A LOCAL ISOPERIMETRIC INEQUALITY
FOR BALLS WITH NONPOSITIVE CURVATURE
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ABSTRACT. We show that small perturbations of the metric of a ball in Euclidean
n-space to metrics with nonpositive curvature do not reduce the isoperimetric
ratio. Furthermore, the isoperimetric ratio is preserved only if the perturbation
corresponds to a homothety of the ball. These results establish a sharp local
version of the Cartan-Hadamard conjecture.

1. INTRODUCTION

The isoperimetric ratio of a compact Riemannian n-manifold €2 with boundary
0Q is given by I(Q) = [0Q|"/|Q|"!, where |Q| denotes the volume and [0€)] the
perimeter of (2. The Cartan-Hadamard conjecture [4,10,18] states that if 2 forms a
domain in a complete simply connected manifold of nonpositive curvature, known
as a Cartan-Hadamard manifold, then

1(Q) = I(Bf),

where Bj' denotes the unit ball B" C R" endowed with the Euclidean metric 6.
Furthermore, I(Q2) = I(Bj) only if £ is isometric to a Euclidean ball. Here we show
that the conjecture holds in a local sense. Let M(B") be the space of C* nonposi-
tively curved metrics g = (gi;) on B™ with the C*-norm |g|c2(gny = sup;; |gijlc2 (5
and By denote the corresponding Riemannian manifolds.

Theorem 1.1. There exists € > 0 such that for all metrics g € My(B™) with
l9—0dlc2(pny < €, I(By) = 1(B§). Furthermore, I(By) = I(BY) only if By is isometric
to a Euclidean ball.

To establish this result we show that, for small e, By is isometric via normal
coordinates to a star-shaped domain {2 C R" with metric g, denoted by Q5. So 0}
is the graph of a radial function f on the unit sphere S~ !, with ‘f_].‘cl(sn—l) — 0 as
|g—0lc2(ny — 0. Using Rauch’s comparison theorem, we bound I(2g) from below in
terms of f and the Jacobian J of the exponential map of {}3. Since g has nonpositive
curvature, J > 1 with equality only if g = J. It follows that I(Qg) > I(£25) for small
e, via a variational technique. But I(25) > I(B§), by the classical isoperimetric
inequality in R, which completes the proof. Refining this method, we generalize
Theorem 1.1 to metrics with curvature < k < 0, as described in Theorem 3.1.

The Cartan-Hadamard conjecture, which would extend the classical isoperimetric
inequality [12,26], is known to hold only in dimensions < 4 [13,20,28]. Some partial
results are also known in higher dimensions for geodesic balls [5], small volumes
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[14, 24, 25], large volumes [11,29], hyperbolic space [7,27], and up to a constant
[13,19]. See [16,17,21,23] for some more recent studies and [15] for an introduction
to the problem.

Note 1.2. Theorem 1.1 does not generalize to geodesic balls in the hyperbolic space
Hj}, of constant curvature k < 0, since the isoperimetric ratio of balls in HJ is an
increasing function of their radius. More precisely, consider the geodesic balls U(r)
of radius 7 < 1 centered at a point o of H}!. There are natural diffeomorphisms
or: B™ — U(r) given by rescalings of normal coordinates centered at o. Let g, be
the corresponding pullback metrics. Then g, has constant curvature k, and g, — g1
in the C?-topology, but I(B}) < I(By,) for r < 1.

2. PRELIMINARIES

Let My (B™) be the space of C* metrics g on B™ with curvature bounded above
by k € (—00,0]. For each x € B™ we identify g, with its matrix representation
(gij(x)) with respect to the standard basis e; of R". So

(1) gm<v7w) = ’UTgm’w,

for tangent vectors v, w € T By ~ R"™. The Ct-topology on My,(B") is induced by
the norm |g|ce(gny = sup;j [gijlce(pn). Here we record some basic observations on
the structure of My (B"™), and its representation in normal coordinates.

