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Abstract. We show that small perturbations of the metric of a ball in Euclidean
n-space to metrics with nonpositive curvature do not reduce the isoperimetric
ratio. Furthermore, the isoperimetric ratio is preserved only if the perturbation
corresponds to a homothety of the ball. These results establish a sharp local
version of the Cartan-Hadamard conjecture.

1. Introduction

The isoperimetric ratio of a compact Riemannian n-manifold Ω with boundary
∂Ω is given by I(Ω) := |∂Ω|n/|Ω|n−1, where |Ω| denotes the volume and |∂Ω| the
perimeter of Ω. The Cartan-Hadamard conjecture [4,10,18] states that if Ω forms a
domain in a complete simply connected manifold of nonpositive curvature, known
as a Cartan-Hadamard manifold, then

I(Ω) ⩾ I(Bn
δ ),

where Bn
δ denotes the unit ball Bn ⊂ Rn endowed with the Euclidean metric δ.

Furthermore, I(Ω) = I(Bn
δ ) only if Ω is isometric to a Euclidean ball. Here we show

that the conjecture holds in a local sense. Let M0(B
n) be the space of C∞ nonposi-

tively curved metrics g = (gij) on Bn with the C2-norm |g|C2(Bn) := supij |gij |C2(Bn),
and Bn

g denote the corresponding Riemannian manifolds.

Theorem 1.1. There exists ε > 0 such that for all metrics g ∈ M0(B
n) with

|g−δ|C2(Bn) ⩽ ε, I(Bn
g ) ⩾ I(Bn

δ ). Furthermore, I(Bn
g ) = I(Bn

δ ) only if Bn
g is isometric

to a Euclidean ball.

To establish this result we show that, for small ε, Bn
g is isometric via normal

coordinates to a star-shaped domain Ω ⊂ Rn with metric g, denoted by Ωg. So ∂Ωg

is the graph of a radial function f on the unit sphere Sn−1, with |f−1|C1(Sn−1) → 0 as

|g−δ|C2(Bn) → 0. Using Rauch’s comparison theorem, we bound I(Ωg) from below in
terms of f and the Jacobian J of the exponential map of Ωg. Since g has nonpositive
curvature, J ⩾ 1 with equality only if g = δ. It follows that I(Ωg) ⩾ I(Ωδ) for small
ε, via a variational technique. But I(Ωδ) ⩾ I(Bn

δ ), by the classical isoperimetric
inequality in Rn, which completes the proof. Refining this method, we generalize
Theorem 1.1 to metrics with curvature ⩽ k ⩽ 0, as described in Theorem 3.1.

The Cartan-Hadamard conjecture, which would extend the classical isoperimetric
inequality [12,26], is known to hold only in dimensions ⩽ 4 [13,20,28]. Some partial
results are also known in higher dimensions for geodesic balls [5], small volumes
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[14, 24, 25], large volumes [11, 29], hyperbolic space [7, 27], and up to a constant
[13,19]. See [16,17,21,23] for some more recent studies and [15] for an introduction
to the problem.

Note 1.2. Theorem 1.1 does not generalize to geodesic balls in the hyperbolic space
Hn

k , of constant curvature k < 0, since the isoperimetric ratio of balls in Hn
k is an

increasing function of their radius. More precisely, consider the geodesic balls U(r)
of radius r ⩽ 1 centered at a point o of Hn

k . There are natural diffeomorphisms
φr : B

n → U(r) given by rescalings of normal coordinates centered at o. Let gr be
the corresponding pullback metrics. Then gr has constant curvature k, and gr → g1
in the C2-topology, but I(Bn

gr) < I(Bn
g1) for r < 1.

