TOPOLOGY OF RIEMANNIAN SUBMANIFOLDS
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ABSTRACT. We prove that a smooth compact submanifold of codimension 2 im-
mersed in R™, n > 3, bounds at most finitely many topologically distinct compact
nonnegatively curved hypersurfaces. This settles a question of Guan and Spruck
related to a problem of Yau. Analogous results for complete fillings of arbitrary
Riemannian submanifolds are obtained as well. On the other hand, we show
that these finiteness theorems may not hold if the codimension is too high, or
the prescribed boundary is not sufficiently regular. Our proofs employ, among
other methods, a relative version of Nash’s isometric embedding theorem, and
the theory of Alexandrov spaces with curvature bounded below, including the
compactness and stability theorems of Gromov and Perelman.

1. INTRODUCTION

Recently there has been considerable interest in studying the structure of locally
convex hypersurfaces with prescribed boundary in Euclidean space [1], 2}, 14} [15] 17,
18, 20, 22}, 26| 31, B35]. A fundamental problem in this area, posed by S.T. Yau [41],
Problem 26], is deciding when a closed curve in R3, or more generally a submanifold
I" of codimension 2 in R", bounds a hypersurface of positive curvature. A related
question, raised more recently by Guan and Spruck [20, p. 1312], is whether T’
bounds at most only finitely many topological types of locally convex hypersurfaces.
In this paper we show that the answer is yes provided that I' is sufficiently regular,
and also investigate this problem for arbitrary Riemannian submanifolds of any
codimension. Our first result illustrates the need for regularity:

Theorem 1.1. There exists a simple closed rectifiable curve in R® that is differ-
entiable in its arclength parameter, is C* in the complement of two points, and
bounds infinitely many topologically distinct, compact, embedded, positively curved
C* surfaces.

In contrast, the following theorem shows that if the regularity of the bounding
curve is increased slightly so that it has finite turn, then there are only finitely many
such “fillings” or “spanning surfaces”, even if their regularity is relaxed to the locally
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convex category. Finite turn corresponds to rectifiability of the tangent indicatrix,
and is considerably weaker than, for example, piecewise C'. By a locally convex
immersed hypersurface M with boundary, we mean a map f: M — R"+1 that has
an extension to a continuous map f of a manifold without boundary M where every
point of M has a neighborhood in M that is embedded by f into the boundary of
some convex body.

Theorem 1.2. A finite collection of closed curves of finite turn immersed in R3
bounds at most finitely many topologically distinct, compact, locally convex immersed
surfaces.

Assuming greater regularity, one can prove a much stronger finiteness result for
spanning surfaces. In the following theorem, the ambient space is an arbitrary
Riemannian manifold, of arbitrary codimension, and the spanning surfaces need not
be compact.

Theorem 1.3. A finite collection of closed C® curves immersed in a given Riemann-
1an manifold bounds at most finitely many topologically distinct, complete, immersed
C3 surfaces whose total curvature is uniformly bounded below.

The proofs of Theorems and draw on the classical resource of Gauss-
Bonnet. To investigate to what extent Theorem extends to higher dimensions,
we turn to Gromov-Hausdorff convergence theory. We start with the following
finiteness theorem for Riemannian fillings of arbitrary dimension and codimension
in the presence of bounds on curvature and diameter:

Theorem 1.4. Let I' be a compact (but not necessarily connected) C3 submanifold
of a given Riemannian manifold. Then ' bounds at most finitely many distinct
topological types of compact immersed submanifolds having uniform bounds below
on curvature and above on intrinsic diameter.

By curvature throughout this paper we mean sectional curvature unless stated
otherwise. The diameter bound in Theorem cannot in general be removed, even
for positively curved fillings in Euclidean spaces, as the following example shows.

Theorem 1.5. The standard embedding of S? in R? C R'® bounds infinitely many
topologically distinct C*° compact 3-dimensional submanifolds with positive curva-
ture.

However, it is possible to remove the diameter bound in Theorem [I.4] when I' is
a submanifold of codimension 2 in Euclidean space and the filling hypersurface is
nonnegatively curved. In this setting, we exploit convexity as an additional resource
in order to prove our next two theorems.

Theorem 1.6. A compact (but not necessarily connected), C> immersed submanifold
of codimension 2 in R"1, n > 2, bounds at most finitely many topologically distinct,
compact, nonnegatively curved C> immersed hypersurfaces.

Moreover, finiteness of topological types holds in the class of noncompact, non-
negatively curved fillings, provided the curvature at each point does not vanish on
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too many sections. The following theorem includes all strictly positively curved
spanning hypersurfaces, but also includes hypersurfaces with no points of strictly
positive curvature.

Theorem 1.7. A compact (but not necessarily connected), C> immersed subman-
ifold of codimension 2 in R" n > 2, bounds at most finitely many topologically
distinct, complete, nonnegatively curved C3 immersed hypersurfaces for which the
second fundamental form has nullity at most 1 everywhere.

Finally, we provide further evidence that Euclidean submanifolds of codimension 2
are indeed the correct setting for the noncompact finiteness phenomenon of Theorem
by giving a counterexample to a closely related intrinsic finiteness statement
about complete open Riemannian manifolds.

The proofs of these results are presented in the following sections. Theorem [1.1
is proved in Section [2| by means of a direct construction which develops certain
gluing techniques, including a bridge principle, for positively curved surfaces with
boundary. Theorems [1.2| and which are concerned with 2-dimensional fillings
and draw on Gauss-Bonnet theory, are proved in Section [3] Theorems [I.4] and
concern higher-dimensional compact fillings. They are proved in Section [4] with the
aid of results of Gromov and Perelman on compactness and stability of Alexandrov
spaces with curvature bounded below, together with extension results for manifolds
with boundary and some diameter estimates. Theorem is also proved in this
section, using a relative version of the Nash isometric embedding theorem. Theorem
which concerns complete open fillings, is proved in Section [5| via a clipping
procedure, and a theorem of Cai on finiteness of the number of ends, which are
used to reduce the proof to one similar to that of the compact case considered in
Section [ Section [6] contains further comments and questions.

