsequence. Then, by Proposition 3.1

(18) E(γk) =

∫ 1

0

∫ 2π

0

1

|γk(t)|2
∣∣∣√|γk(t)|2 − 1 sin

(
αk(t)

)
cos(θ) + cos

(
αk(t)

)∣∣∣ dθdt.
Note that γk(a) → γ(a) and γk(t) → γ(t) = γ(a). So γk(t) → γk(a). Consequently, by
Lemma 7.1, αk(t) → π/2. So, since the integrand in (18) is bounded, the dominated
convergence theorem yields that

E(γk)→
∫ 1

0

∫ 2π

0

√
|γ(a)|2 − 1

|γ(a)|2
| cos(θ)| dθdt = 4

√
|γ(a)|2 − 1

|γ(a)|2
= E(γ),

as desired. Next suppose that L(γ) > 0, then we may assume that L(γk) > 0 as well.
So, again (18) holds. By assumption γk → γ uniformly. Furthermore, since γ and γk are
locally convex, it follows that γ′k → γ′ almost everywhere on [0, 1]. This can be shown
by representing γk, γ locally as graphs of convex functions and applying well-known
results on convergence of derivatives from classical convexity theory; e.g., see [29, C(9),
p. 20], [36, Lem. 2], or [25]. So αk → α almost everywhere on [0, 1]. Thus by the
dominated convergence theorem

E(γk) →
∫ 1

0

∫ 2π

0

1

|γ(t)|2
∣∣∣√|γ(t)|2 − 1 sin

(
α(t)

)
cos(θ) + cos

(
α(t)

)∣∣∣ dθdt = E(γ),

which completes the proof. �

A polygonal curve P is a collection of line segments determined by a sequence of
points p0, . . . , pm ∈ R2 with pi+1 6= pi. We also allow P to be a single point, and use
the formal notation P = (p0, . . . , pm) to specify a polygonal curve. The line segments
pipi+1 are called the edges of P . Each polygonal curve P admits a unique constant
speed parameterization γP : [0, 1] → P , with γp(0) = p0 which traces the edges of P .
The distance between a pair of polygonal curves P 1, P 2 is defined as dist

(
γP 1 , γP 2

)
,

the metric given by (5). Let Pm denote the space of polygonal curves with at most m
edges in R2, endowed with the topology induced by dist. Then Pm is locally compact.
We say that P ∈ Pm is a polygonal spiral provided that γP is a spiral. Let Sm be
the collection of polygonal spirals with at most m edges. Lemma 7.1 together with
Blaschke’s selection principle [5, Thm. 7.3.8] quickly yields [20, Lem. 7.3]:

Lemma 7.3. The space of polygonal spirals Sm is locally compact, for every m ≥ 0.

Next we observe that

Lemma 7.4. The efficiency of any polygonal spiral is at most 2.

Proof. Fix an integer m ≥ 0, and number R > 1. By Lemma 7.3 there exists a polygonal
spiral P = (p0, . . . , pk) which maximizes E among elements of Sm which lie in the ball
of radius R centered at o. We need to show that E(P ) ≤ 2. If P is a singleton, this
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is guaranteed by (15). So we may assume that k ≥ 1. Then r := |p0| < R. Note
that for −ε < t < ε there exists a point pt0 such that pt0 is orthogonal to pt0p1, and
|pt0| = (1 + t)r, assuming that ε sufficiently small. Indeed pt0 lies on an arc of the circle
of radius |p1|/2 which is centered at the midpoint of op1; see Figure 4. Furthermore,

p0 p1

o

Figure 4.

choosing ε sufficiently small, we can ensure that P t := (pt0, p1, . . . , pk) is locally convex.
Thus P t will be a spiral provided that |pt0| ≥ 1, which will be the case for small ε
provided that r > 1 or else t ≥ 0. Let us assume first that r > 1. Then P t will be a
spiral in the ball BR(o) for −ε < t < ε. Let L(t), H(t), and E(t) denote respectively the
length, horizon, and efficiency of P t. Then 0 = E′(0) = (H ′(0)L(0)−H(0)L′(0))/L(0)2,
which in turn yields H ′(0)/L′(0) = H(0)/L(0) = E(P ). To compute L′(0) note that

L(t) = L(pt0p1) + L
(
(p1, . . . , pk)

)
=
√
|p1|2 − (r + t)2 + L

(
(p1, . . . , pk)

)
.