2. Preliminaries

Let Mk(B
n) be the space of C∞ metrics g on Bn with curvature bounded above

by k ∈ (−∞, 0]. For each x ∈ Bn we identify gx with its matrix representation
(gij(x)) with respect to the standard basis ei of R

n. So

(1) gx(v, w) = vTgxw,

for tangent vectors v, w ∈ TxB
n
g ≃ Rn. The Cℓ-topology on Mk(B

n) is induced by
the norm |g|Cℓ(Bn) := supij |gij |Cℓ(Bn). Here we record some basic observations on

the structure of Mk(B
n), and its representation in normal coordinates.

We say Bn
g is strictly convex provided that every pair of its points can be joined

by a unique geodesic, and the second fundamental form of ∂Bn
g with respect to the

outward normal is positive definite. We need the following fact whose proof utilizes
the theory of CAT(0) spaces [1,8,9], which are generalizations of Cartan-Hadamard
manifolds. More precisely, a CAT(0) space is a metric space where every pair of
points may be joined by a unique curve realizing the distance between the points,
and the curvature is nonpositive in the sense of Alexandrov.

Lemma 2.1. The set of metrics g ∈ Mk(B
n) such that Bn

g is strictly convex is

open in the C1-topology.

Proof. Fix a metric g0 ∈ Mk(B
n) such that Bn

g0 is strictly convex. Consider metrics
g ∈ Mk(B

n) with |g − g0|C1(Bn) ⩽ ε. The second fundamental form of ∂Bn
g , with

respect to the outward normal ν, is given by IIg(v, w) := g(Dg
vν, w), where Dg is the

covariant derivative with respect to g, and v, w are tangent vectors of ∂Bn
g . Note

that ∂Bn
g is a level set of the function F (x) := |x|, where | · | is the Euclidean norm.

Then ν(x) = ∇gF (x)/|∇gF (x)|g, where ∇g is the gradient with respect to g, and

| · |g :=
√

g(·, ·). Furthermore, Dg is determined by the Christoffel symbols, which
depend on the first derivatives of g. Hence g 7→ IIg is continuous in the C1-topology.
So, for sufficiently small ε, IIg remains positive definite, since IIg0 is positive definite.

Since IIg is positive definite and g has nonpositive curvature, the curvature of Bn
g

is bounded above by 0 in Alexandrov’s sense [2, p. 704]. So Bn
g is locally a CAT(0)

space. Then, since Bn
g is simply connected, it is a CAT(0) space by the generalized

Cartan-Hadamard theorem [3, 8, 9]. In particular, every pair of points in Bn
g may
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be joined by a unique shortest curve γ. Since IIg is positive definite, the interior of
γ cannot touch ∂Bn

g . Hence γ is a (Riemannian) geodesic. So every pair of points
of Bn

g can be joined by a unique minimal geodesic. It follows that the cut locus of
every point of Bn

g is empty, so these geodesics are unique. □

Let M⋆
k(B

n) ⊂ Mk(B
n) consist of metrics such that Bn

g is star-shaped (with

respect to its center o), i.e., there exists a domain Bn
g in the tangent space ToB

n
g ≃

Rn such that the exponential map expo : B
n
g → Bn

g is a diffeomorphism, and the
radial geodesics of Bn

g , which emanate from o, meet ∂Bn
g transversely. In particular,

if Bn
g is strictly convex then it is star-shaped.

Since g is symmetric and positive definite, there exists a symmetric matrix h :=√
go. Let ei := h−1ei. Then go(ei, ej) = eTi (h

−1)Th2h−1ej = δ(ei, ej) by (1). So
ei form an orthonormal basis for ToB

n
g , which depends continuously on g. Let

φ = φg : R
n → ToB

n
g be the corresponding coordinate map given by φ(x) :=

∑
xiei.

Set Ω := φ−1(B
n
g ), and ẽxpo := expo◦φ|Ω. Then ẽxpo : Ω → Bn is a diffeomorphism.

Let g := ẽxp∗o(g) be the pullback metric. Then ẽxpo : Ωg → Bn
g is an isometry.

