
A RIEMANNIAN FOUR VERTEX THEOREM

FOR SURFACES WITH BOUNDARY

MOHAMMAD GHOMI

Abstract. We prove that every metric of constant curvature on a compact sur-
face M with boundary ∂M induces at least four vertices, i.e., local extrema of
geodesic curvature, on a connected component of ∂M , if, and only if, M is simply
connected. Indeed, when M is not simply connected, we construct hyperbolic,
parabolic, and elliptic metrics of constant curvature on M with only two critical
points of geodesic curvature on each component of ∂M . With few exceptions,
these metrics are obtained by removing the singularities and a perturbation of
flat structures on closed surfaces.

1. Introduction

This work is concerned with the relation between the topology of a compact
Riemannian surface and the number of the critical points of geodesic curvature of
its boundary. The motivation for this problem may be traced back to the classical
theorem of Kneser [13, 11], published in 1912, which states that any simple closed
curve in the Euclidean plane must have at least four vertices, i.e., local extrema
of geodesic curvature. In 1987 Pinkall [19] extended Kneser’s theorem to closed
curves which bound compact immersed surfaces, and it has been shown that this
result holds in any simply connected 2-dimensional space form [4, 14]. One might
then wonder if these observations indicate a deeper phenomenon, i.e., whether the
boundary of any compact surface of constant curvature must have four vertices.
Here we show that the answer depends on the underlying topology:

Theorem 1.1. Let M be a compact surface with boundary ∂M . Then every metric
of constant curvature on M induces at least four vertices on a connected component
of ∂M , if, and only if, M is simply connected. Indeed, if M is not simply connected,
then for any constant K there exists a metric of constant curvature K on M with
only two critical points of geodesic curvature on each component of ∂M .

One direction of the proof of this result follows quickly from the fact that any
disk of constant curvature may be developed in a simply connected space form (Sec-
tion 2). The other direction, which is the main feature of this work, is proved by
constructing flat surfaces of every nontrivial topological type with only two critical
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points of geodesic curvature, which are both nondegenerate, on each of their bound-
ary components (Section 3). In most cases, these metrics are obtained by removing
conical singularities of flat structures on closed surfaces, but some low genus cases
need to be treated separately. Then we show that any compact flat surface with
boundary may be perturbed, in the C∞ sense, to have constant positive or negative
curvature (Section 4), and thus we obtain elliptic and hyperbolic versions of our flat
surfaces.

Since it makes no reference to an ambient space, Theorem 1.1 may be considered a
Riemannian version of the classical four vertex theorem. One might also contrast this
result with the uniformization theorem of Osgood, Phillips, and Sarnak [17], which
yields metrics of constant curvature on compact surfaces with constant geodesic
curvature on their boundaries (so every boundary point becomes a vertex). Other
methods for producing constant curvature metrics on surfaces with boundary include
curvature flow [2], the h-principle [7, Thm 1.2], and Monge-Ampère equations [9, 28],
although none of these results are concerned with minimizing the number of vertices.
Four vertex theorems have had an interesting history, dating back to the first version
of the theorem proved by Mukhopadhyaya [16] for convex curves in 1905, which was
later generalized to simple curves by Kneser [13]. For surveys of results in this area
and some recent developments and applications see [5, 18, 30, 24, 6, 22]. Singular
flat structures on surfaces have been extensively studied due to their connections
with Teichmüller theory and other applications, see [26, 15, 25] for some overview
and further references.

Note 1.2. It is easy to construct noncompact surfaces of constant curvature with
only two vertices on their boundary. For instance consider the curve Γ traced by
(cos(t), sin(t), sin(t)) on the cylinder C := S1 ×R ⊂ R3, and let M be the portion
of C above Γ. Then M is a metrically complete surface of constant curvature with
only two vertices on its boundary. Constructing compact examples, on the other
hand, which is the main point of Theorem 1.1, will take up more effort.

Note 1.3. Theorem 1.1 does not remain true if the curvature is not constant, i.e.,
there are metrics with nonconstant curvature on the disk which induce only two
vertices on the boundary. This follows, for instance, from a theorem of Jackson
[12] who showed that if p is any nonstationary point of curvature in a Riemannian
surface, then small metric circles centered at p have only two vertices.