So it follows that L′(0) = −r/
√
|p1|2 − r2. Next, to compute H ′(0), note that H(t) =

H(pt0p1) +H
(
(p1, . . . , pk)

)
. Furthermore, by (14) we have H(pt0p1) = H

(
r+ t, L(pt0p1)

)
.

Now a computation [21] yields that

(19) H ′(0) =
d

dt
H
(
r + t, L(pt0p1)

)∣∣∣
t=0

= −4

r

√
r2 − 1√
|p1|2 − r2

.

So we conclude that E(P ) = H′(0)
L′(0) = 4

√
r2−1
r2

≤ 2, as desired. It remains to show that

our earlier assumption that r > 1 was justified. Suppose then, towards a contradiction,
that r = 1. Then E(t) and H(t) will still be well defined for t ≥ 0, and so will their
right-hand derivatives at 0. By (19), H ′+(0) = 0. Thus

E′+(0) =
−H(0)L′(0)

L(0)2
=
H(0)

L(0)2

1√
|p1|2 − 12

> 0.

So E(t) > E(0), or E(P t) > E(P ), for small t > 0 which is the desired contradiction. �

Lemma 7.4 together with Lemma 7.2 yields the main result of this section via a
polygonal approximation:

Proposition 7.5. The efficiency of any spiral is at most 2.

Proposition 7.5 together with Proposition 5.2 establishes (1). The rest of this work
will be concerned with characterizing the case of equality in (1).
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8. Instantaneous Efficiency

Here we investigate another method for bounding the efficiency of spirals via a notion
first used in the proof of Proposition 3.1. Let γ : [a, b]→ R3 be a constant speed curve
with |γ| ≥ 1, and t ∈ [a, b] be a differentiable point of γ with |γ′(t)| 6= 0. We define the
instantaneous efficiency of γ at t as

Eγ(t) :=

∫ 2π

0

∣∣F (|γ(t)|, α(t), θ)
∣∣dθ,

where

F (h, α, θ) :=
1

h2

(√
h2 − 1 sin(α) cos(θ) + cos(α)

)
.

If t is a differentiable point of t 7→ H(γ|[a,t]), then by (7) Eγ(t) = d
dtH

(
γ|[a,t]

)
. So

Eγ(t) is the rate of change of horizon along γ. Furthermore, by Proposition 3.1, E(γ) =
1
b−a

∫ b
a Eγ(t)dt ≤ sup[a,b]Eγ(t). Thus to find an upper bound for E(γ) it suffices to

bound Eγ . To this end we compute the above integral as follows. Let

Ω := {(h, α) |h ≥ 1, sin−1 (1/h) ≤ α ≤ π/2}

be the phase space of possible values for (|γ(t)|, α(t)) at differentiable points of curves γ
which lie outside S2 and whose tangent lines avoid int(B3). For every (h, α) ∈ Ω we set

θ0 = θ0(h, α) := cos−1(− cot(α)/
√
h2 − 1). Since sin(α) ≥ 1/h, | cot(α)/

√
h2 − 1| ≤ 1.

So θ0 is well defined. Also note that F (h, α,±θ0) = 0. Now we may compute that [21]

E(h, α) :=

∫ 2π

0
|F (h, α, θ)| dθ =

∫ θ0

−θ0
F (h, α, θ) dθ −

∫ 2π−θ0

θ0

F (h, α, θ)dθ

=
4

h2

(√
h2 sin2(α)− 1 + cos(α) sin−1

(
cot(α)√
h2 − 1

))
.

Then Eγ(t) = E
(
|γ(t)|, α(t)

)
. For any set X ⊂ [a, b] with measure µ(X) 6= 0 we define

E(γ
∣∣
X

) := 1
µ(X)

∫
X Eγ(t)dt. So we may record that

Proposition 8.1. Let γ : [a, b]→ R3 be a constant speed curve with |γ| ≥ 1. If tangent
lines of γ avoid int(B3), then for any set X ⊂ [a, b] with nonzero measure

E(γ
∣∣
X

) =
1

µ(X)

∫
X
E
(
|γ(t)|, α(t)

)
dt.

The values of E on the phase space Ω, which range from 0 to about 2.6, are shown
in Figure 5. Since E may exceed 2, it is not possible to obtain the bound E ≤ 2 for all
spirals by bounding E ; however, spirals with initial height ≥

√
2 are special. Set

E(h) := E
(
h,
π

2

)
= 4

√
h2 − 1

h2
≤ 2.

