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Abstract. We prove that in Euclidean space Rn+1, every metrically complete,
positively curved immersed hypersurface M , with compact boundary ∂M , lies
outside the convex hull of ∂M provided that ∂M is embedded on the boundary
of a convex body and n > 2. For n = 2, on the other hand, we construct examples
which contradict this property.

1. Introduction

As we showed recently [2], a compact, immersed positively curved hypersurface
of Euclidean space satisfies a Convex Hull Property (CHP), dual to the classical one
for nonpositively curved hypersurfaces [13]. Our CHP states that the hypersurface
lies outside the convex hull of its boundary, provided the boundary satisfies certain
required conditions, e.g., it is embedded on the boundary of a convex body. A proof
of a version of this fact has also been obtained by Guan and Spruck [9] via their work
on Monge-Ampére equations. In this note we study generalization of CHP to non-
compact, (metrically) complete hypersurfaces, and uncover a surprising dichotomy:
the noncompact version of CHP fails in R3 but holds in higher dimensions.
Theorem 1.1. Let M be a connected, smooth n-manifold with compact boundary,
n ≥ 3. Let f : M → Rn+1 be a complete smooth immersion with positive sectional
curvature, and C := conv f(∂M) be the convex hull of the image of the boundary of
M (we assume ∂M 6= ∅). Suppose that f(∂M) ⊂ ∂C, and f is an embedding on
each component of ∂M . Then the image of the interior of M lies completely outside
the convex hull of the image of its boundary,

f(int M) ∩ C = ∅.
Further, f is an embedding on ∂M , and M is homeomorphic to the complement of a
finite point set in the closure of a component of ∂C−f(∂M) with boundary f(∂M).
(If C is degenerate, i.e. int C = ∅, then we take ∂C to be two copies of C glued
along their relative boundaries.)

If M is compact, this theorem is proved for n ≥ 2 in [2]. (In this case, there is
no deleted point set.) Below we give an example (Figure 1) showing that when M
is noncompact and n = 2, the theorem fails.
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In [2], CHP theorems are proved for other classes of hypersurfaces as well, in-
cluding nonnegatively curved hypersurfaces, and nonsmooth, locally convex hyper-
surfaces (see Theorem 2.2 below). The proof of Theorem 1.1 depends on this work
and earlier work of Robert Currier and the first author concerning hypersurfaces
that are nonnegatively curved off compact sets (see Theorem 2.1 below). A version
of the CHP theorems had been originally conjectured in the second author’s Ph.D.
thesis [6, Prob. E.0.5], [7].

2. Preliminaries

We say a smooth immersion f : M → Rn+1 is complete if M is a complete metric
space with respect to the intrinsic metric induced by f . Thus, in our terminology, a
complete hypersurface may have boundary (it need not be geodesically complete). It
is still true that the compact subsets of M are the closed and (intrinsically) bounded
ones. (See [4] for Cohn-Vossen’s extension of the Hopf-Rinow theorem.)

By an end representative in M , we mean an unbounded component of the comple-
ment of a compact subset of M . An end is an equivalence class of nested decreasing
sequences of end representatives that eventually lie outside every compact subset of
M . Two sequences are equivalent if any member of either contains a truncation of
the other. By a convex body in Rn+1, we mean a convex set with interior points
(our convex bodies need not be compact). A convex cap is the intersection of the
boundary of a convex body with an open halfspace.
Theorem 2.1. Let M be a connected, smooth n-manifold with compact boundary,
n ≥ 3. Let f : M → Rn+1 be a complete smooth immersion with positive sectional
curvature. Then each end of M has a convex representative, that is, one that is
embedded onto a convex cap.

Proof. In [1], the same conclusion is obtained for a complete hypersurface without
boundary having positive sectional curvature off a compact subset. The proof applies
almost verbatim to the present case. Indeed, it may be simplified because [1] also
discusses the case with sectional curvature nonnegative and nullity of the second
fundamental form at most 1 (off a compact subset). Thus we present only an
outline of the arguments, and refer the reader to [1] for more details.

The main idea for the proof is as follows. Let C be a subset of M which is
embedded by f onto a convex cap. Note that C is an end representative if and only
if (i) the closure of C is noncompact, but (ii) ∂C is compact. We need to show that
each end of M has such a representative. This is achieved by adapting the method
of slicing with moving hyperplanes first used by van Heijenoort [11] (see [1, Thm.
2]).