Note 1.4. There is no obvious analogue for Theorem 1.1 in higher dimensions. For
instance, there are flat metrics on the 3 dimensional ball which induce only two
vertices, i.e. local extrema of Gauss curvature, on the boundary of the ball. This
follows from Gluck’s generalization of Minkowski’s theorem [8] which states that any
smooth positive function on Sn−1 (including those with only two critical points) may
be realized as the Gauss-Kronecker curvature of a convex hypersurface in Rn.

Similarly, one may construct closed surfaces embedded in Euclidean space with
only two critical points of mean curvature. Indeed, sufficient conditions [20, p. 442]
for the existence of such a surface in R3 with prescribed mean curvature H as a
function of outward normal u ∈ S2 are that (i) H ≥ 0; (ii) H ≥ Hss , where Hss
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denotes the second derivative of H with respect to arclength along great circles; and
(iii)

∫
S2 uH(u) = 0. It remains then to check that there exists a function H : S2 → R

with only two critical points which satisfies these conditions. To this end, start with
any a positive function f : S2 → R with only two critical points. By a theorem of
Gluck [8] there exists a diffeomorphism φ : S2 → S2 such that f ◦ φ meets condition
(iii). Finally set H := f ◦ φ + C where C is a sufficiently large constant. Then
condition (ii) will also be satisfied.

2. The Simply Connected Case

Here we show that if the surface M of Theorem 1.1 is simply connected (i.e., it is
a disk), then every metric of constant curvature on M induces at least four vertices
on ∂M . We begin by recalling the generalized version of Pinkall’s theorem. Unless
stated otherwise, we assume that all curves and surfaces in this paper are smooth,
i.e., C∞.

Lemma 2.1 ([19, 14, 4]). Any closed curve which bounds a compact immersed
surface in a simply connected 2-dimensional space form has at least four vertices.

Proof. After a rescaling, we may assume that the space form is the Euclidean plane
R2, the sphere S2, or the hyperbolic plane H2. Once this result is proved for R2,
see [19, 29, 3] for different ways to do this, then the case of S2 follows quickly since
stereographic projection preserves vertices, as it was already known to Kneser [13],
see [19, 14]. The hyperbolic case follows similarly after we identify H2 with the
Poincaré disk D ⊂ R2, and observe that the inclusion map D ↪→ R2 preserves
vertices [14]. �

Now, to prove the “if” part of Theorem 1.1, it suffices to note the following
basic fact, which is well known to those familiar with developing maps for (X,G)
manifolds [21, 1]. We include, however, a simple proof for completeness.

Lemma 2.2. Any disk of constant curvature may be isometrically immersed in a
simply connected 2-dimensional space form.

Proof. We may cover the given disk, say D, by a sequence of open neighborhoods Ui,
i = 1, . . . , N , of arbitrary small radius and with the property that (∪ki=1Ui)∩Uk+1 is
connected and nonempty, for 1 ≤ k ≤ N − 1. This may be done as follows: identify
D with the square S := [0, 1] × [0, 1] in R2; divide S into the grid of subsquares

Sij := [(i−1)/n, i/n]×[(j−1)/n, j/n], i, j = 1, . . . , n; let S̃ij be a slight enlargement
of each Sij consisting of points in D which are within a distance ε of Sij for some

0 < ε < 1/2n; and, finally, define Ui by a renumbering of S̃ij according to the

“snaking” sequence S̃11, . . . , S̃1n, S̃2n, . . . S̃21, S̃31, . . . , S̃3n, . . . .
If X is a space form with the same curvature as D, then for each Ui there exists

an isometric embedding fi : Ui → X (assuming that Ui are sufficiently small or n is
large). We define f : D → X by an inductive gluing of fi as follows. Set f := f1
on U1. Suppose f is defined on ∪ki=1Ui. We claim that there exists an isometry
ρ : X → X such that ρ ◦ fk+1 = f on V := (∪ki=1Ui) ∩ Uk+1. Then we may set

f := ρ ◦ fk+1 on Uk+1, so f will be well-defined on ∪k+1
i=1 Ui.
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To find ρ, let p ∈ V , and ei, i = 1, 2, be an orthonormal basis for TpV . Then
dfp(ei) and (dfk+1)p(ei) are orthonormal basis for Tf(p)X and Tfk+1(p)X respectively.
Since X is homogeneous and isotropic, there exists an isometry ρ : X → X which
maps fk+1(p) to f(p) and (dfk+1)p(ei) to dfp(ei). But f ◦ f−1k+1 : fk+1(V )→ f(V ) is

also an isometry with these properties. Thus ρ = f ◦ f−1k+1 on fk+1(V ), since, due
to uniqueness of geodesics, isometric embeddings from a connected manifold into
another of the same dimension are determined by their differential at one point. �

