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CIRCLES MINIMIZE MOST KNOT ENERGIES

AARON ABRAMS, JASON CANTARELLA1, JOSEPH H. G. FU2, MOHAMMAD GHOMI,

AND RALPH HOWARD3

Abstract. We de�ne a new class of knot energies (known as renormalization

energies) and prove that a broad class of these energies are uniquely minimized

by the round circle. Most of O'Hara's knot energies belong to this class. This

proves two conjectures of O'Hara and of Freedman, He, and Wang. We also �nd

energies not minimized by a round circle. The proof is based on a theorem of

L�uk}o on average chord lengths of closed curves.

1. Introduction

For the past decade, there has been a great deal of interest in de�ning new knot

invariants by minimizing various functionals on the space of curves of a given knot

type. For example, imagine a loop of string bearing a uniformly distributed electric

charge, 
oating in space. The loop will repel itself, and settle into some least energy

con�guration. If the loop is knotted, the potential energy of this con�guration will

provide a measure of the complexity of the knot.

In 1991 Jun O'Hara began to formalize this picture [12, 14] by proposing a family

of energy functionals e
p
j (for j, p > 0) which are based on the physicists' concept of

renormalization, and are de�ned by e
p
j [c] := (1=j)(E

p
j [c])

1=p, where

(1.1) E
p
j [c] :=

ZZ �
1

jc(s)� c(t)jj �
1

d(s; t)j

�p

ds dt;

c : S1 ! R3 is a unit-speed curve, jc(s) � c(t)j is the distance between c(s) and

c(t) in space, and d(s; t) is the shortest distance between c(s) and c(t) along the

curve. O'Hara showed [15] that these integrals converge if the curve c is smooth

and embedded, j < 2+1=p, and that a minimizing curve exists in each isotopy class

when jp > 2.

It was then natural to try to �nd examples of these energy-minimizing curves

in various knot types. O'Hara conjectured [13] in 1992 that the energy-minimizing

unknot would be the round circle for all e
p
j energies with p � 2=j � 1, and wondered

whether this minimum would be unique. Later that year, he provided some evidence

to support this conjecture by proving [14] that the limit of e
p
j as p!1 and j ! 0
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was the logarithm of Gromov's distortion, which was known to be minimized by the

round circle (see [10] for a simple proof).

Two years later, Freedman, He, and Wang investigated a family of energies almost

identical to the e
p
j energies, proving that the e12 energy was M�obius-invariant [4],

and as a corollary that the overall minimizer for e12 was the round circle. For the

remaining e1j energies, they were able to show only that the minimizing curves must

be convex and planar for 0 < j < 3 (Theorem 8.4). They conjectured that these

minimizers were actually circles.

We generalize the energies of O'Hara and Freedman-He-Wang as follows:

De�nition 1.1. Given a curve c parametrized by arclength, let jc(s)� c(t)j be the
distance between c(s) and c(t) in space, and d(s; t) denote the shortest distance

between s and t along the curve. Given a function F : R2 ! R, the energy

functional in the form

(1.2) f [c] :=

ZZ
F (jc(s)� c(t)j; d(s; t)) ds dt;

is called the renormalization energy based on F if it converges for all embedded C1;1

curves.

The main result of this paper is that a broad class of these energies are uniquely

minimized by the round circle.

Theorem 1.2. Suppose F (x; y) is a function from R2 to R. If F (
p
x; y) is convex

and decreasing in x for x 2 (0; y2) and y 2 (0; �) then the renormalization energy

based on F is uniquely minimized among closed unit-speed curves of length 2� by

the round unit circle.

It is easy to check that the hypotheses of Theorem 1.2 are slightly weaker than

requiring that F be convex and decreasing in x. The theorem encompasses both

O'Hara's and Freedman, He, and Wang's conjectures:

Corollary 1.3. Suppose 0 < j < 2 + 1=p, while p � 1. Then for every closed

unit-speed curve c in Rn with length 2�,

(1.3) E
p
j [c] � 23�jp�

Z �

2

0

 �
1

sin s

�j

�
�
1

s

�j
!p

ds:

with equality if and only if c is the circle.