Suppose H ⊂ Rn+1 is a hyperplane which does not intersect f(∂M). Then by a
transversality argument, each component N of f−1(H) which is not a singleton is
an (n − 1)-dimensional submanifold without boundary of M , on which f acts as a
complete, positively curved hypersurface immersion into H. Since n ≥ 3, it follows
then from a classical theorem of Stoker [14], that f embeds N onto the boundary
of a convex subset of H (here is where we use the dimension restriction).
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The above observation is used to show that for any point p ∈ M such that f(p) lies
outside a Euclidean ball containing f(∂M), slicing by rotated hyperplanes through
f(p) produces a subset Cp of M that is embedded onto a convex cap, and has
boundary containing p and intersecting ∂M (see [1, Lemma 2]).

Since M has positive curvature, an argument of Okayasu [12] implies that f(M)
is unbounded. In particular, there exists a sequence of points pi of M such f(pi)
lies outside a ball containing f(∂M) and is unbounded. The existence of convex
caps Cpi together with compactness of ∂M , may then be used to show that in each
end there is a subset that is embedded onto a convex cap X, and has noncompact
closure (see [1, Lemma 3]). If this subset has compact boundary, then we are done;
otherwise, we proceed as follows.

Let v be a direction in the “recession cone” of conv X, and Xv be the union
of slices of M by hyperplanes 〈y, v〉 = t for t sufficiently large. If these slices are
compact, Xv is the desired end representative. If not, we may choose w in the
common recession cone of these slices, and find an end representative of the form
Xv ∪ Xw. Then a convexity argument identifies a family of parallel hyperplanes
such that the corresponding slices of Xv ∪Xw are compact and form the desired end
representative. �

Now suppose f : M → Rn+1 is an immersion of a topological n-manifold (i.e., a
locally one-to-one continuous map). We say f is locally convex if f has an extension f̃

to a manifold without boundary M̃ , where every point p ∈ M has a neighborhood Up

in M̃ that is embedded by f̃ into the boundary of a convex body Kp ⊂ Rn+1. (The
assumption that f extends to a collaring manifold M̃ is a compatibility condition on
the Kp for boundary points p. Without the compatibility condition, the CHP need
not hold; see [2] for examples and further discussion.) If, for all p ∈ ∂M , Up may
be chosen so that f(Up ∩M) contains no line segments, we say f is locally strictly
convex on a neighborhood of ∂M .

We need the following CHP theorem for locally convex hypersurfaces which are
compact:

Theorem 2.2 ([2]). Let M be a compact connected topological n-manifold, n ≥ 2,
f : M → Rn+1 be a locally convex immersion, and C := conv f(∂M) 6= ∅. Suppose
that f(∂M) ⊂ ∂C, f is locally strictly convex on a neighborhood in M of ∂M , and
f is an embedding on each component of ∂M . Then

f(int M) ∩ C = ∅.
Further, f is an embedding on ∂M , and M is homeomorphic to the closure of a
component of ∂C − f(∂M) with boundary f(∂M).

3. Proof of Theorem 1.1

We proceed in two parts: first we observe that M has only finitely many ends, by
applying a theorem of Greene and Wu [10], and then we use Theorem 2.1 to “clip
off” the ends, and reduce the proof to that of Theorem 2.2.
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I. Since ∂M is compact, it has only finitely many components ∂Mi, and each
∂Mi is a closed (n−2)-dimensional manifold. Thus, since f is an embedding on ∂Mi,
f(∂Mi) is an embedded (n − 2)-dimensional closed submanifold of ∂C. But, since
∂M is compact, C is a compact convex set. In particular, if int(C) 6= ∅, then ∂C is
homeomorphic to the sphere Sn. So, by the generalized Jordan-Brouwer separation
theorem [3], f(∂Mi) is the boundary of a compact connected manifold Xi ⊂ ∂C. If
int C = ∅, then ∂Mi lies in a hyperplane. In this case, again by the Jordan-Brouwer
theorem, ∂Mi bounds a compact connected manifold Xi.

