
RELATIVE ISOMETRIC EMBEDDINGS

OF RIEMANNIAN MANIFOLDS

MOHAMMAD GHOMI AND ROBERT E. GREENE

Abstract. We prove the existence of C1 isometric embeddings, and C∞ approx-
imate isometric embeddings, of Riemannian manifolds into Euclidean space with
prescribed values in a neighborhood of a point.

1. Introduction

Nash’s celebrated theorems in differential geometry [14, 15] and their refinements
[6, 2] show that any Riemannian manifold may be isometrically embedded in a
Euclidean space. In this paper we obtain some relative versions of these results; i.e.,
we study the existence and regularity of isometric embeddings whose values have
been prescribed in a neighborhood of a point. To state our main results precisely,
let N = N(n, k) be the smallest integer such that every Ck Riemannian n-manifold
admits a Ck isometric embedding into the Euclidean space RN .

Theorem 1.1. Let (M, g) be a C1≤k≤∞ Riemannian n-manifold, p ∈ M , and U
be a neighborhood of p. Suppose there exists a Ck+1 isometric embedding f : U →
Rm, m > n. Then there exists a C1 isometric embedding f : M → RN+m, and a
neighborhood V ⊂ U of p, with closure V diffeomorphic to a ball, such that

f |V = f,

and f is Ck on M − V .

Although it can be shown that f in the above theorem is somewhat more regular
on ∂V than just C1, see Proposition 4.1 below, we do not know if in general f can
be Ck on ∂V and therefore Ck on all of M . Still, we can always achieve this degree
of regularity after an arbitrarily small Ck-perturbation of g near ∂V :

Theorem 1.2. Let (M, g), p, U , and f : U → Rm, be as in Theorem 1.1. Then
there exists a neighborhood V ⊂ U of p and a Ck embedding f : M → RN+m, such
that

f |V−A = f,

for any given open neighborhood A of ∂V ; the pull-back metric f
∗〈, 〉 is as Ck-close

to g as desired; and, f
∗〈, 〉 = g on M −A.
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In other words, we can construct an arbitrarily fine Ck approximate isometric
embedding f : M → RN which is an (exact) isometric embedding outside of any
neighborhood of ∂V . Estimates for N in the above results may be obtained from
Nash’s theorems and their refinements:

Note 1.3. If k = 1, or k ≥ 3, 5,∞, in Theorem 1.1, we may set N = 2n + 1, n2 +
10n + 3, (n + 2)(n + 3)/2, and max{n(n + 5)/2, n(n + 3)/2 + 5} respectively. The
case k = 1 is given by Nash’s theorem [14, Thm. 2], see also [13, 3]. For the cases
k ≥ 3 and k ≥ 5, see Gromov’s book [6, p. 223]. The case k =∞ is due to Günther
[7, 8]. For low dimensional estimates and other references see [9]. A nice survey of
Nash’s isometric theorems and related results is given in [2].

We should point out that the above theorems are optimal in the following sense:

Note 1.4. It is not possible in general to require that the extension f in Theorem 1.1
coincide with the prescribed embedding f over the entire domain U , or all compact
subsets of it. The simplest counterexample is given by the circle S1: let U be a
connected open subset of S1 of length greater than π and f : U → R be an isometric
mapping. Then f cannot be extended isometrically to all of S1, because any such
extension would have total length bigger than 2π. Similarly, one can construct
counterexamples of every dimension by using the flat tori Tn = S1 × · · · × S1.
Perturbing the metric of these tori will yield nonflat counterexamples as well.