We must include the condition j < 2 + 1=p in our theorem, for otherwise the

integral de�ning E
p
j does not converge. We do not know whether the condition

p � 1 is sharp, since the energies are well-de�ned for 0 < p < 1, but it is required

for our proof.

We use several ideas from a prophetic paper of L�uk}o G�abor [11], written almost

thirty years before the conjectures of O'Hara and Freedman, He, and Wang were
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made. L�uk}o1 showed that among closed, unit-speed planar curves of length 2�,

circles are the only maximizers of any functional in the form

(1.4)

ZZ
f(jc(s)� c(t)j2) ds dt;

where f is increasing and concave.

Our arguments are modeled in part on Hurwitz's proof of the planar isoperimetric

inequality [8] [3, p. 111]. In Section 2, we derive a Wirtinger-type inequality (Theo-

rem 2.2), which we use in Section 3 to generalize L�uk}o's theorem (Theorem 3.1). We

then apply this result to obtain sharp integral inequalities for average chord lengths

and distortions. In the process, we �nd another proof that the curve of minimum

distortion is a circle. In Section 4, we give the proof of the main theorem.

All our methods depend on the concavity of f in functionals of the form of Equa-

tion 1.4. In Section 5, we consider the case where f is convex, as in the case of the

functional

(1.5)

ZZ
jc(s)� c(t)jp ds dt

for p > 2. Numerical experiments suggest that the maximizing curve for this func-

tional remains a circle for p < �, with 3:3 < � < 3:5721, while for p > 3:5721,

the maximizers form a family of stretched ovals converging to a doubly-covered line

segment as p!1.

2. A Wirtinger type inequality

De�nition 2.1. Let � : R! R be given by

(2.1) �(s) := 2 sin
s

2
:

For 0 � s � 2�, �(s) is the length of the chord connecting the end points of an arc

of length s in the unit circle.

Our main aim in this section is to prove the following inequality, modeled after a

well known lemma of Wirtinger [3, p. 111]. For simplicity, we restrict our attention

to closed curves of length 2� in Rn.

Theorem 2.2. Let c : S1 := R=2�Z! Rn be an absolutely continuous function. If

c0(t) is square integrable, then for any s 2 R

(2.2)

Z
jc(t+ s)� c(t)j2 dt � �2(s)

Z
jc0(t)j2 dt;

with equality if and only if s is an integral multiple of 2� or

(2.3) c(t) = a0 + (cos t) a+ (sin t) b

for some vectors a0; a; b 2 Rn.

1There are references in the literature to papers authored both by L�uk}o G�abor and by G�abor

L�uk}o. We are informed that these people are identical and that L�uk}o is the family name; the

confusion likely results from the Hungarian convention of placing the family name �rst.
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We give two proofs of this result, one based on the elementary theory of Fourier

series, and one based on the maximum principle for ordinary di�erential equations.

Fourier series proof. We assume that c : S1 ! Rn � Cn, as the complex form of

the Fourier series is more convenient. Cn is equipped with its standard positive

de�nite Hermitian inner product hv; wi = Pn
k=1 zkwk where v = (v1; : : : ; vn) and

w = (w1; : : : ; wn). This agrees with the usual inner product on Rn � Cn. The norm

of v 2 Cn is given by jvj :=
p
hv; vi, and i :=

p�1.
The facts about Fourier series required for the proof are as follows. If � : S1 ! Cn

is locally square integrable then it has a Fourier expansion

�(t) =

1X
k=�1

�ke
kti;

(the convergence is in L2 and the series may not converge pointwise). The L2 norm

of � is given by

(2.4)

Z
j�(t)j2 dt = 2�

1X
k=�1

j�kj2:

If � is absolutely continuous and �0 is locally square integrable then �0 has the

Fourier expansion �0(t) = i
P1

k=�1 k�ke
kti and therefore

(2.5)

Z
j�0(t)j2 dt = 2�

1X
k=�1

k2j�kj2 = 2�

1X
k=1

k2(j��kj2 + j�kj2);

as the contribution to the middle sum from the term k = 0 is zero.