2. THE REGULARITY EXAMPLE: PROOF OF THEOREM [I.1]

In this section we construct a differentiable curve in R3 with infinitely many
topologically distinct positively curved filling surfaces. The proof is presented in
the setting of a surgery procedure for locally convex surfaces. In particular we use a
gluing result (Theorem which in turn is proved with the aid of a bridge principle

(Proposition [2.7).

2.1. Overview. Figure|l|shows a picture of the curve I', together with three of its
positively curved fillings, which we will construct here. Each of these filling surfaces
is symmetric with respect to a horizontal plane. The first surface on the left, say My,
is homeomorphic to a disk. It consists of two spherical pieces which are connected by
a strip of positive curvature. The surface in the middle, M, is obtained by adding
a handle to My (without perturbing I') and is thus homeomorphic to a punctured
torus. Similarly, the surface on the right, Ms, is obtained by adding a handle to
M. This process of addition of handles, or more precisely surgery where we remove
a pair of disks from a surface and glue an annulus in their place, may be continued
indefinitely because I' has an infinite pair of corrugations where handles may be
added. Thus we obtain an infinite sequence of surfaces M;, with OM; = I' such
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that g(M;) = i, where g denotes the topological genus. Further we note that the
corrugations of I' converge to a pair of points on I' with a sufficiently fast rate so
that IT" is rectifiable, is differentiable at the accumulation points with respect to the
arclength parameter, and is C* elsewhere. Furthermore, each of the surfaces M;
is C*° and has positive curvature up to the boundary; this means that for every
p € I there exists an open neighborhood U C M; containing p, and a C*-smooth
positively curved surface U without boundary such that U N M; = U.

2.2. Construction of I'. The general strategy here is to construct one half of the
surface My mentioned above, reflect it, and let I" be the boundary of the resulting
surface. This is achieved in the following steps:

Step 1. Let S C R? be a sphere whose center lies below the zy-plane, e.g. at
(0,0,—1). Let pg € S be a point on the equator I'y of S. Then for every r > 0
we may find an ellipsoid of revolution, symmetric with respect to the xy-plane, and
with a vertical axis of revolution, which is tangent to exactly one point of S, say
qo, and intersects S in a figure-eight curve which is contained entirely in B, (pp), a
ball of radius r centered at py. Let the half of this ellipsoid which lies below the
zy-plane be denoted by Ej. See the picture on the left in Figure

;
FIGURE 2.
Step 2. We deform Ej to obtain a smooth surface of positive curvature FEj such
that (i) Eo coincides with S in an open neighborhood U of ¢, (ii) E¢ coincides with

Ey outside of B,(pg), and (iii) Eg NS C Ey. This follows immediately from the
following result, which will be proved later.
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Theorem 2.1. Let 31 and Yo be smooth strictly convex compact disks of positive
curvature in R3 which are tangent to each other at a common interior point p.
Suppose that 31 and X9 lie locally on the same side of their common tangent plane
at p, and that their intersection near p consists of a finite number of smooth curve
segments each of which emanates from p in a distinct direction. Then for every
open neighborhood Uy of p in X1 there exists an open neighborhood Uy of p in o
and a smooth positively curved compact disk ¥ such that (X1 — Uy) UUs C X, and
> contains Y1 N 2.

Step 3. We take the top loop from the figure-eight curve EyN.S and merge it with
the equator I'g of S to obtain a smooth simple closed curve I'y C S, as shown in the
middle and right of Figure [2] See also Figure [3] Here the shaded region indicates
the neighborhood U mentioned in Step 2 above. The important point here is that
I"y contain a portion of the top loop of the figure-eight which begins and ends inside
U.

N\ V4

FiGURE 3.

Step 4. Now take a sequence of points pg,p1,... on the equator I'g of S which
converge monotonically to a point ps, of I'g with respect to the intrinsic distance
in I'yg. Let rg,71,... be a corresponding sequence of positive numbers so that the
closures By, (p;) are pairwise disjoint. Then repeating the first three steps, we obtain
a sequence of smooth simple closed curves I'; C S. This sequence will converge, with
respect to the Hausdorff metric, to a rectifiable curve I'y, which is differentiable
everywhere, with respect to an arclength parametrization, and is smooth on 'y, —
{Po}, provided that r; converge to zero at a sufficiently fast rate. In particular, we
need to choose r; so small that By, (p;) is disjoint from a pinched solid torus 7" which
wraps around I'g at peo, see Figure [d] such that the interior of T is disjoint from Iy
(since T'y is smooth, such a torus exists at any point of it). By a pinched solid torus
we mean the set of points in R? whose distance from a circle of radius r is at most
r.

Step 5. By Jordan’s curve theorem, ', divides S into a pair of disks. Let D
be the bottom disk, see Figure Now, using the same procedure described in
Steps 1 and 2, we may glue to D a piece of an ellipsoid, as depicted in Figure
Reflecting the boundary of the resulting surface with respect the xy-plane yields the
desired curve I', which already bounds a smooth positively curved surface My with
positive curvature. Further, note that at the neck of each corrugation we have an
open neighborhood where Mj is tangent to an ellipsoid of revolution which contains
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FIGURE 4.
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FiGURE 5.

the corrugation. So we may delete a pair of disks from My which are bounded
in part by a pair of corrugations and replace them with an annular piece of an
ellipsoid. Thus we may construct a sequence of positively curved surfaces M; with
g(M;) = i bounded by I'. Note that each M; is smooth because, by construction,
each boundary point of M; has an open neighborhood in M; which is part of an
open neighborhood of a sphere or a slightly deformed ellipsoid.