Furthermore, the dimension N +m in our main results is not extravagant:

Note 1.5. If a Riemannian manifold M has a global isometric embedding in Rm,
there may still exist a local isometric embedding f of a neighborhood U of M
such that f restricted to no open subset V of U may be extended to a global
isometric embedding of M in Rm. In particular, the occurrence in Theorem 1.1 of
the higher dimensions m + N for the ambient space is not in general superfluous.
Such examples arise from situations wherein the embedding of M is globally but
not locally rigid. Consider for instance the well-known surfaces of revolution in R3

which are of constant Gauss curvature 1 but which have mean curvature which is
not constant on any open subset, see for instance [12] or [16] (these surfaces are of
course not complete). The Gauss curvature being 1 implies that every point has a
neighborhood isometric to an open subset of the standard unit sphere S2 in R3, but
the mean curvature property indicated means that no open subset of these surfaces
can be congruent to an open subset of S2; these surfaces are in this sense everywhere
locally non-spherical. On the other hand, the well-known rigidity theorem of Cohn-
Vossen, which applies to surfaces with as little regularity as C2 by the proof of
Herglotz [10], shows that the only isometric embedding of S2 in R3 is S2 itself up
to a rigid motion. Hence no open subset of a non-spherical surface of revolution of
constant Gauss curvature 1 can be extended to a C2 global isometric embedding of
S2 in R3 (this also follows from Hopf’s maximum principle for elliptic equations, see
[19] and [18, p. 211]). Indeed, the rigidity theorem of Pogorelov [17, p. 167], who
generalized Cohn-Vossen’s result, shows that such an extension is not possible as a
convex embedding even when no additional regularity is required of the extension,
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i.e., when the surface is only required to be the boundary of a compact convex set.
Furthermore, local nonrigidity of convex surfaces shows that these examples are a
special case of a much more general process: any open subset of a closed convex
surface, whose complement has non-empty interior, admits a nontrivial isometric
deformation [17, p.172]. This will yield a large class of examples of the type indicated
above via Pogorelov’s global rigidity theorem.

A C2 immersion f : M → RN is said to be free if the set of all its first and second
derivatives is linearly independent.

Note 1.6. When f in Theorem 1.1 is free, one might be able to show that f is
Ck everywhere, since then Nash’s implicit function theorem applies. In this case, it
might also be possible to replace N + m by max{N,m}, and this may already be
implicit in works of Nash [14] or Gromov [6]. But for f to be free we must have
m ≥ n+ n(n+ 1)/2 (which may constitute a heavy price, or be unwarranted).

For an application of Theorem 1.2 we refer the reader to [1] where it is proved
that the standard sphere S2 ⊂ R3 ⊂ R18 bounds infinitely many distinct topological
types of C∞ positively curved compact submanifolds.

While we are not aware of any previous work on the relative isometric problem
considered here, it should be mentioned that there is a paper of Jacobowitz [11]
where he studies the problem of locally extending the isometric embedding of a
codimension-one submanifold to its ambient space. Gromov’s book [6, §3.1.6] also
contains a number of other local extension results.

Our proofs of Theorems 1.1 and 1.2, which are presented in Section 3, employ a
variation of a cartesian product technique used in Nash’s work [15, Part D], see also
[5], to piece together the desired isometric embedding from certain other maps. One
of these maps, which we construct in Section 2, is a short mapping f1 : M → Rm

which sends most of M to the origin, preserves f on a neighborhood V of p, and is
strictly short everywhere else. We then let g1 := f∗1 〈, 〉 be the induced symmetric
bilinear form on M (g1 vanishes on most of M , but g1 = g on V ). Next we let
g2 := g − g1 be the complementary form on M , and show that there exists a C1

mapping f2 : M → RN such that f2 maps V to the origin, and f∗2 〈, 〉 = g2. Then

f : M → RN+m given by f := (f1, f2) is the desired embedding, for it induces the
metric g1+g2 = g on M and coincides with f1 = f on V . Theorem 1.2 will be proved
by a perturbation of g2, which will ensure that the corresponding map f2 is smooth.
The precise details for these arguments are described in the next two sections. The
regularity of the map f2, which determines the regularity of f , is further studied in
Section 4, and the remaining questions are summarized in Section 5.