Note that E(h) = 2 only if h =
√

2.

Lemma 8.2. Let γ : [a, b] → R2 be a spiral with initial height r ≥
√

2. Then the
instantaneous efficiency Eγ(t) ≤ E(r) ≤ 2 for all t ∈ [a, b].
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Figure 5.

Proof. Recall that Eγ(t) = E(|γ(t)|, α(t)). By Lemma 7.1, sin−1(
√

2/r) ≤ α ≤ π/2.
Since E(h, π/2) = E(h), it suffices to check that α 7→ E(h, α) is nondecreasing for
h ≥
√

2/ sin(α). So we compute that [21]

∂E
∂α

(h, α) =
4

h2

(
cot(α)

√
h2 sin2(α)− 1− sin(α) sin−1

(
cot(α)√
h2 − 1

))
≥ 4

h2

(
cos(α)√

1− cos2(α)
− sin−1

(
cos(α)√

1 + cos2(α)

))
.

It remains to check that x√
1−x2 − sin−1

(
x√

1+x2

)
≥ 0, for 0 ≤ x ≤ 1. Indeed this

expression vanishes for x = 0, and its derivative 1/(1−x2)3/2−1/(x2 +1) is nonnegative
on 0 ≤ x ≤ 1. �

Corollary 8.3. Let γ : [a, b]→ R2 be a constant speed spiral with initial height r ≥
√

2.
Then

E(γ) ≤ 1

b− a

∫ b

a
E(|γ(t)|)dt ≤ E(r) ≤ 2.

Equality in the second inequality holds only when |γ| ≡ r, and equality in the third
inequality holds only when r =

√
2.

9. Spirals with Maximum Efficiency

Here we refine the variational method employed in Section 7 to show that the efficiency
of any spiral assumes its maximum value only when it has constant height

√
2. We start

by considering one edge spirals P = (p0, p1). By a lifting of P we mean any polygonal

curve P̃ = (p̃0, p1) where p̃0 = λp0 for λ > 1.

Lemma 9.1. Let P = (p0, p1) be a spiral. For any lifting P̃ of P , H(P ) < H(P̃ ).

Proof. Suppose P̃ := (p̃0, p1), see Figure 6. Since p0p1 is orthogonal to p0, the horizon
circle H(p1) (depicted in orange) bisects the horizon circle H(p0) (depicted in dotted
blue line), because the two planes which contain p0p1 and are tangent to S2 intersect
H(p0) at a pair of its antipodal points. Thus the area that is gained by the horizon, as
p0 rises to p̃0 exceeds the area which is lost. �
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p0 p1

p̃0

H(p1)H(p̃0)

H(p0)

Figure 6.

Let P = (p0, p1) be a spiral and set r := |p0|, R := |p1|. For every h ∈ [r,R], let

P̃ h := (p̃h0 , p1) be the lifting of P such that the distance of p̃h0 p1 to o is equal to h. Let

qh be the closest point of p̃h0 p1 to o; see Figure 7. Set P̃ h+ := (qh, p1) and P̃ h− := (p̃h0 , q
h).

p0 p1

p̃h
0 qh

o

Figure 7.

Lemma 9.2. Let P = (p0, p1) be a spiral with initial height r, and final height R. Then
for every r ≤ ρ ≤ R,

H(P ) ≤
∫ ρ

r
w(h)E(h)dh+H(P̃ ρ+),

where
∫ ρ
r w(h)dh = L(P )− L(P̃ ρ+), and w ≥ r/

√
R2 − r2.

Proof. If the desired inequality holds for all r > 1, then it also holds for r = 1 by
continuity. So we may assume that r > 1. We claim that

w(h) := − d

ds
L(P̃ s+)

∣∣∣
s=h

= − d

ds

√
R2 − s2

∣∣∣
s=h

=
h√

R2 − h2

is the desired weight function. Clearly
∫ ρ
r w(h)dh = L(P )−L(P̃ ρ+) and w ≥ r/

√
R2 − r2.

Set ∆h := (ρ − r)/n, hi := r + i∆h, and qi := qhi . We define a sequence of liftings as
follows. Set P 0 := P . Once P i is defined, let p̃i0 be its initial point, qi be its closest

point to o, and set P i− := (p̃ i0, q
i), P i+ := (qi, p1). Then we define P i+1 := (̃P i+)

hi+1

;

see Figure 8. By Lemma 9.1 H(P i+) < H(P i+1) = H(P i+1
− ) + H(P i+1

+ ). Applying this
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o

p0 p1

Figure 8.

inequality iteratively yields

H(P ) ≤
n∑
i=1

H(P i−) +H(P̃ ρ+).