Let
P1

k=�1 ake
kti be the Fourier expansion of c(t), where ak 2 Cn. Then

c(t+ s=2)� c(t� s=2) =

1X
k=�1

�
eksi=2 � e�ksi=2

�
ake

kti

= 2i

1X
k=�1

�
sin

ks

2

�
ake

kti:

Therefore, using (2.4), we haveZ
jc(t+ s)� c(t)j2 dt =

Z ���c�t+ s

2

�
� c

�
t� s

2

����2 dt
= 2�j2ij2

1X
k=�1

�
sin2

ks

2

�
jakj2

= 8�

1X
k=1

�
sin2

ks

2

��ja�kj2 + jakj2
�
:(2.6)
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Also, by (2.5) and (2.1),

�2(s)

Z
jc0(t)j2 dt =

�
4 sin2

s

2

� 
2�

1X
k=1

k2(jakj2 + ja�kj2)
!

= 8�

1X
k=1

�
k2 sin2

s

2

�
(jakj2 + ja�kj2):(2.7)

Subtracting (2.6) from (2.7), we set

�c(s) := �2(s)

Z
jc0(t)j2 dt�

Z
jc(t+ s)� c(t)j2 dt

= 8�

1X
k=2

�
k2 sin2

s

2
� sin2

ks

2

�
(ja�kj2 + jakj2):

Lemma 2.3 (below) implies that �c(s) � 0 with equality if and only if s is a

multiple of 2�, or ak = a�k = 0 for all k � 2. The latter occurs if and only if

(2.8) c(t) = a�1e
�it + a0 + a1e

it = a0 + (cos t) a+ (sin t) b

where a := a1 + a�1 and b := i(a1 � a�1). �

Lemma 2.3. Let k � 2 be an integer. Then

(2.9) sin2(k�) � k2 sin2(�);

with equality if and only if � = m� for some integer m

Proof. If � = m�, for some integer m, then equality holds in (2.9). If � is not an

integer multiple of �, we set qk(�) := j sin(k�)= sin(�)j. Then j cos(�)j < 1, and the

addition formula for sine yields

(2.10) qk+1(�) = j cos(�) qk(�) + cos(k�)j < qk(�) + 1;

Since q1(�) � 1, we then have qk(�) < k by induction, which completes the proof. �

Maximum principle proof. This method is an adaptation of L�uk}o's original approach [11].

In that paper, he solves a discrete version of the problem, showing that the average

squared distance between the vertices of an n-gon of constant side length is maxi-

mized by the regular n-gon. He then obtains the main result by approximation. We

go directly to the continuum case, which turns out to be simpler.

To simplify notation, let L =
R jc0(t)j2 dt. Let

f(s) :=

Z
jc(t+ s)� c(t)j2 dt;

�(s) := �2(s)

Z
jc0(t)j2 = L�2(s):
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We claim that f is C2 with

f 0(s) = 2

Z
hc(t)� c(t� s); c0(t)i dt;

f 00(s) = 2

Z
hc0(t� s); c0(t)i dt;

and initial conditions

(2.11) f(0) = 0; f 0(0) = 0; f 00(0) = 2

Z
jc0(t)j2 dt = 2L:

These formulas are clear when c is C2 and hold in the general case by approximating

by C2 functions. The explicit formula for f 00 makes it clear that f is C2.

Next we derive a di�erential inequality for f , using an elementary geometric fact

(which appears in a slightly di�erent form in L�uk}o's paper as Lemma 7):

Lemma 2.4. For any tetrahedron A, B, C, D in Rn,

(2.12) jACj2 + jBDj2 � jBCj2 + jADj2 + 2jABj jCDj;
with equality if and only if AB and DC are parallel as vectors.