We say By is strictly conver provided that every pair of its points can be joined
by a unique geodesic, and the second fundamental form of 9By with respect to the
outward normal is positive definite. We need the following fact whose proof utilizes
the theory of CAT(0) spaces [1,8,9], which are generalizations of Cartan-Hadamard
manifolds. More precisely, a CAT(0) space is a metric space where every pair of
points may be joined by a unique curve realizing the distance between the points,
and the curvature is nonpositive in the sense of Alexandrov.

Lemma 2.1. The set of metrics g € My(B") such that By is strictly convex is
open in the C*-topology.

Proof. Fix a metric gg € My (B") such that By is strictly convex. Consider metrics
g € My(B") with |g — golc1(gny < €. The second fundamental form of dBy, with
respect to the outward normal v, is given by I, (v, w) == g(DJv, w), where DY is the
covariant derivative with respect to g, and v, w are tangent vectors of By. Note
that OBy is a level set of the function F'(x) := |z[, where |- | is the Euclidean norm.
Then v(z) = VIF(x)/|VIF (z)|4, where VY is the gradient with respect to g, and
| |g == +/g(:,-). Furthermore, DY is determined by the Christoffel symbols, which
depend on the first derivatives of g. Hence g ~— Il is continuous in the C!-topology.
So, for sufficiently small ¢, II; remains positive definite, since Iy, is positive definite.

Since I, is positive definite and g has nonpositive curvature, the curvature of By
is bounded above by 0 in Alexandrov’s sense [2, p. 704]. So By is locally a CAT(0)
space. Then, since By is simply connected, it is a CAT(0) space by the generalized
Cartan-Hadamard theorem [3,8,9]. In particular, every pair of points in B} may
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be joined by a unique shortest curve «. Since Il is positive definite, the interior of
7 cannot touch dBy. Hence 7 is a (Riemannian) geodesic. So every pair of points
of By can be joined by a unique minimal geodesic. It follows that the cut locus of
every point of By is empty, so these geodesics are unique. O

Let M3 (B"™) C My(B") consist of metrics such that By is star-shaped (with
respect to its center o), i.e., there exists a domain Fg in the tangent space TOB;L ~
R™ such that the exponential map exp,: Fg — By is a diffeomorphism, and the
radial geodesics of Bg, which emanate from o, meet aBg transversely. In particular,
if By is strictly convex then it is star-shaped.

Since ¢ is symmetric and positive definite, there exists a symmetric matrix A =
\/gT,. Let €; = hilei. Then go(éi,éj) = elT(hfl)Ththlej = (5(6i,€j) by (1) So
€; form an orthonormal basis for 7, By, which depends continuously on g. Let
¢ = ¢4: R" — T,B] be the corresponding coordinate map given by ¢(x) = > x€;.
Set = <p*1(§;), and exp, = exp,© ¢|n. Then exp,: @ — B" is a diffeomorphism.
Let g == exp,(g) be the pullback metric. Then exp,: Q5 — By is an isometry.
Furthermore, the standard coordinates z; of R" form normal coordinates on {}3. So

(2) Goleisej) = go(d(eXD,)o(e:), d(€XD,)o(€))) = go(@ir €j) = d(es, €5).

For 6 € S™"~1, let py be the radial geodesic which connects o to 95 with ini-
tial direction 6. Note that py intersect 0l transversely, since the correspond-
ing radial geodesics exp,(pg) of By are transversal to 9By by definition. Let
fg(68) = Length(pg) be the radial function of 0€d. Since x; are normal coordi-
nates, pg(t) = t0 for 0 < t < f(0). So 99y is the graph of f7 over S"~! in the
Euclidean sense. Note that 025 is a C* hypersurface, since 905 = (éif)o)_l(aBg).
Thus fg is C*, since py are transversal to 0€)g.

Lemma 2.2. The mapping M} (B") 3 g — fz € C1(S"™1) is continuous in the
C2%-topology.