Furthermore, the standard coordinates xi of R
n form normal coordinates on Ωg. So

(2) go(ei, ej) = go
(
d(ẽxpo)o(ei), d(ẽxpo)o(ej)

)
= go(ei, ej) = δ(ei, ej).

For θ ∈ Sn−1, let ρθ be the radial geodesic which connects o to ∂Ωg with ini-
tial direction θ. Note that ρθ intersect ∂Ωg transversely, since the correspond-
ing radial geodesics ẽxpo(ρθ) of Bn

g are transversal to ∂Bn
g by definition. Let

fg(θ) := Length(ρθ) be the radial function of ∂Ωg. Since xi are normal coordi-
nates, ρθ(t) = tθ for 0 ⩽ t ⩽ f(θ). So ∂Ωg is the graph of fg over Sn−1 in the
Euclidean sense. Note that ∂Ωg is a C∞ hypersurface, since ∂Ωg = (ẽxpo)

−1(∂Bn
g ).

Thus fg is C∞, since ρθ are transversal to ∂Ωg.

Lemma 2.2. The mapping M⋆
k(B

n) ∋ g 7→ fg ∈ C1(Sn−1) is continuous in the
C2-topology.

Proof. Fix g ∈ M⋆
k(B

n) and let gi ∈ M⋆
k(B

n) be a sequence with gi → g in the
C2-topology. Let expo and expio be the exponential maps of Bn

g and Bn
gi respectively.

Then (expio)
−1 → (expo)

−1 in the C1-topology of maps from Bn to ToB
n ≃ Rn;

because, exponential maps are determined by ODE whose coefficients involve the
first derivatives of the metric. Consequently,

∂Ωgi = (ẽxpio)
−1(∂Bn

gi) −→ (ẽxpo)
−1(∂Bn

g ) = ∂Ωg

in the C1-topology of hypersurfaces embedded in Rn; because, the differentials

d(ẽxpio)
−1 = φ−1

gi ◦ d(expio)
−1 → φ−1 ◦ d(expo)

−1 = d(ẽxpo)
−1 in the C0-topology

of maps from Bn to Rn, and so (ẽxpio)
−1 → ẽxp−1

o in the C1-topology. Hence the
radial functions fgi → fg in C1(Sn−1). □
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3. Proof of the Main Result

Here we establish the following result, which implies Theorem 1.1 via the above
lemmas. For any metric g ∈ M⋆

k(B
n), let Ωg ⊂ Rn denote the corresponding star-

shaped domain, in normal coordinates, with radial function fg as defined above. For

k ⩽ 0, let δk be the metric of constant curvature k on Rn in normal coordinates
centered at o. So δ0 = δ is the standard Euclidean metric. Also note that Ωδk is
isometric to a domain with radial function fg in Rn or hyperbolic space Hn

k , if k = 0
or < 0 respectively.

Theorem 3.1. For every R > 0 there exists ε > 0 such that for all metrics g ∈
M⋆

k(B
n) with |fg − R|C1(Sn−1) ⩽ ε, I(Ωg) ⩾ I(Ωδk). Furthermore, I(Ωg) = I(Ωδk)

only if g = δk.

If ε in Theorem 1.1 is sufficiently small, then Bn
g is star-shaped by Lemma 2.1,

or g ∈ M⋆
0(B

n). Furthermore, |fg − 1|C1(Sn−1) can be made arbitrarily small by
Lemma 2.2, since fδ = 1. So Theorem 3.1, together with the classical isoperimetric
inequality, yields that

I(Bn
g ) = I(Ωg) ⩾ I(Ωδ) ⩾ I(Bn

δ ).

If I(Bn
g ) = I(Bn

δ ), then I(Ωg) = I(Ωδ), which yields g = δ. So Theorem 1.1 indeed
follows from Theorem 3.1. Next, to prove Theorem 3.1, we begin by recording some
basic facts from linear algebra. For any square matrix A, let A(v, w) := vTAw denote
the corresponding quadratic form.