Proof. Denote the vectors AB, BC, CD, DA by v1, v2, v3, v4. Then
P

vi = 0, and

jACj2 + jBDj2 = 1

2

�jv1 + v2j2 + jv2 + v3j2 + jv3 + v4j2 + jv4 + v1j2
�

=

4X
i=1

jvij2 + hv1; v2i+ hv2; v3i+ hv3; v4i+ hv4; v1i

=

4X
i=1

jvij2 + hv1 + v3; v2 + v4i

=

4X
i=1

jvij2 � jv1 + v3j2

�
4X

i=1

jvij2 � (jv1j � jv3j)2

= jv2j2 + jv4j2 + 2jv1jjv3j = jBCj2 + jADj2 + 2jABj jCDj:
Equality holds if and only if v3 = ��v1 for some � > 0, which is equivalent to AB

and DC being parallel as vectors. �

For any t, s and h, we can apply Lemma 2.4 to the tetrahedron c(t), c(t+ s+h),

c(t+ s), c(t+ h) to derive the equation

jc(t+ s)� c(t)j2 + jc(t+ s+ h)� c(t+ h)j2

� jc(t+ s+ h)� c(t+ s)j2 + jc(t+ h)� c(t)j2
+ 2jc(t+ s+ h)� c(t)j jc(t+ s)� c(t+ h)j:



CIRCLES MINIMIZE MOST KNOT ENERGIES 7

Holding s; h �xed and integrating with respect to t,

2f(s) � 2f(h) + 2

Z
jc(t+ s+ h)� c(t)j jc(t+ s)� c(t+ h)j dt

� 2f(h) + 2
p
f(s+ h)f(s� h)

by the Cauchy-Schwartz inequality. Therefore f(s) � f(h) +
p
f(s+ h)f(s� h).

For any �xed s, this can be rewritten

g(h) :=
1

2

�
log f(s+ h) + log f(s� h)

�� log
�
f(s)� f(h)

� � 0:

When s is not a multiple of 2�, f(s) > 0 and g is well-de�ned for small h. Further,

g has a local minimum at h = 0, and so the second derivative of g is non-negative

at zero. Using (2.11), this tells us that

(2.13)
d2

ds2
log f(s) � �2L

f(s)
:

Meanwhile, �(s) satis�es the di�erential equation

(2.14)
d2

ds2
log �(s) =

�2L
�(s)

:

We are trying to show that f(s) � �(s) and that if equality holds for any s 2
(0; 2�), then f(s) � �(s). Let

u(s) = log
f(s)

�(s)
= log f(s)� log �(s):

In these terms, we want to show that u(s) � 0 and that if u(s) = 0 for some

s 2 (0; 2�) then u � 0. Using (2.13) and (2.14),

u00(s) � �2L
f(s)

+
2L

�(s)
=

2L

f(s)

�
f(s)

�(s)
� 1

�
=

2L

f(s)

�
eu(s) � 1

�
� 2L

f(s)
u(s):

By two applications of L'Hospital's rule, we compute lims!0 u(s) = 0. Thus lims!2� u(s) =

0, as well. So if u is ever positive, it will have a positive local maximum at some

point s0 2 (0; 2�). At that point,

0 � u00(s0) �
2L

f(s0)
u(s0) > 0;

which is a contradiction. So u is non-positive on (0; 2�). Further, if u is zero at

any point in (0; 2�), the strong maximum principle [21, Thm 17 p. 183] implies that

u vanishes on the entire interval. Thus f(s) � �(s) with equality at any point of

(0; 2�) if and only if f(s) � �(s).

Last, we show that if f(s) =
R jc(t + s) � c(t)j2 dt � �2(s)

R jc0(t)j2 dt = �(s);

then c is an ellipse. By our work above, if f = �, then for each �xed s, c maximizesR jc(t+ s)� c(t)j2 dt subject to the constraint that R jc0(t)j2 dt is held constant. The

Lagrange multiplier equation for this variational problem is

c00(t) =M
�
c(t+ s)� 2c(t) + c(t� s)

�



8 ABRAMS, CANTARELLA, FU, GHOMI, AND HOWARD

where M is a constant depending on s. When s = � we can use the fact that c has

period 2� and this becomes

c00(t) = 2M
�
c(t+ �)� c(t)

�
:

Di�erentiating twice with respect to t, and using both the periodicity and the equa-

tion,

c0000(t) = 2M
�
c00(t+ �)� c00(t)

�
= 4M2

�
c(t)� c(t� �)� c(t+ �) + c(t)

�
= �8M2

�
c(t+ �)� c(t)

�
= �4Mc00(t):

So c00 satis�es the equation g00 = �4Mg and has period 2�. This implies that

4M = k2 for some k 2 Z, and c00(t) = (cos kt)V + (sin kt)W with V and W in Rn.