2.3. Proof of Theorem The basic plan for the proof of Theorem [2.1]is to take
a small disk around p in one of the surfaces, say Yo, and an annular neighborhood of
the other surface ¥ surrounding the disk, see Figure [6] and then join the disk and
the annulus to obtain a smooth positively curved surface containing the intersection
curves of 31 N Y9 which run between the disk and the annulus. This is achieved by
first building some thin “bridges” which connect the disk and the annulus along the
intersection curves, see Proposition 2.7, Once these bridges are constructed, then
the rest of the surface may be quickly filled in via Lemma[2.8] which is a result from
[14]. Our main task then is to establish the bridge principal stated in Proposition
(2.7 whose proof is divided into the following lemmas.

Lemma 2.2. The space of positive definite n X n matrices is convez, i.e., if A and
B are positive definite n X n matrices, then

C:=XA+(1-)\B

is also positive definite for all 0 < X < 1.
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Proof. A matrix A is positive definite if and only if the associated quadratic form
Qa(v) := vl Av is positive definite. Further note that Qc(v) = AQa(v) + (1 —
AN)Q@p(v). Thus if @4 and Qp are positive definite, then so is Q¢. O

Lemma 2.3. Let U C R" be an open subset, f, g, ¢: U — R be C? functions, and
set

h:=9¢f+(1-9)g.
Suppose that f(p) = g(p) and grad f(p) = grad g(p) at some point p € U. Then

Hess h(p) = ¢(p) Hess f(p) + (1 — ¢(p)) Hess g(p).

In particular, if f and g have positive definite Hessians at p, and 0 < ¢(p) < 1, then
h has positive definite Hessian at p as well.

Proof. Noting that h = g+¢(f —g), we easily compute the second partial derivatives
hij = gij + i (f — 9) + ¢i(fj — 95) + &(fij — 9i5)-
Thus, since f(p) = g(p) and fi(p) = gi(p), it follows that

hij(p) = gi;(p) + &(p)(fi; (p) — 9:5(P)),
which completes the proof. ]

Let B]' denote an open ball of radius r centered at the origin of R". Closure will
be denoted by cl.

Lemma 2.4. Let f, g: cl(B2) — R be C*2? functions with positive definite Hes-
sians, and T' C cl(B2) be a connected curve which meets OB only at its boundary
points OI' = {(x1,vy1), (x2,y2)}. Suppose that 1 < 0, xo > 0, and f(p) = g(p),
grad f(p) = grad g(p) for all p € I'. Then there exists an open neighborhood U of
T in cl(B2), an € > 0, and a C* function h: U — R with positive definite Hessian
such that f(p) = h(p) = g(p) for allp € T, h(z,y) = f(x,y) when x < x1 + €, and
h(z,y) = g(z,y) when x > xo — €.

Proof. Choose € so that 1 + € < w3 — €. Then there exists a smooth function
¢: R — Rsuchthat 0 <¢ <1, ¢9=1whenz <z1+¢, and ¢ =0 when z > 22 —¢.
Now define ¢: R? — R by ¢(z,y) := () and set h := ¢f + (1 — ¢)g. O

Lemma 2.5. Let I' C R3 be a compact connected embedded curve with endpoints
oI = {p,q}. Suppose that there exist C* positively curved surfaces M; C R3, i =
1,...,n which cover I', with p C My, q C My, such that each I'; == M; N T is a
connected nonempty open subset of I', and whenever I's NT'; # 0, there exists an
open neighborhood U;; C I'; N T'j where M; and M; are tangent for all p € Uj;.
Then there exists a C* connected positively curved surface M C R? which contains
I". Further we may require that M contain an open neighborhood of p in My and an
open neighborhood of q in M,.

Proof. After replacing M; by a subcollection and reindexing we may assume that
no subcollection of I'; covers I, and I'; N T'j # 0 if and only if j = i+ 1. Then for
i =1,...,n — 1 there exists a connected open neighborhood U; C I'; N T';;; where
M; and M;1, are tangent. Now take a point p; € U;. Then in a neighborhood of p;,
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M; and M;;1 may be represented as the graphs of functions with positive definite
Hessians over a small ball centered at p; in the tangent plane T, M; = T,,,M;;1.
Then using the previous lemma, we may smoothly glue M; and M;;1 near p;. Then
if we let M; be small enough open neighborhoods (or strips) of ' in M;, M := U; M;
is the desired surface. O

We say that a C*22 embedded curve I' C R3 is strictly convex if T' has nonvan-
ishing curvature and through every point p € I" there passes a strict support plane
II, i.e., I lies on one side of II and intersects II only at p. By a nonsingular support
vector field n: I' — S? we mean a vector field such that if II,,, denotes the plane
which passes through p and is orthogonal to n, then II, ,, is a strict support plane
of T at p, and furthermore, n(p) is not orthogonal to the principal normal of T" at p.

Lemma 2.6 ([14]). Let T' C R? be a compact C* strictly convex curve. Then T' lies
on a CF surface M of positive curvature without boundary. Furthermore, for any
C* nonsingular support vector field n: T' — S? along I' we may require that M be
normal to n.