Now, for 0 ≤ s ≤ ∆h, let qi(s) := qhi−1+s; see Figure 9. Furthermore let xi(s) be the

qi−1

qi
p̃ i
0

xi(s) qi(s)

p1

Figure 9.

point where the line passing through qi(s) and p1 intersects qi−1p̃ i0. Set σis := xi(s)qi(s).
Let fi(s) := H(σis). By (14), fi(s) = H

(
hi−1 + s, L(σi(s))

)
. So fi is C∞ on [0,∆h]

provided that hi−1 + s > 1 or hi−1 > 1, which is the case since r > 1. We have
H(P i−) = fi(∆h) − fi(0) ≤ f ′i(0)∆h + Ci(∆h)2, where Ci := sup[0,∆h] f

′′
i (s)/2 < ∞.

Note that Ci depends continuously on qi. So Ci are bounded above by some constant
C, independent of i, which yields

H(P i−) ≤ f ′i(0)∆h+ C(∆h)2 = f ′i(0)∆h+ C
(ρ− r)2

n2
.

Next we compute that

f ′i(0) =
d

ds
L(σis)

∣∣∣
s=0

E(σi0) + L(σi0)
d

ds
E(σis)

∣∣∣
s=0

=
d

ds
L(σis)

∣∣∣
s=0
E(hi−1).

If we let τ is := qi(s)p1 then at s = 0, d
dsL(σis) + d

dsL(τ is) = d
ds |x

i(s)p1| = 0, because

xi(0)p1 = qi−1p1 is orthogonal to qi−1p̃ i0. Now recall that qhp1 = P̃ h+. Thus

d

ds
L(σis)

∣∣∣
s=0

= − d

ds
L(τ is)

∣∣∣
s=0

= − d

ds
L(P̃

hi−1+s
+ )

∣∣∣
s=0

= w(hi−1).

The last four displayed expressions yield

n∑
i=1

H(P i−) ≤
n−1∑
i=0

(
w(hi)E(hi)∆h+ C

(ρ− r)2

n2

)
=

n−1∑
i=0

w(hi)E(hi)∆h+ C
(ρ− r)2

n
.
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Letting n→∞ completes the proof. �

The last lemma via an induction yields:

Lemma 9.3. Let P be a polygonal spiral with initial height r, and final height R. Then

(20) H(P ) ≤
∫ R

r
w(h)E(h)dh,

where
∫ R
r w(h)dh = L(P ), and w ≥ r/

√
R2 − r2.

Proof. If P has only one edge (20) holds by Lemma 9.2. Suppose that (20) holds
for spirals with n edges and let P = (p0, . . . , pn+1). Let ρ be the distance of the
line spanned by p1p2 from o and q be the closest point of that line to the origin.
Then P ′ := (q, p2, . . . , pm) is a spiral with n edges. Note that H(P ) = H

(
(p0, p1)

)
+

H
(
(p1, . . . , pn+1)

)
, and by Lemma 9.2, H

(
(p0, p1)

)
≤
∫ ρ
r w0(h)E(h)dh+H

(
(q, p1)). Thus

H(P ) ≤
∫ ρ

r
w0(h)E(h)dh+H(P ′),

where
∫ ρ
r w0(h)dh = L(p0p1) − L(qp1) = L(P ) − L(P ′), and w0 ≥ r/

√
|p1|2 − r2 ≥

r/
√
R2 − r2. By the inductive hypothesis

H(P ′) ≤
∫ R

ρ
w1(h)E(h)dh,

where
∫ ρ
r w1(h)dh = L(P ′), and w1 ≥ ρ/

√
R2 − ρ2 ≥ r/

√
R2 − r2. Set w := w0 for

h < ρ and w := w1 for h ≥ ρ. Then the last two displayed inequalities yield (20) . �

Now we prove the main result of this section, which extends Proposition 7.5:

Proposition 9.4. For any spiral γ, E(γ) ≤ 2 with equality only if |γ| ≡
√

2.