But k = �1, for otherwise f(2�=k) = 0 6= �(2�=k), a contradiction. Taking two

antiderivatives,

(2.15) c(t) = a0 + tb0 + (cos t) a+ (sin t) b;

with a0; b0; a; b in R
n. Periodicity implies that b0 = 0, completing the proof. �

Remark 2.5. By equation (2.8), extremals for the inequality of Theorem 2.2 are

either ellipses or double coverings of line segments, depending on whether a and b are

linearly independent. Thus the set of extremal curves is invariant under aÆne maps

of Rn. When the extremal is an ellipse, the parameterization is a constant multiple

of the special aÆne arclength (c.f. [2, p. 7], [20, p. 56]). It would be interesting to

�nd an aÆne invariant interpretation of inequality (2.2) or of the de�cit �c(s) used

in the �rst proof|especially when c is a convex planar curve.

3. Inequalities for Concave Functionals

We now apply Theorem 2.2 to obtain an inequality for chord lengths. Recall

De�nition 2.1, that �(s) is the length of a chord of arclength s on the unit circle.

Theorem 3.1. Let c be a closed, unit-speed curve of length 2� in Rn. For 0 <

s < 2�, if f : R ! R is increasing and concave on (0; d(0; s)2], where d(s; t) is the

shortest distance along the curve between c(s) and c(t), then

(3.1)
1

2�

Z
f
�jc(t+ s)� c(t)j2� dt � f

�
�2(s)

�
and equality holds if and only if c is the unit circle.

Proof. The shortest distance between c(t) and c(t + s) along the curve is d(0; s).

Thus, the squared chord length jc(t + s) � c(t)j2 is in (0; d(0; s)2], except when

s = 0. Being unde�ned at this point does not a�ect the existence of the integrals.
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Using Jensen's inequality for concave functions [16, p. 115], Theorem 2.2, that f is

increasing, and that jc0(t)j = 1 for almost all t, we have

1

2�

Z
f
�jc(t+ s)� c(t)j2� dt � f

�
1

2�

Z
jc(t+ s)� c(t)j2 dt

�

� f

�
�2(s)

2�

Z
jc0(t)j2 dt

�
= f

�
�2(s)

�
:

If equality holds in (3.1), then the above string of inequalities implies that equality

holds between the two middle terms, i.e., equality holds in (2.2). Thus, since 0 <

s < 2�, we may apply Theorem 2.2 to conclude that c(t) must be as in (2.3). Since

c has unit speed, it follows that

c0(t) = � (sin t) a+ (cos t) b

is a unit vector for all t, which forces the vectors a and b to be orthonormal, and so

implies that c is the unit circle. Conversely, if c is the unit circle, then jc(t+ s) �
c(t)j = �(s) for all t and therefore equality holds in (3.1).

�

Letting f(x) =
p
x in Theorem 3.1, we obtain the following inequality:

Corollary 3.2. Let c be a closed, unit-speed curve of length 2� in Rn. Then for

any s 2 (0; 2�),

(3.2)
1

2�

Z
jc(t+ s)� c(t)j dt � �(s);

with equality if and only if c is the unit circle. �

Next we apply Theorem 3.1 to obtain sharp inequalities for Gromov's distortion

[6, 10]. By de�nition, the distortion of a curve is the maximum value of the ratio of

the distance in space to the distance along the curve for all pairs of points on the

curve. As we mentioned above, distortion is a limit of O'Hara energies: exp(e10 (c)) =

distort(c) [15, p. 150].