Combining the last two lemmas now immediately yields the following bridge prin-
cipal for positively curved surfaces:

Proposition 2.7. Let M C R3 be a C* compact (but not necessarily connected)
embedded surface of positive curvature, and I' C R? be a connected locally strictly
convez curve segment with OT = {p1,p2} C OM, p1 # p2. Suppose that T' meets
OM transversally, and that a neighborhood in T' of each p; lies in a local extension
of M at p;. Then there exists a C* compact surface of positive curvature M which
contains M and T'. Further, if n: T — 82 is a local nonsingular C* support vector
field along T, which is orthogonal to the local extensions of M at p;, then we may
require that M be orthogonal to n along T.

We only need to recall one more result from [14].

Lemma 2.8 ([14]). Every compact (but not necessarily connected) strictly convex C*
surface of positive curvature ¥ C R3 lies on a C* closed surface of positive curvature.

Using the last two results, we may now prove the main result of this section.

Proof of Theorem [2.1l Let us denote the intersection curves which emanate from p
and are contained in a small neighborhood of p by I';, i = 1,..., k. Since each I'; is
C! and has a distinct tangent at p, we may assume that the given neighborhood Uy
of p in 31 is so small that I'; and I'; intersect each other in U; only at p for i # j,
each I'; N U is connected, and if we parametrize each I'; N U; by v;(t), t € [0,¢;),
~i(0) = p, then the distance between ~;(t) and p is an increasing function of t. Now
let Uz be an open neighborhood of p in ¥ which is chosen so small that Uy N T; is
connected, and (X; —Uy)Ucl(Uz) is strictly convex. Note that 3y —Uy and cl(Uz) are
connected by a portion I'; of T';, see Figure @ Using the bridge principle mentioned
in the above proposition we may connect 31 —U; and cl(Uz) by thin strips of positive
curvature containing T, to obtain a compact positively curved surface S with k + 1
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FIGURE 6.

boundary components (including 9%1). We can make sure that 3 is strictly convex
by prescribing appropriate nonsingular support vector fields along each r ;- Then by
the previous lemma, ¥ may be extended to a closed surface of positive curvature O.
By the Jordan curve theorem, 031 divides O into two components. The component
which contains ¥ is our desired surface . O

3. SPANNING SURFACES

In this section we prove Theorems [I.2] and [I.3] which concern two-dimensional
fillings. Theorem gives finiteness of topological types for the class of locally
convex, compact spanning surfaces in R3, under minimal regularity assumptions.
Here we use the theory of two-dimensional manifolds of bounded curvature due
to Alexandrov and Zalgaller. Under greater regularity, Theorem [1.3] offers a far
stronger finiteness statement for possibly noncompact spanning surfaces immersed
in any given Riemannian manifold and having a uniform bound below on total
curvature. This proof draws on classical results of Cohn-Vossen and Huber.

3.1. Proof of Theorem Now we prove the finiteness result for the class Fr
of compact, immersed, locally convex spanning surfaces of a finite collection I' of
closed curves of finite turn immersed in R3.

The turn of a curve in R3 (also called the spatial turn) is the supremum of

N(r —af)
over inscribed Euclidean polygons, where the ] are the Euclidean angles at the
vertices. See [5, Ch. V] for a discussion of the properties of curves of finite spatial
turn. In particular, a curve of finite spatial turn has one-sided tangents and hence
is rectifiable, and its turn is equal to the length of its tangent indicatrix on the unit
sphere.

A locally convex surface without boundary is an example of a two-dimensional
manifold of bounded curvature. These spaces were studied by Alexandrov and Zal-
galler in [6], which is our basic reference throughout this section. The class consists
of, besides two-dimensional Riemannian spaces, all two-dimensional metrized man-
ifolds M whose metric in a neighborhood of each point may be uniformly approxi-
mated by Riemannian metrics such that the integrals of the absolute values of the
Gaussian curvatures are uniformly bounded. Equivalently, one can use polyhedral
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metrics for the approximation. The intrinsic defining property is that every point

has a neighborhood in which the sum of positive excesses of nonoverlapping triangles

is bounded. In this setting, the positive part w™ of curvature, and the negative part

w™, are defined as nonnegative, completely additive Borel set functions on M, and

the curvature w = w' — w™ is defined for any set for which at least one of w™ and

w™ is finite. In the case of locally convex surfaces, w~ = 0 and so w is nonnegative.
The righthand turn of a geodesic polygon in M is

E(W — Cti),

where the «; are the righthand sector angles between the directions at the interior
vertices. Now consider a curve in M with one-sided tangents at each point. The
righthand turn of any open subarc v of this curve is the limit of the righthand turns
of simple polygons in D with the same endpoints as =, converging to v and disjoint
from v except at the endpoints, and whose angles with + at the endpoints converge
to 0. Under sufficient regularity, the righthand turn is equal to [ k4 ds, where kg is
the geodesic curvature relative to the righthand normal. For a trivial subarc, namely,
a single interior point, the turn is defined as (7 — «) where « is the righthand sector
angle between the directions at that point; when an endpoint is adjoined to -y, this
quantity is added to the turn. The turn is additive under decomposition of a curve
into disjoint subarcs, and is said to have bounded variation if, for a curve parameter
0 <t <1, the turn on the interval (0,¢) has bounded variation as a function of t.

The righthand turn of a curve 7 in a convex surface M in R? is bounded above
in absolute value by the spatial turn of -, as is the variation of righthand turn of
~. This fact is well-known in the Alexandrov-Pogorelov-Zalgaller theory of convex
surfaces (see, for example, [9, p. 42]), but the argument is less well-known in the
literature in English. The main idea (as described in [36, p.1045]) is that it suffices
by approximation to consider a polygonal curve 7, in a convex polyhedron M.
Then the variation of righthand turn of 7 in My is at most equal to the variation
of spatial turn of v because angles in M, are no smaller than spatial angles. And
since the spatial turn restricted to a parameter interval (0,¢) is monotone in ¢, the
variation of spatial turn equals the spatial turn.