Proof. Lemma 9.3 together with Lemma 7.2 yields E(γ) ≤ 2 via a polygonal approxi-
mation. Next suppose that E(γ) = 2. Let r, R be the initial and final heights of γ. If
r = R, then 2 = E(γ) = E(|γ|) which yields |γ| ≡

√
2. Suppose towards a contradiction

that r < R. Let Pi, i = 1, 2, . . . be a sequence of polygonal spirals converging to γ, with
initial and final heights ri, Ri. We may assume for convenience that r ≤ ri < Ri ≤ R.
Let wi be the weight functions for Pi given by Lemma 9.3. Set wi := wi/L(Pi) on [ri, Ri]

and wi := 0 elsewhere. Then
∫ R
r wi(h)dh = 1. By Lemma 7.2, for any given ε > 0, we

may choose i so large that E(Pi) ≥ 2− ε. Then by Lemma 9.3,

2− ε ≤ E(Pi) ≤
∫ R

r
wi(h)E(h)dh ≤ sup

[r,R]
E ≤ 2.

So sup[r,R] E = 2. Since E = 2 only at
√

2, [r,R] 3
√

2. So the set of heights h ∈ [r,R]

with E(h) ≥ 2−
√
ε forms a subinterval [x−ε , x

+
ε ]. It follows that

2− ε ≤
∫ R

r
wi(h)E(h)dh ≤ −

√
ε

(∫ x−ε

r
wi(h)dh+

∫ R

x+ε

wi(h)dh

)
+ 2.
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So
∫ x−ε
r wi(h)dh+

∫ R
x+ε
wi(h)dh ≤

√
ε. But wi ≥ 1/

(
L(Pi)

√
(R/r)2 − 1

)
. Thus

R− r ≤
√
εL(Pi)

√
(R/r)2 − 1 + x+

ε − x−ε .

Letting ε → 0, we obtain r = R, since x±ε →
√

2, and L(Pi) is bounded above. Hence
we arrive at the desired contradiction. �

10. Proof of Theorem 1.1

By Proposition 2.2 there exists a minimal inspection curve γ : [a, b] → R3, which
we may assume to have constant speed. As we described in Section 3, to establish (1)
it suffices to show that E(γ) ≤ 2. By Proposition 4.1, E(γ) = E(γ̃) where γ̃ is the
unfolding of γ. By Proposition 5.2, γ̃ admits a spiral decomposition, generated by a
collection of mutually disjoint open sets Ui ⊂ [a, b], i ∈ I. Set U0 := [a, b] \ ∪iU i, and
let γ̃i := γ̃|U i , γ̃0 := γ̃|U0 . Then

(21) E(γ̃) =
H(γ̃)

L(γ̃)
=

1

L(γ̃)

∑
i

H(γ̃i) =
1

L(γ̃)

(
L(γ̃0)E(γ̃0) +

∑
i

L(γ̃i)E(γ̃i)

)
,

where we define L(γ̃0) :=
∫
U0
|γ̃′0(t)|dt. So L(γ̃0) +

∑
i L(γ̃i) = L(γ̃). If L(γ̃0) = 0, then

we may disregard the first term in the summation above. Otherwise, by definition of
spiral decomposition, α̃(t) = π/2 for almost all t ∈ U0. Thus, by Proposition 8.1,

(22) E(γ̃0) =
1

µ(U0)

∫
U0

E
(
|γ̃(t)|, π

2

)
dt =

1

µ(U0)

∫
U0

E
(
|γ̃(t)|

)
dt ≤ 2.

Furthermore, by Proposition 7.5 or 9.4,

(23) E(γ̃i) ≤ 2,

assuming Ui 6= ∅. So it follows that E(γ̃) ≤ 2, as desired. It remains to characterize the
case of equality in (1), which corresponds to E(γ) = 2. Then E(γ̃) = 2, which yields
that the terms E(γ̃i) and E(γ̃0) in (21) must all be equal to 2. But the inequality in
(23) must be strict by Proposition 9.4, since γ̃i are strict spirals by definition of spiral
decomposition. So γ̃ cannot contain any strict spirals or Ui = ∅, which means that U0 =
[a, b] or γ̃ has constant height. Furthermore, equality in (22) implies that E(|γ̃(t)|) ≡ 2
which can happen only when |γ̃(t)| ≡

√
2. So we conclude that γ has constant height√

2, since unfoldings preserve height. Now let γ := γ/
√

2 be the projection of γ into
S2. Then L(γ) = L(γ)/

√
2 = 4π/

√
2. Recall that, since γ is an inspection curve, the

horizon circles generated by points of γ cover S2. Since |γ| ≡
√

2, these circles have
(spherical) radius π/4 and are centered at points of γ. Thus γ satisfies the hypothesis
of the following proposition, which will complete the proof of Theorem 1.1.