The inequality (3.4) is due to Gromov [7, pp. 11{12], [10]. As always, while we

state our results for curves of length 2�, the corresponding result holds for curves

of arbitrary length.

Corollary 3.3. For every closed, unit-speed curve c of length 2� in Rn

distorts(c) := sup
t2R

s

jc(t+ s)� c(t)j �
s

�(s)
;(3.3)

distort(c) := sup
s2(0;�]

sup
t2R

s

jc(t+ s)� c(t)j �
�

2
;(3.4)

with equalities if and only if c is the unit circle.
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Proof. In both cases equality is clear for the unit circle. By the mean value property

of integrals and inequality (3.2),

1

distorts(c)
= inf

t2R

jc(t+ s)� c(t)j
s

� 1

2�s

Z
jc(t+ s)� c(t)j dt � �(s)

s
;

establishing (3.3). Further, equality in (3.3) implies equality in (3.2), which, by

Theorem 3.1, happens if and only if c is the unit circle.

The proof of (3.4) follows easily from (3.3):

distort(c) = sup
s2(0;�]

distorts(c) � distort�(c) �
�

�(�)
=

�

2
;

and again equality implies in particular that distort�(c) = �=�(�), which, by (3.3),

happens if and only if c is the unit circle. �

For general maps f : M ! Rn of a compact Riemannian manifold to Euclidean

space Gromov [6, p. 115] has given, by methods related to ours, lower bounds|

which are not sharp|for the distortion of f in terms of the �rst eigenvalue of M

and the average square distance, Vol(M)�2
RR

M�M
d(x; y)2 dx dy, between points of

M (where d is the Riemannian distance).

4. Proof of the Inequality for Energies

We are now ready to prove the main theorem. We start by restating it.

Theorem 4.1. Suppose F (x; y) is a function from R2 to R. If F (
p
x; y) is convex

and decreasing in x for x 2 (0; y2] for all y 2 (0; �) then the renormalization energy

based on F

f [c] :=

ZZ
F (jc(s)� c(t)j; d(t; s)) dt ds;

is uniquely minimized among closed unit-speed curves of length 2� by the round unit

circle.

Proof. Making the substitution s 7! s� t, t 7! t, changing the order of integration,

and using the fact that d(s; t) = d(s+ a; t+ a) for any a, we haveZZ
F (jc(s)� c(t)j; d(s; t)) ds dt =

ZZ
F (jc(t+ s)� c(t)j; d(0; s)) dt ds:

For each s 2 (0; 2�), if we let f(x) = �F (px; d(0; s)), thenZ
F (jc(t+ s)� c(t)j; d(0; s)) dt = �

Z
f
�jc(t+ s)� c(t)j2� dt

and f is increasing and concave on (0; d(0; s)2]. By Theorem 3.1,

(4.1) �
Z

f
�jc(t+ s)� c(s)j2� dt � �2�f ��2(s)� ;

with equality if and only if c is the unit circle. Integrating this from s = 0 to

s = 2� tells us that f [c] is greater than or equal to the corresponding value for the

unit circle, with equality if and only if (4.1) holds for almost all s 2 [0; 2�]. But if

equality holds for any s 2 (0; 2�), then c is the unit circle. �



CIRCLES MINIMIZE MOST KNOT ENERGIES 11

We now prove the corollary.

Corollary 4.2. Suppose 0 < j < 2 + 1=p, while p � 1. Then for every closed

unit-speed curve c in Rn with length 2�,

(4.2) E
p
j [c] � 23�jp�

Z �

2

0

 �
1

sin s

�j

�
�
1

s

�j
!p

ds:

with equality if and only if c is the circle.

Proof. If we let

F (x; y) :=

�
1

xj
� 1

yj

�p

;

then using (1.1), we see that E
p
j [c] is the renormalization energy based on F . We

must show that F (
p
x; y) is convex and decreasing in x for x 2 (0; y2] for all y 2

(0; �). It suÆces to check the signs of the �rst and second partial derivatives of

F (
p
x; y) with respect to x on (0; y2).