2. Relative Short Maps

A metric in this paper always means a positive definite symmetric bilinear form.
We say that (M, g) is a Ck Riemannian manifold provided that M is a C∞ manifold
with a Ck metric g. Recall that any C1 map f : M → Rn induces a (possibly
degenerate) symmetric bilinear form f∗〈, 〉 on M given by(

f∗〈, 〉
)
p
(X,Y ) :=

〈
dfp(X), dfp(Y )

〉
,
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for all p ∈M and X, Y ∈ TpM , where df denotes the differential map of f , and 〈, 〉
is the standard metric on Rn. We say that f is short provided that

f∗〈 , 〉 ≤ g,
i.e., (f∗〈 , 〉)p(X,Y ) ≤ gp(X,Y ) for all p ∈ M and X, Y ∈ TpM . If the inequality
is strict at some point p, we say that f is strictly short at p, and if equality holds
everywhere then f is an isometric map.

As we mentioned earlier, the first step towards proving Theorems 1.1 and 1.2 is
to show that there exists a (relative) short mapping of M into Rn which coincides
with the prescribed values given by f near the point p. Further, we require that
this mapping be strictly short everywhere else. This is the content of Proposition
2.3 below, which is the main result of this section. First we need the following
elementary fact:

Lemma 2.1. For any ε > 0 and 0 < c < 1, there exists an 0 < ε′ < ε and a C∞

concave function θ : [0,∞)→ [0,∞) such that

(1) θ(t) = t on [0, ε′],
(2) θ(t) < t on (ε′,∞),
(3) θ(t) < ct on (ε,∞),
(4) θ′(t) > 0 on [0,∞).

Proof. We construct θ by smoothing the piecewise linear concave function θ deter-
mined by the lines y = t and y = c(t + ε)/2, i.e., set θ(t) := t, on (−∞, a], and
θ(t) := c(t + ε)/2 on [a,∞), where a = ε/(2 − c); see Figure 1. Then we define θ

Figure 1

as the moving average, or convolution θ ∗ η where η : R→ [0,∞) is a C∞ function
with

∫
R η(t)dt = 1, η(t) = η(−t), and supp η ⊂ [−δ, δ], where 0 < δ < min{a, ε−a}.

Since θ is concave, it follows that θ is concave as well. It is also easy to check that
θ(t) = t at all points t such that θ is linear on [t − δ, t + δ]; see [4]. In particular,
θ(t) = t on [0, ε′] where ε′ = a−δ. Further θ(t) < t on (ε′,∞), since θ(t) ≤ t, and for
any t ∈ (ε′,∞), θ(s) < s for some s ∈ (t−δ, t+δ). Furthermore θ(t) = θ(t) = c/2 < c
on (ε,∞), since θ is linear on (ε− δ,∞). Finally since θ is concave, θ′′ ≤ 0; so, θ′ is
nonincreasing, but θ′ = c/2 on (ε,∞); therefore, θ′ ≥ c/2 > 0 everywhere. �
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For any set X, X denotes the closure of X, and Br(p) stands for an open ball of
radius r > 0. The last lemma yields:

Lemma 2.2. For any p ∈ Rn, ε > 0, and 0 < c < 1, there exist an 0 < ε′ < ε and
a C∞ short embedding h : Rn → Rn such that h is the identity on Bε′(p) ⊂ Rn, h
is strictly short on Rn −Bε′(p), and h∗〈, 〉 < c〈, 〉 on Rn −Bε(p).

Proof. After a rigid motion we may assume that p = 0. Let θ be given by Lemma
2.1, and set

h(x) :=
θ
(
‖x‖
)

‖x‖
x.

We claim that this is the desired map. First note that, by part (1) of Lemma 2.2, h is
identity on Bε′(0). In particular h is C∞ near the origin 0 of Rn. This together with
the smoothness of θ and the norm ‖ ‖ on Rn−{0} shows that h is C∞ everywhere.

Next we show that h is a C∞ embedding. First note that θ is one-to-one by
item (4) of Lemma 2.2 above. This easily yields that h is one-to-one. It remains
then to check that dh is nondegenerate: A routine computation shows that, for any
q ∈ Rn − {0} and X ∈ TqRn,

(2.1) dhq(X) =
θ(‖q‖)
‖q‖

X +

(
θ′(‖q‖)− θ(‖q‖)

‖q‖

)
〈X, q〉
‖q‖2

q.