3. Flat Metrics With Fewest Vertices

Here we show that if M in Theorem 1.1 is not simply connected, then it admits a
flat metric, i.e., one with constant zero curvature, which induces on each connected
component of ∂M only two critical points of geodesic curvature; furthermore, both
critical points will be nondegenerate, i.e., the second derivative of the curvature will
not vanish at these points. Suppose that M has k boundary components. Then M
is homeomorphic to a closed surface M minus k open disks with disjoint closures,
and χ(M) = χ(M) − k, where χ denotes the Euler characteristic. Also recall that
if M is orientable, then it is homeomorphic to the connected sum of g tori with the
sphere S2, which yields that χ(M) = 2 − 2g. On the other hand, when M is not
orientable, then it is the connected sum of g projective planes RP2, which yields
that χ(M) = 2− g.

3.1. There are three special cases which we need to consider, before describing a
general procedure for constructing our desired flat metrics in all other cases.

3.1.1. (χ(M) = 2 & k = 2) If M is an annulus, then the desired metric is obtained
by gluing the vertical sides of the region in Figure 1. This region is bounded by the

Figure 1

curves y = cos(x)± c and x = ±π. Note that that the top and bottom curves each
have three critical points of curvature, which occur at x = 0 and x = ±π; however,
the latter points get identified after the gluing, and thus we end up with only two
critical points on each boundary component.

3.1.2. (χ(M) = 1 & k = 1) If M is a Möbius strip, then we may take half of the
region depicted in Figure 1, e.g., the portion between x = 0 and x = π, and glue its
right and left hand sides with a twist.
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Figure 2

3.1.3. (χ(M) = 0 & k = 1) If M is a torus minus a disk, then the surface we seek
may be constructed by gluing the sides of the region in Figure 2; and if M is a Klein
bottle minus a disk, then we just need to switch the direction of the arrows and
the labels on the bottom side of this region. Note that the sum of the angles at all
interior vertices is 2π. So the gluing yields a smooth flat surface with one boundary
component, which is the dark curve in Figure 2, say γ, with its end points identified.
The curvature of γ, as a function of arclength, is prescribed by

κ(t) = 1− 3

4
cos(t),

where −π ≤ t ≤ π. More explicitly, γ(t) :=
∫ t
0 e

iθ(s)ds, where eiθ := (cos(θ), sin(θ)),

and θ(t) :=
∫ t
0 κ(s)ds. Since the end points of γ are orthogonal to side 3 of the

region in Figure 2, ∂M will be C1. Further, since the end points of γ have equal
curvatures, it follows, by Lemma 3.1 below, that ∂M is C2. So the curvature of
∂M is given by κ. But the period of κ coincides with the length of ∂M . Thus the
curvature of ∂M is C∞, which implies that ∂M is C∞, again by Lemma 3.1.

Lemma 3.1. Let M be a Riemannian surface, I = (−ε, ε) and γ : I → M be a
C1-immersed curve which is C2 on I − {0}. Let κ be the geodesic curvature of γ on
I − {0}, and suppose that limt→0+ κ(t) = limt→0− κ(t). Then γ is C2. Furthermore,
if κ is Ck on I, then γ is Ck+2.

Proof. Since the problem is local, we may assume that M is R2. Also we may assume
that γ has unit speed. Let T := γ′ and N be a unit normal vector field along γ.
Then, on I − {0}, we have κ = 〈γ′′, N〉, and thus γ′′ = κN . Since T is continuous
on I, so is N ; therefore, limt→0+ γ

′′(t) = limt→0− γ
′′(t). So γ′′ is continuous on I.