Proof. Fix g € M3 (B™) and let g; € M} (B") be a sequence with g; — ¢ in the
C2-topology. Let exp, and exp! be the exponential maps of By and By, respectively.
Then (exp?)~! — (exp,)™! in the C!-topology of maps from B" to T,B" ~ R';
because, exponential maps are determined by ODE whose coefficients involve the
first derivatives of the metric. Consequently,

00, = (expl) 1(OBL) — (&xp,) " (OBL) = 09y

in the C'-topology of hypersurfaces embedded in R™; because, the differentials
d(expl)~t = ()0;'1 od(expl) ! — ¢! od(exp,)”! = d(exp,)?
of maps from B"™ to R", and so (e/f(f)i)*l — é?(f)o_l in the C'-topology. Hence the
radial functions f, — f7 in C'(S"71). O

in the C%topology
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3. PROOF OF THE MAIN RESULT

Here we establish the following result, which implies Theorem 1.1 via the above
lemmas. For any metric g € M} (B"), let {337 C R" denote the corresponding star-
shaped domain, in normal coordinates, with radial function f7 as defined above. For
k < 0, let % be the metric of constant curvature k& on R™ in normal coordinates
centered at 0. So §° = § is the standard Euclidean metric. Also note that Qg is
isometric to a domain with radial function fz in R" or hyperbolic space H}, if k = 0
or < 0 respectively.

Theorem 3.1. For every R > 0 there exists € > 0 such that for all metrics g €
MG (B") with |fg — Rleygn—1y < &, I(Qg) = 1(Q4r). Furthermore, 1(€2g) = 1(Q)
only if g = oF.

If £ in Theorem 1.1 is sufficiently small, then By is star-shaped by Lemma 2.1,
or g € Mg(B"). Furthermore, |fz — 1|c1(gn-1) can be made arbitrarily small by

Lemma 2.2, since f5 = 1. So Theorem 3.1, together with the classical isoperimetric
inequality, yields that

I(By) = 1(Qg) > 1(%) > 1(Bg).

If I(By) = I(B}), then 1(Qg) = I(Qs), which yields g = 6. So Theorem 1.1 indeed
follows from Theorem 3.1. Next, to prove Theorem 3.1, we begin by recording some
basic facts from linear algebra. For any square matrix A, let A(v,w) := v7Aw denote
the corresponding quadratic form.

Lemma 3.2. Let A and B be symmetric positive definite n X n matrices. Suppose
that for all v € R", A(v,v) > B(v,v). Then

(i) det(A) > det(B),

(i) det(A)A™1(v,v) > det(B)B~(v,v).
Furthermore, equality holds in (1), and in (2) for all v, only if A= B.

Proof. Let Q 'AQ be the spectral decomposition of B. Then vT Av > vTQ TAQw.
Setting w = AY2Qu, and M = A~1/2QAQ1A~1/2, we obtain
M (w,w) > |w].
So the eigenvalues A\; of M are > 1. Thus det(M) > 1. But det(M) = det(A)/ det(B).
So we have (i). If equality holds in (i), then A\; = 1, or M is the identity matrix,
which yields A = B. Inequality (ii) is equivalent to
det(M)M ™ (w, w) > |w|?,
which we rewrite as (] \;) sz)\j_l > Zw? This holds since (][] )\i))\j_l > 1, as

J
A; = 1. So we obtain (ii). Equality holds in (ii) for all v only if equality holds in the

above inequality for all w. Then A\; = 1, which again yields A = B. O

Let exp denote the exponential map of Q. By (2), the natural identification
Todg ~ R™ is an isometry. We also have T,(T,85) ~ T,R"™ ~ R". Furthermore,
since z; are normal coordinates, exp,(z) = = for € Qgz. The volume element of
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T,Qyg is /det(g,)dx, where dx is the standard volume element of R". Hence the
Jacobian of exp, at z is given by

Jﬁ(x) =V det(?m)

Set Ji == Jsk. Recall that |- |, :=+/g(-,-), and set |- | =] |s6. So |-]o =|-|is the
Euclidean norm. Also recall that V9 denotes the gradient with respect to g, and set
vk = v, So V0 = V is the Euclidean gradient. Note that g(v, VIf) = df (v) =
§(v, Vf), which yields v gV9f =vTVf. So

(3) Vif=g7'Vf.