So dhq(X) = 0 only when X = λq or dhq(X) = λdhq(q). But dhq(q) = θ′(‖q‖)q 6=
0, since θ′ > 0, by part (4) of Lemma 2.2. Thus dhq is nondegenerate for all
q ∈ Rn − {0}. Hence, since dh0 is identity, dh is nondegenerate everywhere.

Now we verify that h is strictly short outside Bε′(0). For any q ∈ Rn−{0}, let Ei,
i = 1, . . . , n be an orthonormal basis for Rn with Xn := q/‖q‖. Then (2.1) yields
that

dhq(Ei) =

{
θ(‖q‖)
‖q‖ Ei, if i < n;

θ′(‖q‖)Ei, if i = n.

So for any pair of vectors X =
∑n

i=1X
iEi, Y =

∑n
i=1 Y

iEi in Rn,

(2.2)
〈
dhq(X), dhq(Y )

〉
=

(
θ(‖q‖)
‖q‖

)2 n−1∑
i=1

XiY i + (θ′(‖q‖))2XnY n.

Further recall that since θ is concave (i.e., θ′′ ≤ 0), θ′ is nonincreasing; therefore,

θ′(t) = inf
[0,t]

θ′ ≤ 1

t

∫ t

0
θ′(s) ds =

θ(t)

t
.

So (2.2) yields that

(2.3) (h∗〈, 〉)q(X,Y ) ≤
(
θ(‖q‖)
‖q‖

)2

〈X,Y 〉.

This shows, via part (2) of Lemma 2.2, that h is strictly short on Rn−Bε′(0). Finally,
(2.3), together with part (3) of Lemma 2.2, also shows that h∗〈, 〉 < c2〈, 〉 < c〈, 〉 on
Rn −Bε(0), which completes the proof. �
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Now we are ready to prove the main result of this section:

Proposition 2.3. Let M , p, U , and f be as in Theorem 1.1. Then there exist open
neighborhoods V , W of p with closures diffeomorphic to balls, V ⊂ W ⊂ U , and a
Ck+1 short map σ : M → Rm such that σ = f on V , σ is strictly short on M − V ,
is an embedding on W , and maps M −W to a point not on f(V ).

Proof. Since m > n, we may assume, after a rigid motion, that there exists an open
neighborhood W of p, with closure W ⊂ U diffeomorphic to a ball, such that no line
emanating from the origin intersects f(W ) more than once (i.e., f(W ) is a radial
graph). Let λ : U → R be a Ck+1 function such that 0 ≤ λ ≤ 1, λ > 0 on W ,
λ ≡ 0 on U −W , and λ ≡ 1 on an open neighborhood of p. Choose ε > 0 small
enough so that A := f−1(Bε(f(p))) ⊂ λ−1(1); for any 0 < ε′ ≤ ε, f−1(Bε′(f(p)))
is diffeomorphic to a ball; and for any point q ∈ W − λ−1(1), the line segment
connecting f(q) to the origin is disjoint from Bε(f(p)); see Figure 2.

Figure 2

Define f̃ : M → Rm by f̃(q) := λ(q)f(q) on U , and f̃(q) := 0 on M − U . Note

that f̃ is Ck+1 since λ ≡ 0 on U − W . Apply Lemma 2.2 with p := f(p) (and
ε = ε) to obtain the short mapping h : Rn → Rn. We claim that we may choose c
in Lemma 2.2 small enough so that

σ := h ◦ f̃
is the desired map. First note that, since f(W ) is a radial graph, and λ > 0 on
W , σ is one-to-one on W ; further, since h is identity precisely on some small ball

B
′

:= Bε′(f(p)), and f̃ = f on A ⊃ V := f−1(B′), we have σ = f on V , for any
choice of c. It remains then to show that σ is strictly short on M−V , for sufficiently
small c.

To find this c note that, for any choice of c, σ is strictly short on A − V , since

f̃ is short on A, and h is strictly short on Rn − B′ ⊃ f̃(A − V ). The fact that

f̃(A − V ) ⊂ Rn − B′ is due to the assumption at the end of the first paragraph
that for any point q ∈ W − λ−1(1), the line segment connecting f(q) to the origin
is disjoint from Bε(f(p)).