Finally recall that, up to a rigid motion, γ =
∫
eiθ, where θ =

∫
κ. Thus if κ is Ck,

then γ is Ck+2. �

3.2. In all the remaining cases we will show that M admits a flat metric with
exactly k conical singularities (Lemma 3.2). Then we remove these singularities by
cutting M along simple closed curves which have only two critical points of geodesic
curvature each (Lemma 3.3).
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3.2.1. A cone is the surface generated by rays which emanate from the origin of
R3 and pass through some closed rectifiable curve on S2. The length of this curve
is the angle of the cone, and the origin is its vertex. A flat surface M with conical
singularities is a metric space, homeomorphic to a 2-manifold, which is locally iso-
metric to a neighborhood of the vertex of a cone. If the angle of this cone, for some
point p ∈ M , is not 2π, then we say p is a conical singularity. Note that M is a
smooth Riemannian manifold of zero curvature in the complement of these singular
points. So if M has k singularities of angles θi, and χ is the Euler characteristic,

then by Gauss-Bonnet theorem,
∑k

i=1(−θi) = 2π(χ(M)− k); or

(1)

k∑
i=1

(2π − θi) = 2πχ(M).

Troyanov [27] has shown that the above condition is also sufficient for the existence of
flat metrics with conical singularities of prescribed angles. This result quickly yields
the following lemma. We include, however, a more direct proof which illustrates how
explicit examples may be constructed. It follows from (1) that the lower bounds for
k below are sharp.

Lemma 3.2. Let M be a closed surface, and suppose k(M) ≥ 3, 2, 2, or 1, according
to whether χ(M) = 2, 1, 0, or < 0, respectively. Then there exists a flat metric on
M with exactly k conical singularities.

Proof. If χ(M) = 2, i.e., M = S2, take a planar convex polygon P with k vertices of
angles θi < π, and “double” it, i.e., identify the edges of P with those of a congruent
copy.

If χ(M) = 1, i.e., M = RP2, let P be a convex polygon with k + 1 vertices of
angles θi < π, such that θ1 + θ2 6= π for a pair of vertices at the ends of a side A of
P . Then double P with a “twist” along A.

If χ(M) = 0, i.e., M is a torus or a Klein bottle, take a rectangle R and slightly
“bend” one of its sides to add k−1 nontrivial vertices to its interior without changing
the total length of that side, or any other sides of R. Then glue the side of R which
has the new vertices to its opposite side, and identify the other two sides as well,
possibly with a twist.

If χ(M) < 0, then M is homeomorphic to a planar convex polygon P (the stan-
dard fundamental polygon of M) with 2n sides, where n > 2, which are identified
in pairs. Further all vertices of P are identified with each other. Thus P induces
on M a flat metric with one cone point of angle (2n − 2)π > 4π. Furthermore,
singularities may be added by bending one of the sides of P to add k − 1 vertices,
as we described in the case of χ(M) = 0. �

3.2.2. Now we remove the singularities vi of the surface M in the previous lemma by
cutting M along simple closed curves γi, with only two critical points of curvature,
which encircle vi. More precisely, each γi bounds an open disk Di which contains
vi. Further, we can choose the radii of these disks so small that their closures are
mutually disjoint. Then M := M − ∪ki=1Di is our desired flat surface. The curves
we need are given by the following observation:
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Lemma 3.3. Let C be a cone with angle φ 6= 2π and Γ be a circle centered at the
vertex of C. Then there exists a C∞ perturbation of Γ which has only two critical
points of curvature, and each of its critical points is nondegenerate.

Proof. After a rescaling, we may suppose that Γ has radius 1, and consider the
following two cases:

(Case I ) If φ = 2nπ (where n ≥ 2), then C may be identified with an n-sheeted
branched covering of the plane with exactly one branch point at the origin o of R2.
Then, in polar coordinates, our desired curve is given by

rλ(θ) := 1− λ cos

(
θ

n

)
,

where 0 ≤ θ ≤ 2nπ, and λ is a small constant. In particular, a computation shows
that any 0 < λ ≤ 1/3 would do. Figure 3 shows pictures of rλ for n = 2, 3, 4 and
λ = 1/3. The curvature of rλ has only two critical points, which occur at θ = 0 and
θ = nπ, and are both nondegenerate.

Figure 3

(Case II ) If φ 6= 2nπ, we cut C along one of the rays r emanating from its vertex
v and develop it into the plane such that the image of Γ may be parametrized as
γ0(t) = (cos(t), sin(t)), −φ/2 ≤ t ≤ φ/2. Then v gets mapped to o and r gets
identified with a pair of rays r± in R2, which emanate from o and make angles of
±φ/2 with the positive direction of the x-axis respectively. So, since φ 6= 2nπ, r±

will not be parallel to the x-axis. Now set

κλ(t) := 1− λ cos

(
2πt

φ

)
.