Proposition 10.1. Let γ : [a, b] → S2 be a closed constant speed curve with L(γ) =
4π/
√

2. Suppose that the distance between any point of S2 and γ is at most π/4. Then
γ is a simple C1,1 curve which traces consecutively 4 semicircles of length π/

√
2.

It remains then to establish the above proposition. To this end we need:
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Lemma 10.2 (Crofton-Blaschke-Santalo [30]). Let γ : [a, b]→ S2 be a rectifiable curve,
and for every point p ∈ S2, and 0 ≤ ρ ≤ π/2, let Cρ(p) ⊂ S2 denote the circle of radius
ρ centered at p. Then L(γ) = 1

4 sin(ρ)

∫
p∈S2 #γ−1

(
Cρ(p)

)
dp.

For the rest of this section we assume that γ satisfies the hypothesis of the last propo-
sition. Then, since L(γ) = 4π/

√
2, applying the last lemma with ρ = π/4 to γ yields

Ave
p∈S2

#γ−1
(
Cπ

4
(p)
)

=
1

4π

∫
p∈S2

#γ−1
(
Cπ

4
(p)
)
dp =

1

4π
L(γ) 4 sin

(π
4

)
= 2.

Furthermore, note that Cπ
4
(p) must intersect γ for all p ∈ S2, since the distance of p from

γ cannot be bigger than π/4 by assumption. So, since γ is closed, #γ−1(Cπ
4
(p)) ≥ 2 for

almost all p ∈ S2. Now since the average of #γ−1(Cπ
4
(p)) is 2, it follows that

Lemma 10.3. For almost every p ∈ S2, #γ−1
(
Cπ

4
(p)
)

= 2.

By a side of a circle C in S2 we mean either of the two closed disks in S2 bounded
by C. If the radius of C is less than π/2, then the disk with radius less than π/2 is
called the inside of C and the other disk is called the outside of C. By strictly inside
or strictly outside we mean the interior of inside and interior of outside respectively.

Lemma 10.4. For any point p ∈ S2, the portion of γ which lies outside Cπ
4
(p) has

length at least π.

Proof. By assumption, γ intersects Cπ
4
(−p), which has distance π/2 from Cπ

4
(p). Fur-

thermore, since γ is closed, there must exist at least two segments of γ which connect
Cπ

4
(−p) and Cπ

4
(p). �

For the rest of this section, we will assume that γ is reparameterized so that [a, b] =
[0, 2π], and identify [0, 2π] with the unit circle S1 ' R/(2πZ). Furthermore we fix an
orientation on S1. Then for every pair of distinct points t, s ∈ S1, we let [t, s] denote
the segment in S1 whose orientation from t to s agrees with the orientation of S1.

Lemma 10.5. For every t ∈ S1, the tangent cone Ttγ is a line.

Proof. Let si ∈ S1 be a sequence of points converging to t from the left hand side (with
respect to the orientation of S1). Since γ has non-vanishing speed, it cannot be locally
constant. Thus we may assume, after passing to a subsequence, that γ(si) 6= γ(t).
Then the secant rays `i in R3 which emanate from γ(t) and pass through γ(si) are well-
defined. Let ` be a limit of `i. Similarly, we can consider the secant rays `′i generated
by points s′i ∈ S1 converging to t from the right hand side, and let `′ be a limit of `′i.
We claim that the angle between ` and `′ is π. Suppose not. Then there exist points s,
s′ ∈ S1 arbitrary close to t and with (s, s′) 3 t such that the angle between the geodesic
segments γ(t)γ(s) and γ(t)γ(s′) in S2 is less than π. Consequently, there exists an open
set S of circles of radius π/4 in S2 such that for every C ∈ S we have γ(s), γ(s′) lie
strictly inside C while γ(t) lies strictly outside C. Thus, by Lemma 10.3, there exists a
circle C ∈ S which intersects γ in only two points. So the portion of γ which lies outside
C is a subset of γ([s, s′]). But since s and s′ may be chosen arbitrarily close to t, the
length of γ([s, s′]) may be arbitrarily small. Hence we obtain the desired contradiction
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via Lemma 10.4. So the angle between ` and `′ is π as claimed. Now since ` and `′

where arbitrary limits of the right and left secant rays of γ at t, and all these limits are
tangent to S2, it follows that ` and `′ are unique. Hence Ttγ = ` ∪ `′ as desired. �

Now for each t ∈ S1, the left and right unit tangent vectors of γ, u±γ (t) are well-defined

with u+
γ (t) = −u−γ (t).