Thus it remains to find c so that σ is strictly short on M − A. To this end, let
|gp| denote the norm of the metric g at p ∈ M , i.e., |gp| := sup gp(X,X) where X
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ranges over the unit vectors of the tangent space TpM . Note that if g′ is any other
metric on M , then gp < g′p if and only if |gp| < |g′p|. Next observe that

sup
p∈M−A

|f̃∗p 〈, 〉|
|gp|

= sup
p∈W−A

|f̃∗p 〈, 〉|
|gp|

=: K <∞;

the first equality is due to the fact that f̃ is constant on M −W which implies that

(f̃)∗ vanishes there; and finiteness of K follows from compactness of W −A. So we
conclude that

f̃∗〈, 〉 < Kg

on M −A. Now, if we set c < 1/K in Lemma 2.2, it follows that

σ∗〈, 〉 = f̃∗h∗〈, 〉 < 1

K
f̃∗〈, 〉 < g

on M −A. So σ is strictly short on M −A. �

3. Proof of Theorems 1.1 and 1.2

Before proving our main results, we need only one more fact:

Lemma 3.1. Let M be a C∞ manifold, and V ⊂ M be a connected open subset
with compact closure V and C∞ boundary ∂V . Suppose there exists a Ck, symmetric
bilinear form g on M which is positive definite on M − V and is identically zero
on V , and let f : M − V → RN be a Ck isometric embedding . Then there exists a
point p ∈ RN such that f : M → RN defined by f = f on M − V and f = p on V ,
is C1 on M and Ck on M − ∂V .

Proof. First we describe how the point p is to be found. Let h be an arbitrary
Riemannian metric on M , and Vi be a sequence of nested open neighborhoods of
∂V , which lie with an h-distance 1/i of ∂V . Then, for i sufficiently large, g < h
on Ai, since g vanishes on ∂V . Indeed, g < λih on Ai, where λi is a sequence of
positive numbers converging to 0. So the diameter of Ai with respect to g becomes
arbitrarily small as i grows larger, since

diamg(Ai) ≤ λi diamh(Ai) ≤ λi
(

2

i
+ diamh(∂V )

)
.

Consequently, f(Ai) are contained in a sequence of nested closed balls of radii
diamg(Ai) in RN . There is only one point common to all these balls, which we

choose as our p. This immediately yields that f is continuous.
Next we show that f is C1. To see this note that, since ∂V is C∞, we may

identify, via a diffeomorphism, a neighborhood W of any point of ∂V with Rn, where
n = dim(M), so that W ∩ V is identified with the lower half-space xn < 0. Let gij
be the coefficients of g with respect to these coordinates. Then 〈∂if, ∂jf〉 = gij on
the complement of the plane Π given by xn = 0. So

(3.1) lim
x→Π
‖∂if(x)‖2 = lim

x→Π
gii(x) = 0,
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since g, and consequently gij , vanish on the Π. So, to show that f is C1 it suffices

to check that f is differentiable on Π and ∂if vanish there. To see this note that
for i = 1, . . . , n − 1 we have ∂if = 0 on Π since f is constant there. Further, since
f vanishes on Π, L’Hopital’s rule and (3.1) yield that:

∂nf(x1, . . . , xn−1, 0) = lim
t→0

f(x1, . . . , xn−1, t)

t
= lim

t→0
∂nf(x1, . . . , xn−1, t) = 0.

Finally, since f is Ck on M − V and is constant on V , f is Ck on M − ∂V . �

Now we are ready to prove our main results:

Proof of Theorem 1.1. Let V , W , and σ be as in Proposition 2.3, and set f1 := σ.
Then g1 := f∗1 〈 , 〉 is a Ck metric on W , since f1 is Ck+1. Further note that g1

vanishes on M −W since f1 is constant there. Next set g2 := g− g1 (where g is the
metric on M). Then, since g > g1 on M − V , and g and g1 are both Ck, it follows
that g2 is a Ck metric on M − V . Thus, by Lemma 3.1, there exists a C1 mapping
f2 : M → RN , such that f2 is a Ck isometric embedding on M − V , with respect to
g2, and maps V to a point, say the origin. Now define f : M → RN+m, by

f := (f1, f2).