With this preparation, we are ready to prove our finiteness theorem for locally
convex surfaces M that span a given collection I';, 1 < ¢ <[ of curves of finite turn:

Proof of Theorem [I.2. Denote the spatial turn of I'; by x(I';). For any locally convex
spanning surface M, denote the one-sided turn of I'; in M by xp;(I';). Since for a
given polygonal arc in M, inscribed angles in R? are less than the corresponding
angles in M, there results |k (T;)] < k(T;), so

HM(FZ‘) Z —R(Fi).
By the Gauss-Bonnet theorem [6 p.192], and since w(M) > 0,

l l

2rx (M) = w(M)+ Y ka(T) > = > w(T).

i=1 =1
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Thus the Euler characteristics of all such spanning surfaces M are uniformly bounded,
and there are only finitely many possible topological types for M. O

The observation about turn in the preceding proof has a smooth analogue which
will be used several times in this paper:

Lemma 3.1. Suppose I' is the C? boundary of a submanifold M of a Riemannian
manifold N. Then the second fundamental forms llpp; and Ilp.n of I in M and
I' in N, respectively, satisfy |Ilr—pr| < |llpe,n| pointwise.

The lemma follows directly from considering the projection of the N-covariant
derivative of a geodesic direction in I' onto T'M. Recall that IIp.,j; assigns a
bilinear form to each element of the unit normal bundle of I' in M, and similarly
for N. |IIpe /| and |[IIp., | denote, respectively, the maximum of the norms of
those bilinear forms (i.e. the largest of the absolute values of the eigenvalues of the
associated quadratic forms).

What makes the lemma useful is that when N and I' are considered fixed one
gets a uniform bound on |[IIpc, /.

3.2. Proof of Theorem [1.3l Here we show that a finite collection of closed C3
curves immersed in a given Riemannian manifold bounds at most finitely many
topologically distinct, complete immersed C? surfaces whose total curvature is uni-
formly bounded below. The proof follows from classical results of Cohn-Vossen and
Huber on Gauss-Bonnet type theorems for noncompact surfaces, which have been
proved in greater generality in [33, p. 46].

A surface is said to be finitely connected if it is homeomorphic to a compact
surface minus finitely many points; otherwise, it is infinitely connected. We say that
a smooth immersed surface is (metrically) complete if it is a complete metric space
with respect to the induced metric, i.e., the Cauchy sequences in the surface converge
(this is not to be confused with the other notion of completeness in Riemannian
geometry which is concerned with extendibility of geodesics).

Lemma 3.2 (Cohn-Vossen). Let M be a connected, finitely connected complete 2-
dimensional Riemannian manifold. Suppose that fM K exists in [—o00, 0], and OM

1s compact. Then
/ K+/ kg < 2mx(M).
M oM

Lemma 3.3 (Huber). Let M be a connected, infinitely connected, complete 2-
dimensional Riemannian manifold without boundary. Suppose that fMK exists in

[—00,00]. Then
/ K = —o0.
M

Proposition 3.4. Let F be a family of complete 2-dimensional manifolds M with
compact boundary, where the total curvature of M and total geodesic curvature of
OM are both uniformly bounded below. Then F contains only finitely many topolog-
ical types.

These results yield:
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Proof. For M € F, let D(M) be the doubling of M across its boundary, and D (M)
be a smoothing of D(M) which perturbs the metric only in a compact neighborhood
of the boundary OM. Then the total curvature of l~)(M ) is bounded below because
it is bounded below on the complement of a compact set. Thus by Lemma |3.3]
D(M) is finitely connected. So M is finitely connected as well. Now Lemma
applies, and implies that y (M) is bounded below. By the formulas for the Euler
characteristic of a finitely connected surface, M may assume only finitely many
topological types. O

To complete the proof of Theorem [1.3] we only need to show then that the total
geodesic curvature of M is bounded below. But note that if M sits inside an
ambient manifold M and k, and %, denote the geodesic curvatures of OM in M
and M respectively, then, kg > —Fg by Lemma It only remains to note that &,
depends just on M which is fixed in M, and thus /. an g 18 uniformly bounded
below.

4. COMPACT HIGHER-DIMENSIONAL FILLINGS

This section considers finiteness of topological types for the class of compact
fillings of dimension n > 2. Here our theorems will be proved by using the theory
of Alexandrov spaces of curvature bounded below.

4.1. Alexandrov spaces and finiteness. By a geodesic, we mean a distance-
realizing path parametrized by arclength. All our spanning hypersurfaces are geo-
desic metric spaces in their intrinsic metrics, that is, every two points are joined by
a geodesic.

Recall that a geodesic metric space is an Alexandrov space of curvature > K
if geodesic triangles are wider than comparison triangles in the simply connected
space form Sk of constant curvature K. Specifically, for any geodesic triangle A of
perimeter < 27/ VK, the distance from a vertex to a point on the opposite side is
at least the distance between corresponding points on a geodesic triangle with the
same sidelengths in Sk. (Here the perimeter bound ensures that the model triangle
is confined to an open hemisphere, and hence has a distinguished interior.) It follows
that angles between geodesics may be defined, and the angle at each vertex of A is
no less than the corresponding angle of the model triangle. (See [§] for a discussion.)

A complete Riemannian manifold M with boundary is an Alexandrov space of
curvature bounded below if and only if its interior sectional curvatures are bounded
below and its boundary is locally convex. Any nonconvexity of the boundary pro-
duces branching of geodesics of the metric space M, and hence produces infinite
negative curvature in the form of triangles that do not satisfy the wideness condi-
tion for any K.