Let r(x) = |z| and é(z) := x/|z| be the polar coordinates on R™ \ {o}. Note that
Ji(r8) does not depend on #. So we denote this quantity by Ji(r). The last lemma
together with Rauch’s comparison theorem yields:

Lemma 3.3. For any metric g € M} (B"), and differentiable function f on Qg,

(i) v Jg(r8)/Ji(r) is nondecreasing,
(ii) J5(r6) = Ji(r), with equality everywhere only if g = &F,
(iii) Jg(r0) [VIf(rO)lg = Ji(r) [V*F(r0)]s-

Proof. For (i) see [11, 33.1.6] or [6, p. 253]. Inequality (ii) follows from the inequality
g(v,0) = 8" (v,0),

which is due to Jacobi’s equation in normal coordinates [22, Thm. 11.10], and
Lemma 3.2(i). Inequality (iii) also follows quickly from the above inequality via
Lemma 3.2(ii) and (3). O

Now we are ready to establish our main result.
Proof of Theorem 5.1. Set f = fz, and define

J5(f(6)9)
Je(f(0))

By Lemma 3.3(i), J5(r0) < p(0)Ji(r) for r < f(#). Thus the volume

16
Q] = / J5(z)dx = / / J5(r0)r"tdrdo
Q Sn=1.J0

19
< /Snl/g p(Q)Jk(r)TN—ldrdH = /Sn1 p(@)jk(f(ﬁ))d&

p(0) = Ti(s) = /Os Ji(r)r"dr.

where df is the standard volume element of S"~1. Extend f radially to Q\ {o} by
setting f(z) == f(A(x)), and let F(x) := r(x) — f(x). Then |V§F|% =1+ |V§f|%
since |[V97|g = |[Vr| = 1, and by the Gauss lemma g(V9r, VIf) = 0. Thus, by the
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coarea formula, the perimeter

0 d
095] = ‘ /\ (1) dt = / VIF ()] Jg
s=0 dS s=0 F=1([-s,0])

/ / |VIF(ro)|_ J5(r0)r"~tdrdo
s=0 Jgn-1 F(0)—s 9

/ ST VIO J5(£(0)0) £7~1(0) do

Now applying Lemma 3.3(iii), we obtain

1(€y) > (fsnfl \/m Je(f) " 1d0)
7z .

(Jypms pur0)"

:£

So we may write

n

n—1 2t +|Vk 2.7 n—149 nl
I(Qg) > A" Y1), where \(t):= (fs m A )

fs’n—l ptjk(f)de ’
for t € [0,1]. Let A7-1 denote the numerator and B the denominator of A(t). Then

1
An—1 n A An—T1
! _ I / — t n—1
4) N = 5 <n — 1A BB) B Jous Cln(p)p"Jp(f) f de,

n o A G()

ey B RO

By Lemma 3.3(ii), p > 1. Thus the sign of X’ depends on that of C'. By assumption,
|f — R| <eand |Vf| <e. So by (3) and continuity of Ji and Jj, for any € > 0 we
may choose € so small that

C =

_ _ Ji(f) _ ’Jk(f) ’ _
— R| <FE, vk <E — 1| <&, and -1 <z
|f = R| IVEF 7e(R) Ti(R)
Then
<V14220x(R) (1 +57) (R+a)"1/ ptds,
Sn—l
B> am-2) [ g,
Sn—l

Thus

n 1 1+2\* (R+z\"""
C> - V1+&s
n—1y1+z2 <1—€> (3—6) I
So if £ is sufficiently small, then C' > 0, which yields A’ > 0. Thus A(1) > A(0). But
AH0) = 1(Q4x). So 1(25) = 1(Q4) as desired.
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Finally suppose that I(Qg) = I(Qs). Then A(1) = A(0). So X = 0 identically.
Since C' > 0, it follows from (4) that p = 1 identically. So Jg(f(6)0) = Jx(f(9)).
Consequently, by Lemma 3.3(1), J5(rf) < Ji(r) for r < f(). Thus g = &* by
Lemma 3.3(ii). O
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