Lemma 3.2. Let A and B be symmetric positive definite n× n matrices. Suppose
that for all v ∈ Rn, A(v, v) ⩾ B(v, v). Then

(i) det(A) ⩾ det(B),
(ii) det(A)A−1(v, v) ⩾ det(B)B−1(v, v).

Furthermore, equality holds in (1), and in (2) for all v, only if A = B.

Proof. Let Q−1ΛQ be the spectral decomposition of B. Then vTAv ⩾ vTQ−1ΛQv.
Setting w := Λ1/2Qv, and M := Λ−1/2QAQ−1Λ−1/2, we obtain

M(w,w) ⩾ |w|2.
So the eigenvalues λi ofM are⩾ 1. Thus det(M) ⩾ 1. But det(M) = det(A)/det(B).
So we have (i). If equality holds in (i), then λi = 1, or M is the identity matrix,
which yields A = B. Inequality (ii) is equivalent to

det(M)M−1(w,w) ⩾ |w|2,

which we rewrite as (
∏

λi)
∑

w2
jλ

−1
j ⩾

∑
w2
j . This holds since (

∏
λi)λ

−1
j ⩾ 1, as

λi ⩾ 1. So we obtain (ii). Equality holds in (ii) for all v only if equality holds in the
above inequality for all w. Then λi = 1, which again yields A = B. □

Let exp denote the exponential map of Ωg. By (2), the natural identification
ToΩg ≃ Rn is an isometry. We also have Tx(ToΩg) ≃ TxR

n ≃ Rn. Furthermore,
since xi are normal coordinates, expo(x) = x for x ∈ Ωg. The volume element of
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TxΩg is
√
det(gx)dx, where dx is the standard volume element of Rn. Hence the

Jacobian of expo at x is given by

Jg(x) =
√

det(gx).

Set Jk := Jδk . Recall that | · |g :=
√
g(·, ·), and set | · |k := | · |δk . So | · |0 = | · | is the

Euclidean norm. Also recall that ∇g denotes the gradient with respect to g, and set

∇k := ∇δk . So ∇0 = ∇ is the Euclidean gradient. Note that g(v,∇gf) = df(v) =
δ(v,∇f), which yields vT g∇gf = vT∇f . So

(3) ∇gf = g−1∇f.

Let r(x) := |x| and θ(x) := x/|x| be the polar coordinates on Rn \ {o}. Note that
Jk(rθ) does not depend on θ. So we denote this quantity by Jk(r). The last lemma
together with Rauch’s comparison theorem yields:

Lemma 3.3. For any metric g ∈ M⋆
k(B

n), and differentiable function f on Ωg,

(i) r 7→ Jg(rθ)/Jk(r) is nondecreasing,

(ii) Jg(rθ) ⩾ Jk(r), with equality everywhere only if g = δk,

(iii) Jg(rθ) |∇gf(rθ)|g ⩾ Jk(r) |∇kf(rθ)|k.

Proof. For (i) see [11, 33.1.6] or [6, p. 253]. Inequality (ii) follows from the inequality

g(v, v) ⩾ δk(v, v),

which is due to Jacobi’s equation in normal coordinates [22, Thm. 11.10], and
Lemma 3.2(i). Inequality (iii) also follows quickly from the above inequality via
Lemma 3.2(ii) and (3). □

Now we are ready to establish our main result.

Proof of Theorem 3.1. Set f = fg, and define

ρ(θ) :=
Jg
(
f(θ)θ

)
Jk

(
f(θ)

) , Jk(s) :=

∫ s

0
Jk

(
r
)
rn−1dr.