Let γλ(t) be the unit speed curve with prescribed curvature κλ(t), and initial con-
ditions γλ(0) = (1, 0) and γ′λ(0) = (0, 1). If θλ(t) indicates the angle between γ′λ(t)
and γ′λ(0), then

θλ

(
±φ

2

)
=

∫ ±φ/2
0

θ′λ(t)dt =

∫ ±φ/2
0

κλ(t)dt = ±φ
2

= θ0

(
±φ

2

)
.

So γ′λ(±φ/2) = γ′0(±φ/2). Now, since r± are not parallel to the x-axis, we may
translate γλ parallel to the x-axis until we obtain a curve γλ := γλ+ (a(λ), 0) whose
end points lie on r±. Then the ends of γλ will meet r± orthogonally. Since γ0 is
a radial graph over o, we may choose λ so small that γλ is a graph over o as well,
since ‖γλ − γ0‖C∞ → 0 as λ→ 0. So γλ corresponds to a simple closed C1 curve Γλ
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in C which encircles v. Finally, as we argued in Section 3.1.2, since the period of κλ
coincides with the length of Γλ, Lemma 3.1 shows that Γλ is C∞, and its curvature
is given by κλ. So Γλ will have only two critical points of curvature. �

Note 3.4. The method of Section 3.1.2 may be generalized to construct flat surfaces
of every nonzero genus with the aid of the family of unit speed curves γn with
prescribed curvature

κn(t) = 1− 3

4
cos

(
t

2n− 1

)
,

where −(2n− 1)π ≤ t ≤ (2n− 1)π. Figure 4 shows γ2 and its corresponding region,

Figure 4

whose sides may be identified in the manner indicated to yield a surface of genus 2.
Similarly, each γn may be used to construct an example of genus n.

4. Perturbations of Flat Metrics

If every critical point of geodesic curvature κ on the boundary of a surface M is
nondegenerate, then the number of the critical points of κ will be preserved under
(small) C3-perturbations of the metric (since they induce C2 perturbations of κ).
Thus applying the following result to flat surfaces we constructed in the previous
section yields hyperbolic and elliptic metrics of small constant curvature on these
surfaces with only two critical points of κ on each of their boundary components.
A rescaling then yields such metrics of any constant curvature. The Ck topology on
the space of metrics on M is defined by declaring that a pair of metrics g and h are
Ck-close when their coefficients gij and hij are close up to their kth derivative in
local coordinates.

Proposition 4.1. Let M be a compact surface with boundary and flat metric g0.
Then there exists a family gλ of Riemannian metrics on M , λ ∈ (−ε, ε) for some
ε > 0, such that gλ has constant curvature λ, and λ 7→ gλ is continuous with respect
to the C∞ topology.

Proof. It is a basic topological fact that M may be cut along a finite number of
simple curves to obtain a surface M ′ which is homeomorphic to S2 minus a finite
number of open disks. If we further cut M ′ along pairwise disjoint simple curve
segments which connect each component of ∂M to ∂M ′ − ∂M , then we obtain a
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simply connected surface M ′′ with piecewise smooth boundary. Since M ′′ inherits
a flat metric from M , it may be developed into R2 by Lemma 2.2 (Figures 1 and 2
depict examples of such regions).

Thus we obtain a piecewise smooth closed planar curve Γ bounding an isometric
immersion of M ′′. Let p be a point of Γ which lies in the interior of an edge of M ′′

which is not a segment of ∂M . Parameterize Γ by arclength to obtain a piecewise
smooth periodic curve γ : R/L → R2 with γ(nL) = p. Next let us perturb the
standard metric of R2, on a compact set containing Γ, by setting(

gλ
)
ij

(x) :=
δij(

1 + λ
4‖x‖2

)2 .
As was already known to Riemann [23], gλ has constant curvature λ. Now define
γλ : R → R2 to be the piecewise smooth curve parametrized by arclength, with
respect to gλ, such that γλ(0) = γ(0), γ′λ(0) is parallel to γ′(0), each edge of γλ
has the same curvature function as the corresponding edge of γ, and the angle at
each vertex of γλ is equal to the angle of the corresponding vertex of γ. Note that
λ 7→ γλ is continuous with respect to the C∞-norm, since γλ is the unique solution
to an ODE, as we will show in Lemma 4.2 below, whose coefficients are determined
by gλ.