There is a deep relation between Alexandrov spaces of curvature bounded below
and finiteness of topological types. Here are the fundamental theorems:



TOPOLOGY OF RIEMANNIAN SUBMANIFOLDS WITH PRESCRIBED BOUNDARY 13

Theorem 4.1 (Gromov Compactness). Let M = M(K,n,V,D) denote the class
of Alexandrov spaces of curvature > K, dim = n, vol >V, and diam < D, where
M carries the Gromov-Hausdorff metric. Then M is compact.

Theorem 4.2 (Perelman Stability, [28]). If X € M, then any Y € M sufficiently
close to X is homeomorphic to X.

For a discussion of Gromov Compactness, one may consult [8, §10.7]. A simplified
proof of Perelman’s Stability Theorem is given in detail by Kapovitch [24]. As an
immediate consequence of Theorems [£.1] and f.2] M contains only finitely many
topological types.

4.2. Proof of Theorem We are going to exploit the regularity of the boundary
submanifold I' in order to access this finiteness theory. The connection is via a
warped product collar construction (Lemma and Kosovskii’s gluing theorem
(Lemma . Lemma allows the construction of a Riemannian collar C' =
I'x [0, T] such that I' x {T'} is totally geodesic, and I x {0} has a degree of convexity
in C' that exceeds the concavity of I' in any M in the filling family. Lemma then
allows all M in the family to be extended to Alexandrov spaces with a uniform lower
curvature bound.

Lemma 4.3 ([39, [40]). Suppose T is any manifold (without boundary) having sec-
tional curvature bounded below by Ki. Then for any T > 0 and any X\ > 0, there
exists a smooth metric on C =T x [0,T] such that Hry 1oy —A 1 is positive definite,
where p, (o3 is the second fundamental form of I' x {0} in C; T x {0} is isometric
toT'; T' x [T —¢,T) is isometric to the direct product of cT' for some 0 < ¢ < 1 with
the interval [T — €,T]; and the sectional curvature of T' x [0,T] is bounded below by
a constant K = K(K1,\,T).

Typically, the lower bound K will be strictly less than K.

Lemma 4.4 ([25]). Let My and My be two Riemannian manifolds-with-boundary,
each having sectional curvatures bounded below by K, and whose boundaries are
isometric and have respective second fundamental forms the sum of which is positive
semidefinite. Then the space obtained by isometrically gluing My to My along their
common boundary is an Alexandrov space of curvature bounded below by K.

Now we are ready to prove finiteness of topological types for the class of compact,
smooth fillings with uniform bounds below on curvature and above on intrinsic
diameter, of a compact immersed submanifold I' of arbitrary codimension in an
arbitrary given Riemannian manifold N. Let Fr denote such a family of filling
submanifolds with boundary I'.

Proof of Theorem[1.J). Since T is C? smooth, the second fundamental form of I' in
N or in any M € Fr is well-defined. Denote these forms by Ilp..y and Ilp. s
respectively. For any M € Fp, [Ir—.y| < [IIr,y| by Lemma [3.1]

Now we apply Lemma [4.3] with A := [IIp, x|, to obtain the collar C' =T x [0, T'.
By construction, C' carries a metric such that I' x {0} is isometric to I, and the sum
of the second fundamental forms of I' x {0} in C' and of T" in any M € Fr is positive
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definite. Since all M € Fr have the common boundary I', the same collar C' can
be glued to each M. Let K be a lower bound for the intrinsic sectional curvature
of I'. By isometrically gluing C' to M along I' x {0}, using Lemma one obtains
an Alexandrov space M Ur C of curvature bounded below by a uniform constant
K(K,\,T).

Then the family {M Ur C : M € Fr} has a uniform lower curvature bound, upper
diameter bound and lower volume bound, and hence lies in a class M that contains
only finitely many topological types. Since M Ur C' is homeomorphic to M, the class
Fr itself admits only finitely many topological types. O

Remark 4.5. As the preceding proof makes clear, Lemmas [{.3 and imply the
following intrinsic finiteness theorem for manifolds with boundary:

Theorem 4.6 ([39, 40]). There are only finitely many topological types of compact
Riemannian n-manifolds with boundary having uniform bounds below on curvature
and volume, and above on diameter and the norm of the second fundamental form
of their boundaries.

4.3. Proof of Theorem In this section, we consider a compact, immersed
submanifold I' of codimension 2 in R""!. Let F denote the family of all compact,
nonnegatively curved, immersed hypersurfaces having I' as boundary. Since R**! is
projectively equivalent to a hemisphere in S"*!, we may regard the spaces M € Fr
as hypersurfaces of sectional curvature > 1 in S”*1. Indeed, since projective maps
preserve semidefiniteness of the second fundamental forms of hypersurfaces, this
claim is a consequence of the Gauss Equation (see [13]). From now on in this
subsection, we use the Riemannian metrics induced from S™*1.

Denote the components of I by I';, 1 < ¢ < [. The following lemma bounds the
intrinsic diameter of any M € Fr in terms of the intrinsic diameters diam(I';) of
the I';.

Lemma 4.7. The intrinsic diameter of M € Fr s uniformly bounded above by
(I + D)7 + X!, diam(Ty).

Proof. First note that the distance of any point in M € Fr to I' is < m; for,
otherwise, the distance from some p € M to I' would be realized by an M-geodesic
~ of length > 7, and v would have a subsegment from p of length > 7 that does not
contact I'. Since M has sectional curvature > 1, such a subsegment would contain an
internal pair of conjugate points by the Rauch comparison theorem. Therefore the
subsegment could be shortened by a variation with endpoints fixed in an arbitrarily
small neighborhood of itself (see, for example, [34, p.316]), yielding a contradiction.