When p � 1, y 6= 0, and x 2 (0; y2),

@F (
p
x; y)

@x
= � jp

2x(j+2)=2

�
1

xj=2
� 1

yj

�p�1

< 0;

and

@2F (
p
x; y)

@x2
=

j(j + 2)p

4x(j+4)=2

�
1

xj=2
� 1

yj

�p�1

+
j2p(p� 1)

4x(j+2)

�
1

xj=2
� 1

yj

�p�2

> 0:

Since xj=2 can be arbitrarily close to yj if the curve is nearly straight, examining

this equation shows that the condition p � 1 is required to enforce the convexity of

F (
p
x; y).

So for every y 6= 0, F (
p
x; y) is decreasing and convex on (0; y2]. Further, a direct

calculation shows that
R
F
�
�2(s); s

�
ds <1 when j < 2 + 1=p.

Thus F satis�es the hypotheses of Theorem 4.1. Computing the energy of the

round circle by changing the variable s 7! 2s and noting that the resulting integrand

is symmetric about s = �=2, we have

E
p
j [c] � 2�

Z
F
�
�2(s); d(0; s)

�
ds

= 22�jp�

Z �

0

 �
1

sin s

�j

�
�

1

minfs; � � sg

�j
!p

ds

= 23�jp�

Z �=2

0

 �
1

sin s

�j

�
�
1

s

�j
!p

ds

with equality if and only if c is the unit circle. �
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5. Convex functionals and numerical experiments

All of our work so far has depended on the hypotheses of Theorem 3.1: our energy

integrands must be increasing, concave functions of squared chord length. It is this

condition which restricts Corollary 4.2 to e
p
j energies with p � 1. To investigate the

situation where p < 1, we focus our attention on a model problem. If 0 < p < 2,

then f(x) = xp=2 is increasing and concave; so Theorem 4.1 implies that among

closed, unit speed curves of length 2� in Rn,

Ap[c] :=

�
1

4�2

ZZ
jc(t)� c(s)jp dt ds

� 1

p

�
�

1

2�

Z
(�(s))p ds

� 1

p

;

where equality holds if and only if c is the unit circle. When p = 1, this inequality

corresponds to the theorem of L�uk}o [11] mentioned in the introduction. It is natural

to ask:

Question 5.1. Which closed, unit speed curves of length 2� maximize Ap for p > 2?

We begin by sketching a proof that such a maximizing curve exists for p > 0.

Proposition 5.2. Let Ap[c] be de�ned as above. For p > 0, there exists a closed,

unit-speed curve of length 2� maximizing Ap[c]. Further, every maximizer of Ap[c]

is convex and planar.

Proof. Sallee's stretching theorem [17] (see also [5]) says that for any closed unit-

speed space curve c of length 2�, there exists a corresponding closed, convex, unit-

speed plane curve c� of length 2� such that for every s, t in [0; 2�],

(5.1) jc(t)� c(s)j � jc�(t)� c�(t)j;
with equality for all s and t i� c is convex and planar. Since the integrand de�n-

ing Ap[c] is an increasing function of chord length for p > 0, this implies that every

maximizer of Ap[c] must be convex and planar.

Let U denote the space of closed, convex, planar, unit-speed curves of length 2�

which pass through the origin, with the C0 norm. It now suÆces to show that a

maximizer of Ap[c] exists in U .
Blaschke's selection principle [19, p. 50] implies that this space of parametrized

curves is compact in the C0 norm. It easy to see that Ap[c] is C
0-continuous for c in

U (in fact, it is jointly continuous in p and c on the product (0;1)�U), completing

the proof. �

We conjecture that these maximizers are unique (up to rigid motions), and depend

continuously on p. It is easy to see the following:

Lemma 5.3. As above, let U denote the space of closed, convex, planar, unit-speed

curves of length 2� with the C0 norm. Then

Max := f(p; cp) j cp is a maximizer of Apg � (0;1)� U
is locally compact and projects onto (0;1).