By Lemma 3.3(i), Jg(rθ) ⩽ ρ(θ)Jk(r) for r ⩽ f(θ). Thus the volume

|Ωg| =
∫
Ω
Jg(x)dx =

∫
Sn−1

∫ f(θ)

0
Jg(rθ)r

n−1drdθ

⩽
∫
Sn−1

∫ f(θ)

0
ρ(θ)Jk

(
r
)
rn−1drdθ =

∫
Sn−1

ρ(θ)Jk

(
f(θ)

)
dθ,

where dθ is the standard volume element of Sn−1. Extend f radially to Ω \ {o} by
setting f(x) := f(θ(x)), and let F (x) := r(x) − f(x). Then |∇gF |2g = 1 + |∇gf |2g
since |∇gr|g = |∇r| = 1, and by the Gauss lemma g(∇g r,∇gf) = 0. Thus, by the
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coarea formula, the perimeter

|∂Ωg| =
d

ds

∣∣∣
s=0

∫ 0

−s

∣∣F−1(t)
∣∣ dt = d

ds

∣∣∣
s=0

∫
F−1([−s,0])

∣∣∇gF (x)
∣∣
g
Jg(x)dx

=
d

ds

∣∣∣
s=0

∫
Sn−1

∫ f(θ)

f(θ)−s

∣∣∇gF (rθ)
∣∣
g
Jg(rθ)r

n−1drdθ

=

∫
Sn−1

√
1 + |∇gf(θ)|2g Jg

(
f(θ)θ

)
fn−1(θ) dθ.

Now applying Lemma 3.3(iii), we obtain

I(Ωg) ⩾

(∫
Sn−1

√
ρ2 + |∇kf |2k Jk(f)f

n−1dθ
)n

( ∫
Sn−1 ρJk(f)dθ

)n−1 .

So we may write

I(Ωg) ⩾ λn−1(1), where λ(t) :=

(∫
Sn−1

√
ρ2t + |∇kf |2k Jk(f)f

n−1dθ
) n

n−1∫
Sn−1 ρtJk(f)dθ

,

for t ∈ [0, 1]. Let A
n

n−1 denote the numerator and B the denominator of λ(t). Then

(4) λ′(t) =
A

1
n−1

B

(
n

n− 1
A′ − A

B
B′

)
=

A
1

n−1

B

∫
Sn−1

C ln(ρ)ρtJk(f)f
n−1 dθ,

where

C :=
n

n− 1

ρt√
ρ2t + |∇kf |2k

− A

B

Jk(f)

Jk(f)fn−1
.

By Lemma 3.3(ii), ρ ⩾ 1. Thus the sign of λ′ depends on that of C. By assumption,
|f −R| ⩽ ε and |∇f | ⩽ ε. So by (3) and continuity of Jk and Jk, for any ε > 0 we
may choose ε so small that

|f −R| ⩽ ε, |∇kf |k ⩽ ε,

∣∣∣∣∣ Jk(f)Jk
(
R
) − 1

∣∣∣∣∣ ⩽ ε, and

∣∣∣∣ Jk(f)

Jk(R)
− 1

∣∣∣∣ ⩽ ε.

Then

A ⩽
√
1 + ε2Jk(R) (1 + ε) (R+ ε)n−1

∫
Sn−1

ρtdθ,

B ⩾ Jk(R)(1− ε)

∫
Sn−1

ρtdθ.

Thus

C ⩾
n

n− 1

1√
1 + ε2

−
(
1 + ε

1− ε

)2(R+ ε

R− ε

)n−1√
1 + ε2.

So if ε is sufficiently small, then C > 0, which yields λ′ ⩾ 0. Thus λ(1) ⩾ λ(0). But
λn−1(0) = I(Ωδk). So I(Ωg) ⩾ I(Ωδk) as desired.
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Finally suppose that I(Ωg) = I(Ωδk). Then λ(1) = λ(0). So λ′ = 0 identically.
Since C > 0, it follows from (4) that ρ = 1 identically. So Jg(f(θ)θ) = Jk(f(θ)).

Consequently, by Lemma 3.3(i), Jg(rθ) ⩽ Jk(r) for r ⩽ f(θ). Thus g = δk by
Lemma 3.3(ii). □
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