Now let v be a geodesic in M. The distance from the initial point to the first
intersection with the boundary, say with I'y, is < w. The distance from the first
intersection point to the last intersection point of v with I'; is at most diam(T';).
Now reiterate this argument, starting from the last intersection point of v with
I. O

With this preparation, the proof of Theorem [1.6]is immediate:
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Proof of Theorem [I.6, The proof proceeds just as in the proof of Theorem ex-
cept that here we have not assumed an a priori bound on the diameters of the
M € Fr, but rather, may invoke Lemma [4.7] O

Remark 4.8. As we have just shown, Theorem also holds in 8™t for spanning
hypersurfaces with curvature > 1. Similarly, by projective transformation, Theorem
holds in H™ ! for compact hypersurfaces with curvature > —1. The latter case
is interesting for being a finiteness theorem where there is no uniform lower bound
on total negative curvature.

4.4. Proof of Theorem [1.5l First we need a relative version of Nash’s isometric
embedding theorem. Let 0" denote the origin of R"™.

Theorem 4.9 ([16]). Let (M,g) be a C*° Riemannian n-manifold, p € M, and U
be a neighborhood of p. Suppose there exists a C*° isometric embedding f: U —
R™, m > n. Then there exists a smooth embedding f: M — RN, where N =
max{n(n + 5)/2,n(n + 3)/2 + 5} + m, and a neighborhood V. C U of p such that
Fflv = f x {ON=™Y, and the pull-back metric f (,) is arbitrarily close to g, with
respect to the C*> topology.

The above result quickly yields the desired example of infinitely many topolog-
ically distinct, positively curved 3-dimensional submanifolds spanning a common
boundary in R :

Proof of Theorem[1.5. Let M; denote the lens spaces S3/Z;, i = 1,2, ..., and choose
pi € M;. Since M; are locally isometric to S® C R*, there are, by Theorem
approximate isometric embeddings f;: M; — R4 such that for sufficiently small
neighborhoods V; of p; we have f;(V;) C S3. Further note that f; have positive
curvature, since f;*(,) are C? close to the original metric of M; which have positive
curvature. Let B, (p) C M; be open metric balls centered at p;, such that B, (p) C
V;, and set M; := fi(M; — B, (p)). Then OM; will be geometric spheres. Indeed
each OM; can be made to coincide with S? C R3 x {0'°} after a rigid motion
and a homothety in R'™. These transformations, applied to M;, yield our desired
submanifolds, since M;, and consequently M;, are pairwise nonhomeomorphic. [

5. COMPLETE HIGHER-DIMENSIONAL FILLINGS

5.1. Proof of Theorem Finally we turn to the case of noncompact complete
fillings. In this section, we again assume n > 2, since we already have established
Theorem [1.3|for surfaces. We fix a compact, immersed submanifold I" of codimension
2 in R, Our goal is to show that I' is spanned by only finitely many topologi-
cal types of complete, nonnegatively curved, immersed hypersurfaces whose second
fundamental form has nullity at most 1.

Our procedure is first to bound the number of ends of any nonnegatively curved
hypersurface spanning I'. Then we “clip off” the ends, so that the proof of Theorem
becomes similar to that of the compact case already considered in Section

The new elements we draw on here include a theorem of Cai that bounds the
number of ends of a Riemannian manifold whose Ricci curvature is nonnegative off
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a compact set and everywhere bounded below (Lemma; a theorem of Perelman
on intrinsic gluing and smoothing under a lower Ricci curvature bound (Lemma;
and a theorem of Alexander and Currier on the end representatives of a complete
Euclidean hypersurface that, except on some compact set, is nonnegatively curved
with second fundamental form of nullity at most 1 (Lemma .

Specifically, Lemmal[5.2 combined with an argument involving collaring, doubling
and surgery, allows us to invoke Lemma to bound the number of ends. Lemma
specifies the topology of the ends. Now we may compactify the spanning hy-
persurfaces by a clipping procedure. Since these compactified fillings are no longer
smooth, we need a singular Bonnet-Myers comparison (Lemma in order to finish
the proof.

By an end representative in a complete Riemannian manifold M, we mean an
unbounded component of the complement of a compact subset of M. An end is an
equivalence class of nested decreasing sequences of end representatives that eventu-
ally lie outside every compact subset of M, where two sequences are equivalent if
any member of either contains a truncation of the other.

Lemma 5.1 ([II]). In a complete n-dimensional Riemannian manifold without
boundary whose Ricci curvature satisfies ric > 0 off a metric ball of radius a and
ric > A everywhere, there is a universal bound c(n,a,A) on the number of ends.

This control on the number of ends only requires lower Ricci bounds, and these
behave well under gluing and smoothing, as the following theorem shows.

Lemma 5.2 ([30]). Let N1 and Ny be two Riemannian manifolds with isometric
compact boundaries and ric(N;) > A. Suppose the sum of the second fundamen-
tal forms is positive definite at each point on the identified boundaries. Then the
induced metric on the gluing N1 U Na can be smoothed in an arbitrarily small tubu-
lar neighborhood of the identified boundaries to yield a complete C*> manifold with
ric > A.

This theorem was originally stated for positive Ricci curvature, but the proof
holds for any lower bound. The proof described in [30] is written out in detail in an
appendix of Wang’s thesis [38].

Lemma 5.3. Given a compact submanifold T' of codimension 2 in R"*!, consider
all complete, immersed, nonnegatively curved spanning hypersurfaces M of I'. Then
the number of ends of M is uniformly bounded.