Then f = f1 = f on V . Further, f is a C1 immersion, and its induced metric on
M is g1 + g2 = g. So f is an isometric immersion. Furthermore, since f1 is Ck

everywhere, and f2 is Ck on M − ∂V , it follows that f is Ck on M − ∂V . It only
remains to check that f is one-to-one, which would complete the proof. Note that
since f1 is one-to-one on W and f2 is one-to-one on M − V , it follows that f is
one-to-one on W and on M −V . So we just need to show that f(M −W ) is disjoint
from f(V ). But f1(V ) is disjoint from the origin, whereas f1(M −W ) is the origin
by construction of f1 (Proposition 2.3). So f is the desired mapping. �

Proof of Theorem 1.2. Let V , W , g1, g2, and f1 be as in the proof of Theorem
1.1. Let V ′ be an open neighborhood of p diffeomorphic to a ball with V ′ ⊂ V .
There exists a C∞ map θ : M →M such that θ(V ′) = p and θ : M −V ′ →M −{p}
is a diffeomorphism. Note that θ induces a symmetric bilinear form θ∗g2 on M by
defining θ∗g2 to be the push-forward of g2 via θ on M − {p}, i.e.,

(θ∗g2)q(X,Y ) := (g2)θ−1(q)

(
dθ−1
q (X), dθ−1

q (Y )
)
,

for all q ∈ M − {p}, and setting (θ∗g2)p := 0. Further note that θ∗g2 is Ck since it
vanishes on θ(V ), which is an open neighborhood of p.

Let h be any C∞ Riemannian metric on M , and φ : M → R be any C∞ non-
negative function with compact support which contains θ(V ). Then θ∗g2 + εφh is
a Ck Riemannian metric on M for any ε > 0. Thus there exists a Ck isometric
embedding f ε2 : M → RN with respect to this metric. After a translation, we may
assume that f ε2(p) = 0. Next let gε2 be the pullback of θ∗g2 + εφh via θ, i.e., set

gε2 := θ∗(θ∗g2 + εφh) = g2 + εθ∗(φh).
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Note that gε2 is a Ck symmetric bilinear form on M which is positive definite on

M − V ′, and vanishes on V ′.
Define f

ε
2 : M → RN by

f
ε
2 := f ε2 ◦ θ.

Then f
ε
2 is a Ck mapping which is an isometric embedding on M − V ′ with respect

to gε2, and f
ε
2(V ′) = 0. Next define f

ε
: M → RN+m by

f
ε

:= (f1, f
ε
2).

This is a Ck isometric immersion with respect to the metric

gε := g1 + gε2 = g + εθ∗(φh).

Further, f
ε

= f1 = f on V ′. Choosing ε sufficiently small, we can make sure that gε

is as Ck-close to g as we may desire. Furthermore, similar to the end of the proof
of Theorem 1.1, it can be shown that f

ε
is one-to-one, which yields that it is an

embedding.
Finally, note that if A is any open neighborhood of ∂V , then we may assume that

θ is identity and φ vanishes outside A∪V . This implies that θ∗(φh) vanishes outside
A ∪ V , so gε = g outside A ∪ V . Furthermore, recall that gε2 ≡ 0 on V ′, so gε = g1

on V ′, but g1 = g on V ⊃ V ′ by construction. So gε = g on V ′. We may choose V ′

so large that ∂V ′ ⊂ A. Then g = gε outside of A. �

4. More Regularity

Here we show that f in Theorem 1.1 has somewhat more regularity than has
been mentioned there. In particular, if (M, g) is C∞ and γ : (−1, 1) → M is any
C∞ curve which is transversal to ∂V , then f ◦ γ is C∞. More generally, we have:

Proposition 4.1. Let f be as in Theorem 1.1, or Lemma 3.1, and suppose that
k ≥ 2`. Then for any C2` curve γ : (−1, 1) → M , which is transversal to ∂V ,
(∂if) ◦ γ is C`, with respect to any system of local coordinates. In particular f ◦ γ
is C`+1.