Lemma 10.6. Let C ⊂ S2 be a circle of radius π/4. Suppose that there exists an
interval [t, s] ⊂ S1 such that γ(t) lies on C while γ((t, s]) lies strictly inside C. Then γ
is transversal to C at γ(t).

Proof. Suppose towards a contradiction that γ is tangent to C at γ(t). Let C ′ be a circle
of radius π/4 in S2 which passes through γ(t) and is transversal to C at γ(t) with u+

γ (t)
pointing outside C ′. Then there exist r ∈ (t, s) such that γ(r) lies strictly outside C ′.
Furthermore, choosing C ′ sufficiently close to C, we can ensure that γ(s) lies strictly
inside C ′. Next, by perturbing the center of C ′, we may find another circle C ′′ of radius
π/4 such that γ(t) and γ(s) lie strictly inside C ′′ while γ(r) lies strictly outside C ′′.
Since C ′′ may be chosen freely from an open set of circles in S2, we may assume by
Lemma 10.3 that C ′′ intersects γ at only two points. Thus the portion of γ lying outside
C ′′ is a subset of γ([t, s]). But γ([t, s]) can have arbitrarily small length, since we may
choose s as close to t as desired. Thus we obtain a contradiction by Lemma 10.4. �

We say that a circle C ⊂ S2 supports γ at a point p of γ provided that C passes
through p and γ lies on one side of C. Furthermore, if the radius of C is less than π/2,
then we assume that γ lies outside C.

Lemma 10.7. Through each point of γ there pass a pair of support circles of radius
π/4 which lie outside each other.

Proof. Let C be one of the two circles of radius π/4 tangent to γ at γ(t). Suppose there
is a point t′ ∈ S1 such that γ(t′) lies strictly inside C. Let D be the disk of radius π/4
bounded by C, and I be the closure of the component of γ−1(int(D)) which contains
t′. By Lemma 10.3, γ cannot lie entirely in C. Thus I is a proper interval in S1. By
Lemma 10.6, γ is transversal to C at the end points of I. In particular there are points
s1, s2 ∈ S1 close to each of the end points of I such that γ(si) lie strictly outside C,
and t, s1, t′, s2 are arranged cyclically in S1. Perturbing the center of C, we may find
a circle C ′ of radius π/4 such that γ(t) and γ(t′) lie strictly inside C ′, while γ(si) lie
strictly outside C ′. It follows that C ′ intersects γ at least 4 times, which contradicts
Lemma 10.3, since C ′ may be chosen freely from an open set of circles in S2. �

In the terminology of [19], the conclusion of Lemma 10.7 means that γ has double
positive support. Using this lemma we next show:

Lemma 10.8. γ is simple.

Proof. Suppose that there are distinct points t, s ∈ S1 with γ(t) = γ(s). Let r1, r2 be
points of S1 which lie in the interior of different segments of S1 determined by s and t,
so that s, r1, t, r2 are cyclically arranged in S1. By Lemma 10.7, there exists a circle
C of radius π/4 in S2 which supports γ at γ(t) = γ(s). Furthermore, by Lemma 10.3,
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γ cannot lie completely on C. So we may choose ri so that at least one of the points
γ(r1), γ(r2) lies strictly outside C. Then we may translate C to obtain a circle C ′ of the
same radius such that γ(t) = γ(s) lies strictly inside C ′ while γ(ri) lie strictly outside
C ′. Hence C ′ ∩ γ consist of at least 4 points. Furthermore C ′ may be chosen from an
open set of circles of radius π/4 in S2. Thus we obtain a violation of Lemma 10.3. �

For a planar curve, double positive support is equivalent to positive reach introduced
by Federer [12]. Thus the last two lemmas imply that γ has positive reach.

Lemma 10.9. γ is C1,1.

Proof. Since γ has finite length, there exists a point in S2 \ γ, which we may assume to
be (0, 0, 1) after a rotation. Let π : S2 \{(0, 0, 1)} → R2 be the stereographic projection,
and set γ̃ := π ◦ γ. Since π preserve circles, and by Lemma 10.7 γ has double positive
support, γ̃ has double positive support as well. Furthermore, by Lemma 10.8 γ has
two sides in S2. The support circles of γ must lie in opposite sides of γ at each point;
otherwise the tangent cone would be a ray (or γ would have a cusp) which is not possible
by Lemma 10.5. Thus the support circles of γ̃ must lie on the opposite sides of γ̃ as
well. Consequently γ̃ is C1,1 by [19, Thm. 1.2]; see also [26, prop. 1.4]. �

Next we observe that:

Lemma 10.10. Let C be a support circle of γ of radius π/4. Then C ∩ γ is either a
pair of antipodal points of C or else is a semicircle of C.