Gluing each Xi to M along ∂Mi, we obtain a manifold without boundary M∗. Let
Ui be an open neighborhood of Xi with compact closure in M∗. In the overlapping
regions Ui∩M , we may use a partition of unity to blend in the metrics in the standard
way, to obtain a complete smooth Riemannian manifold M∗ which is positively
curved off a compact set. As Greene and Wu showed [10], building on the method of
Cheeger and Gromoll [5], M∗ is diffeomorphic to the interior of a compact manifold
with boundary. In particular, M∗ has only finitely many ends. But each end of M
is also an end of M∗. Thus M has only finitely many ends.

II. By Theorem 2.1, each end of M has a convex representative Ei. So there are
a convex body Bi and a hyperplane Hi, such that f embeds Ei onto the intersection
of ∂Bi with the open halfspace H+

i . Since C is compact, we may move Hi parallel
to itself inside H+

i until H+
i ∩ C = ∅. Replacing Ei by the corresponding (smaller)

convex representative, we may then assume that

(3.1) f(Ei) ∩ C = ∅.
Now we “clip off the ends” as follows. For each Ei, let Di := Hi ∩ Bi be the

corresponding convex body in Hi and set D := ∪iDi. Further let M ′ := M − ∪iEi.
By part I, D and M ′ are both compact manifolds with boundary, and ∂D = ∂M ′−
∂M . So, gluing D to M ′, by gluing each Di to ∂Ei, we obtain a compact manifold
M with M − ∪Di = M − ∪Ei. In particular ∂M = ∂M , since, by construction,
Hi ∩ C = ∅.

Also we modify f accordingly by setting it equal to the identity on each Di to
obtain a (nonsmooth) immersion f : M → Rn+1. Since f is locally convex (see [2,
Lemma 3.1]), f will be locally convex as well.

Thus we obtain a compact manifold M , and a locally convex immersion f : M →
Rn+1 which satisfy the hypotheses of Theorem 2.2. So f(int M) ∩ C = ∅. Since
(int M − ∪iEi) ⊂ int(M), this yields

(3.2) f(intM − ∪iEi) ∩ C = ∅.
Together, (3.1) and (3.2) complete the proof of CHP.

To obtain the topological conclusions of Theorem 1.1, note that, by Theorem 2.2,
M is homeomorphic to the closure of a component of ∂C − f(∂M) bounded by
f(∂M). Since ∂M = ∂M , it remains then to show that M is homeomorphic to M
minus a finite number of points. This follows because each Ei is homeomorphic to
∂Bi∩H+

i ' Sn−1×R, which is the same as an n-disk minus a point, e.g., Di minus
a point.
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Note 3.1. If n = 2, Theorem 1.1 still holds for embeddings because Theorem 2.1
does.

4. Example

Here we construct an immersed surface in R3 that satisfies the hypotheses of
Theorem 1.1 but enters the convex hull of its boundary. We start with a compact
surface which we then transform to a complete one by a projective transformation.

Figure 1

Consider the immersed surface M illustrated in Figure 1. It is composed of a
pair of quarter spheres, which are attached by a pair of positively curved ribbons.
The technique for constructing such ribbons has been well studied and formalized
by Gluck and Pan [8]. Note that M has an embedded boundary component, Γ1

(the darker curve), which lies on the boundary of its own convex hull C. Further,
int M ∩ C 6= ∅. In particular most of each of the quarter spheres lies in C. The
other boundary component of M , Γ2, is an immersed planar curve in the shape of
a clover leaf.

Suppose that Γ2 lies in the xy-plane and consider the projective transformation
T given by

(x, y, z) T7−→ (x/z, y/z, 1/z).
This transformation maps M − Γ2 to a complete hypersurface bounded by a single
curve T (Γ1). Since projective transformations preserve the sign of curvature, T (M)
has positive curvature. Further, T preserves line segments, and therefore sends
convex bodies to convex bodies. So T (Γ1) again lies on the boundary of its own
convex hull, because T (Γ1) ⊂ T (∂C) = ∂T (C) = ∂ conv T (Γ1). Finally, since
int(M) ∩C 6= ∅, it follows that

int T (M) ∩ T (C) = T (intM) ∩ T (C) = T (int M ∩ C) 6= ∅.
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Hence T (M) is the desired surface.

Figure 2

Another counterexample to the noncompact CHP for n=2, which might be easier
to visualize, is depicted in Figure 2. This surface has the same topology as the
previous example, but has a somewhat more complicated end, as it intersects itself 6
times (the end of the previous example has 4 symmetrically placed self-intersections).
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