This follows quickly from the following elementary observation:

Lemma 4.2. Let h : (−1, 1) → RN be a continuous map. Suppose that h ≡ 0 on
(−1, 0], h is C` on (0, 1), and ‖h‖2 is C2` everywhere. Then h is C`.

Proof. We proceed by induction on `. First suppose that ` = 1. Note that if h′(0)
exists, then h′(0) = 0, since h is constant on (−1, 0]. Further, by L’Hopital’s rule,

h′(0) = lim
t→0

h(t)− h(0)

t
= lim

t→0
h′(t).

Thus to show that h is C1 it suffice to check that limt→0 h
′(t) = 0. To see this note

that all derivatives of ‖h‖2 have to vanish at 0. Thus∥∥∥lim
t→0

h′(t)
∥∥∥2

=

∥∥∥∥lim
t→0

h(t)

t

∥∥∥∥2

= lim
t→0

‖h(t)‖2

t2
= lim

t→0

(
‖h(t)‖2

)′′
2

= 0.
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Next suppose that the lemma holds for `. Then we need to show that h is C`+1.
Note that, similar to the case for ` = 1, we have

h(`+1)(0) = lim
t→0

h(`)(t)− h(`)(0)

t
= lim

t→0
h(`+1)(t).

So, again we just need to verify that limt→0 h
(`+1)(t) = 0. The computation is a

straight forward generalization of the one given earlier:∥∥∥lim
t→0

h(`+1)(t)
∥∥∥2

=

∥∥∥∥∥lim
t→0

h(`)(t)

t

∥∥∥∥∥
2

=

∥∥∥∥lim
t→0

`!h(t)

t`

∥∥∥∥2

= (`!)2 lim
t→0

‖h(t)‖2

t2`

= (`!)2 lim
t→0

(
‖h(t)‖2

)(2`)
(2`)!

= 0.

�

Proof of Proposition 4.1. It suffices to prove this result for Lemma 3.1, for then
the corresponding statement for Theorem 1.1 follows immediately (recall that, in
the proof of Theorem 1.1, f is given by (f1, f2), and f1 is Ck+1; thus the regularity
of f in Theorem 1.1 corresponds to that of f2, which in turn coincides with the map
f in Lemma 3.1). Next note that if γ is disjoint from ∂V , then we are done, since
f is C2` on M − ∂V . Further, since γ meets ∂V transversally, it suffices to consider
the curves γ which map (−1, 0) to V and (0, 1) to M − V . Then h := (∂if) ◦ γ
vanishes on (−1, 0), is C` on (0, 1) and ‖h‖2 = gii(γ), which is C2`. So, by Lemma
4.2, h is C`. Next note that, since (∂if) ◦ γ are C`, the jacobian matrix of f is
C` on γ. Further, by the chain rule, (f ◦ γ)′(t) = Jacfγ(t)γ

′(t). Thus, since γ′ is

C2`−1 ≥ C`, it follows that (f ◦ γ)′ is C`, and therefore f ◦ γ is C`+1. �

5. Questions

As we mentioned in the Introduction, we do not know if the isometric extension
f in Theorem 1.1 can be constructed so that it is Ck everywhere. The problem here
is that we do not know whether f in Lemma 3.1 is Ck, or whether one can always
choose f in such a way that f would be Ck. More succinctly, we like to know:

Question 5.1. Let M be a C∞ manifold, and g be a Ck symmetric bilinear form
on M which vanishes on a set B ⊂M diffeomorphic to a closed ball, but is positive
definite on M−B. Does there exist a Ck mapping f : M → RN such that f∗〈, 〉 = g,
and f is an embedding on M −B?

In other words, can one extend Nash’s isometric embedding theorems to manifolds
with degenerate metrics? We do not know the answer to this question even when B
is a point. If the answer to the above question is yes, then f in Theorem 1.1 is Ck.
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