We are going to smoothly “close up” γλ by the following perturbation. Choose
δ > 0 so small that γ([−δ, 0]) lies entirely in the interior of the edge of γ containing p,
and let φ : [0, L]→ R be any smooth nonincreasing function with φ ≡ 1 on [0, L−δ],
and φ ≡ 0 near L. Define γλ : [0, L]→ R2 by

γλ(t) := φ(t)γλ(t) + (1− φ(t))γλ(t− L).

It is easy to check that γλ is a smooth closed curve. Further, γλ is C∞-close to γ,
because, as λ→ 0, γλ → γ; therefore, since γ is L-periodic,

γλ(t) −→ φ(t)γ(t) +
(
1− φ(t)

)
γ(t− L) = γ(t).

In particular, for small λ, γλ will bound an immersed surface, say M ′′λ , which will
be homeomorphic to M ′′, as we will verify in Lemma 4.3 below.

We claim that gluing the sides of M ′′λ (in the same fashion as the corresponding
sides of M ′′) yields the desired perturbation of M . To see this note that if A and
B are a pair of sides of M ′′ which are to be glued, then the sum of the geodesic
curvatures at the corresponding points of A and B are zero. But, by construction,
each side of M ′′λ , which is not a segment of ∂M , has the same geodesic curvature
as the corresponding side of M ′′. Thus gluing the sides of M ′′λ yields a smooth
surface (here we also use the fact that the sum of the angles at all corners M ′′λ
are 2π, since all angles are the same as those in M ′′). This smooth surface, which
is homeomorphic to M , will carry a metric which is locally the same as gλ, and
therefore will have constant curvature λ, as desired. �

It only remains to establish the following two lemmas. The first one of these is the
Riemannian version of the fundamental theorem of planar curves. The proof, which
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follows from basic ODE theory, is a generalization of the well-known argument for
the existence and uniqueness of geodesics. So it will be omitted.

Lemma 4.2. Let M be a complete oriented C∞ Riemannian surface, p ∈ M , and
u ∈ TpM be a unit vector. Suppose that we are given a C∞ function κ : I → R, for
some open interval I ⊂ R with 0 ∈ I. Then there exists a unique unit speed C∞
curve γ : I →M with γ(0) = p, γ′(0) = u, and geodesic curvature κ(t). �

A piecewise Ck curve γ : S1 → R2 is one which is Ck in the complement of a finite
number of points, and its right and left derivatives exist everywhere up to order
k. The space X of these curves is topologized by stipulating that γ0, γ1 ∈ X are
Ck-close provided that they are C0-close, and their left and right derivatives up to
order k are close as well.

Lemma 4.3. In the space of piecewise C1 closed curves γ : S1 → R2, the set of
curves which bound compact immersed surfaces of a given topological type is open.

Proof. Let M be a compact surface with connected boundary, and f0 : M → R2

be an immersion bounded by a closed piecewise C1 curve γ0, i.e., γ0 is a reparam-
eterization of f0 restricted to ∂M . Recall that M may be extended to a manifold
without boundary M (e.g., by doubling M). Since ∂M is compact, there exists a
tubular neighborhood U of ∂M in M such that f0 may be extended to U . We may
suppose that M = M ∪ U , and endow M with the pull-back metric induced by f0.
Now let ε > 0 be so small that f0 is an embedding on an ε-ball centered at any
point of ∂M . Next suppose that a closed piecewise C1 curve γ1 is so close to γ0
that γ1(t) lies within an ε-ball of γ0(t) for all t. This will allow us to pull back γ1
to M via f0. Let γ0 and γ1 be the pull-backs of these curves. Then γ0 and γ1 will
be C1-close, if γ0 and γ1 are C1 close. So, since γ0 is simple, we may assume that
γ1 is simple as well; indeed, they are isotopic via the pull back of the homotopy
γλ(t) := λγ1(t) + (1− λ)γ0(t), when γ0 and γ1 are C1-close. Now it follows from the
isotopy extension lemma [10] that γ1 bounds a region in M which is homeomorphic
to the region bounded by γ0, which is just M . So the restriction of f0 to the region
bounded by γ1 yields an immersed surface which is homeomorphic to M and is
bounded by γ1. �
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