CIRCLES MINIMIZE MOST KNOT ENERGIES 13

Proof. We know from the proof of Proposition 5.2 that A is a C0-continuous func-

tional on the space (0;1) � U . If we choose any (p0; cp0), and choose a compact

interval I � R containing p0, then MaxI = f(p; cp) 2 Max j p 2 Ig contains a

neighborhood of (p0; cp0). We now show MaxI is compact.

Take any sequence (pi; cpi) 2 MaxI . Since I is compact, we may assume that

the pi converge to some p. Since U is C0-compact (see the proof of Proposition 5.2),

we may also assume that the cpi converge to some c. It remains to show that c is a

maximizer for Ap.

If not, there exists some cp with Ap[cp] > Ap[c]. But then

lim
i!1

Api [cp] = Ap[cp] > Ap[c] = lim
i!1

Api [cpi ];

since Ap is continuous in p. On the other hand, since the cpi are maximizers for

the Api , we have Api [cpi ] � Api [cp] for each i, and so

lim
i!1

Api [cp] � lim
i!1

Api [cpi ]:

�

Together with uniqueness, this would prove that the set Max was a single con-

tinuous family of curves depending on p > 0. As it stands, Lemma 5.3 tells us

surprisingly little about the structure of Max. For example, the subset of R2 de-

�ned by 8<
:
�X

i�N

ai

3i
;
X

fi j ai=1g

ai

3i

� ���� ai 2 f0; 1; 2g; N 2 Z
9=
;

is a locally compact set which projects onto the positive x-axis but is totally dis-

connected!

In any event, it is interesting to consider how the shape of the maximizers changes

as we vary p. Since the limit of Lp norms as p!1 is the supremum norm, we have

lim
p!1

Ap[c] = sup
s;t
jc(t)� c(s)j � �

with equality if and only if c double covers a line segment of length �. So the cp
form a family of convex curves converging to the double-covered segment as p!1,

and to the circle as p ! 2. To illuminate this process, we numerically computed

maximizers of Ap for values of p between 2 and 4 using Brakke's Evolver [1]. Figure 1

shows some of the cp.

Since the double-covered segment has greater average p-th power chord length

than the circle for p > 3:5721, there must be some critical value p� of p between 2

and 3:5721 where \the symmetry breaks", and circles are no longer maximizers for

Ap.

To �nd an approximate value for p�, we computed the ratio r(p) of the widest

and narrowest projections of each of our computed maximizers for p between 2 and

4. Since all these curves are convex, a value close to unity indicates a curve close to

a circle.
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3:3

3:5

3:7

Figure 1. A collection of curves of length 2� which maximize av-

erage chord length to the p-th power for various values of p. The

curves on the left are labelled with the corresponding values of p.

The curves on the right represent values of p from 3:462 to 3:484 in

increments of 0:002. These curves are numerical approximations of

the true maximizers computed with Brakke's Evolver.

r(p)

p

1

1.1

1.2

1.3

1.4

1.5

3.45 3.454 3.458 3.462 3.466

r(p)

p

2

4

6

8

1 1.5 2 2.5 3 3.5 4

Figure 2. This �gure shows two plots of the ratio r(p) of the widest

and narrowest projections of the computed maximizers of average

chord length to the p-th power for values of p between 1 and 4.

As Figure 2 shows, by this measure the computed minimizers are numerically very

close to circles for 2 � p � 3:45. To check this conclusion, we �t each minimizer

to an ellipse using a least-squares procedure. Figure 3 shows the results of these

computations.

To give a sense of the accuracy of our computations, this graph includes some

computed minimizers for p between 1 and 2, for which we have proved that the

unique minimizer is the circle. We also computed the eccentricities of each of the

best-�t ellipses.

A conservative reading of all this data supports the surprising conjecture that p�

is at least 3:3. Further, we note that for p > p�, the maximizing curves do not seem

to be ellipses, as one might have conjectured by looking at Theorem 2.2.
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p

–8

–6

–4

–2

0

1 1.5 2 2.5 3 3.5 4

log(e(p))

Figure 3. The base-10 logarithm of the error e(p) in a least-squares

�t of the computed maximizer for average chord length to the p-th

power to an ellipse, plotted against p.
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