Proof. We claim that (i) every closed semicircle of C intersects γ, and (ii) every open
semicircle of C intersects γ in a connected set. These properties easily imply that γ ∩C
is either a pair of antipodal points of C, a closed semicircle of C, or the entire C. The
last possibility is not allowed, because by Lemma 10.8 γ is simple; therefore, if γ covers
C, it must coincide with C, which would violate Lemma 10.3. So it remains to establish
the claims. To see (i) suppose that there exists a closed semicircle of C which does not
intersect γ. Then moving the center of C by a small distance towards the center of that
semicircle yields a circle C ′ of radius π/4 disjoint from γ. Obviously all circles of radius
π/4 which are close to C ′ will be disjoint from γ as well, which would violate Lemma
10.3. To see (ii) suppose that there exists an open semicircle S of C which intersects γ
in a disconnected set. Then there exist points t1, t2, s ∈ S1, with s ∈ (t1, t2) such that
γ(ti) ∈ S while γ(s) lies strictly outside C. Either γ((t2, t1)) lies entirely on C or not. In
the former case there exist a point s′ ∈ (t2, t1) such that γ(s′) lies in the open semicircle
of C which is disjoint from S; in the latter case there exists a point s′ ∈ (t2, t1) such that
γ(s′) lies strictly outside C. In either case, moving the center of C by a small distance
towards the midpoint of S will yield a circle C ′ of radius π/4 such that γ(ti) lie strictly
inside C ′ while γ(s), γ(s′) lie strictly outside C ′. But t1, s, t2, s′ are cyclically arranged
in S1. So perturbing the center of C ′ yields an open set of circles of radius π/4 each of
which intersects γ at least 4 times, which again contradicts Lemma 10.3. �

The last lemma leads to the proof of Proposition 10.1 via the notion of nested par-
titions of a circle employed in [16], see also [33, 37]. By Lemma 10.8, γ bounds a
topological disc D ⊂ S2. By Lemmas 10.7 and 10.9 through each point p ∈ γ there
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passes a circle Cp of radius π/4 which lies in D. It follows from Lemma 10.9 that Cp is
unique. Thus if we set [p] := γ ∩ Cp, and P := {[p] | p ∈ γ}, then P will be a partition
of γ. A partition P of a topological circle is nested provided that no element of P
separates the components of any other element, i.e., for every [p] ∈ P and q ∈ γ \ [p],
[q] lies in a connected component of γ \ [p].

Lemma 10.11. The partition P of γ is nested.

Proof. If not there are distinct support circles C, C ′ of γ of radius π/4 contained in D
such that C has points in different components of γ \C ′. In particular neither C ∩γ nor
C ′ ∩ γ is connected. So by Lemma 10.10, C and C ′ intersect γ in two points each, say
C ∩ γ = {p, q} and C ′ ∩ γ = {p′, q′}. Each of the segments pq and qp of C separate D
into two components. Thus each of the segments p′q′ and q′p′ of C ′ must intersect each
of the segments pq and qp. Furthermore, each of these intersections must occur in the
interior of the segments, because the interior of each segment is disjoint from γ. Thus
C and C ′ intersect at least 4 times. So C = C ′, which is the desired contradiction. �

Finally we invoke the following fact established in [16, Lem. 2.2]. A partition is
nontrivial provided that it contains more than one element.

Lemma 10.12. Any nontrivial nested partition of a topological circle contains at least
two elements which are connected subsets of the circle.

So there are two distinct elements [p1], [p2] ∈ P such that Cpi ∩ γ is a connected
set. Consequently, by Lemma 10.10, Cpi ∩ γ are semicircles. Thus γ contains a pair of
disjoint semicircles which curve toward D. Similarly, by repeating the above argument
for the other domain D′ in S2 bounded by γ, we obtain two disjoint semicircles in γ
which curve toward D′. Since each semicircle has length π/

√
2 = L(γ)/4, the semicircles

cover γ, which completes the proof of Proposition 10.1.
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