Proof. Let {T'1,...,I';} be the components of I'. For any spanning hypersurface M,
we consider the glued manifold M Ur C, where C' = U!_;T"; x [0, T is a (fixed) collar
which may be constructed, with the aid of Lemma similarly to the description
in the proof of Theorem In particular, setting A := [IIp_ gn+1[, i.e. the norm of
the second fundamental form of I in R™*!, we can make sure that the sum of the
second fundamental forms of M and C at the corresponding points of gluing across
I" is positive definite.

Since C'is compact and the spanning hypersurfaces M are nonnegatively curved,
there is a uniform lower bound on the sectional curvatures of C' and the manifolds
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M, and consequently a uniform Ricci bound, ric > A. Therefore, by Lemma
the metric of each M Ur C may be smoothed arbitrarily close to I' while retammg
ric > A. Denote the resulting manifold by M. Since, by Lemma cach M
is cylindrical near its boundary I" x {T'}, doubling across the boundary yields a
complete, smooth Riemannian manifold D(M ) still satisfying ric > A.

Now note that removing the two copies of int(M) in D(]TJ/ ) leaves [ components
D(C;), where C; is a component of C' (namely, I'; x [0, T carrying the restriction of
the metric of M) and D(C;) is the doubling of C; across I'; x {T'}. We may join D(C;)
to D(Ciy1), for 1 <i < k — 1, by a surgery procedure inside D(C), i.e., we remove
from the interiors of D(C;) and D(Cj11) a pair of small open balls, replace them by
an annulus, and use a partition of unity to endow the gluing with a smooth metric
which coincides with the metric on D(C) near its boundaries. Thus these gluings
transform D (M ) and D(C) to smooth connected Riemannian manifolds D(]\7 )>k and
D(C)" respectively, such that, for all M € Fr, D(M)* — D(C)*=D(M) - D(C).

Since D(C)" is compact, it has a lower Ricci bound A’ which does not depend on
M. Further, since D(C)* is connected, its diameter A is well defined and yields a
uniform upper bound for diameter of D(C)* in D(M )* Thus there exists a point

p of D(C)* such the metric ball B in each D(M )* centered at p and of uniform
radius A + € for some € > 0 contains an open neighborhood of D(C)*. Outside of

this neighborhood, we may assume D(M )* to have nonnegative curvature since, as
described earlier in this proof when we invoked Lemma M coincides with M

outside of a uniformly small neighborhood of C. Thus D(M )* — B has nonnegative
Ricci curvature, and B has a uniform lower Ricci bound given by min{A, A’}.

By Lemma it then follows that the number of ends of D(M )* is uniformly
bounded. Therefore there is a Er/liform bound for the number of ends of M, and
hence of M € Fr, since M and M are homeomorphic. (Il

By a convex body in a Euclidean space we mean a closed convex subset with inte-
rior points; its boundary is a convex hypersurface. A convex cap is the intersection
of a convex hypersurface with an open halfspace. The following theorem is proved
in [4]. The topological structure of the ends is implicit there; here we outline the
proof in order to give a more detailed discussion of the topology.

Lemma 5.4. Let M be a complete, smoothly immersed hypersurface without bound-
ary of R n > 2. Suppose there is a compact set X in M such that M — X is non-
negatively curved and its second fundamental form has nullity at most 1 everywhere.
Then each end of M has a representative that is homeomorphic to S"~! x [0,1) and
1s embedded onto the union of two convex caps.

QOutline of proof. The proof adapts the method of slicing with moving hyperplanes
first used by van Heijenoort [37] (see [4, Thm. 2]). It also draws on the theorem of
Sacksteder which states that a complete, immersed hypersurface of R™ with non-
negative but not identically zero sectional curvature is embedded as the boundary



18 STEPHANIE ALEXANDER, MOHAMMAD GHOMI, AND JEREMY WONG

of a convex body [32], and that of Hartman and Nirenberg, that identically zero
curvature only occurs for an (n — 2)-cylinder over a plane curve [2]].

Suppose H C R"*! is a hyperplane through p € M that does not intersect X,
and is transverse to T, M and the nullity subspace at p. Then by a transversality
argument and Sacksteder’s theorem, each component N, which is not a singleton, of
the intersection of M with H is a convex hypersurface of H. For any point p € M
outside a Euclidean ball containing X, slicing by rotated hyperplanes through p
produces a subset C), of M that is embedded onto a convex cap, and has boundary
that contains p and intersects X (see [4, Lemma 2]). An unbounded sequence of
points p; of M may be extracted lying outside a ball containing X, and the existence
of convex caps Cp, together with the compactness of X ensure that in each end there
is a convex cap C' with noncompact closure that contains no line (see [4, Lemma

3]).

If 9C is compact, then by definition C' is an end representative. That is, C =
OK Nint(H™"), where H' is a closed halfspace bounded by H, and K C H" is an
unbounded convex body in R™*!. We may assume that K N H has interior points in
H, after moving H parallel to itself into int(H ). Thus 0C := cl(C)—C = d(KNH)
is a convex hypersurface of H. Since dC is compact, OC is homeomorphic to 8"~
Consequently, the interior of K N H is homeomorphic to an open ball B™. Since
cl(C) = 0K —int(K N H), it follows that cl(C) is homeomorphic to K minus an
open ball. Since K is a noncompact complete convex hypersurface of R"*! that
contains no line, JK is homeomorphic to R", and so cl(C) is homeomorphic to
Sl x [0,1).

If 9C is noncompact, we proceed as follows. Since C contains no line, the “reces-
sion directions” of the convex hull conv(C') point into an open halfspace of the form
(y,v) > 0. Therefore the slices of conv(C') by hyperplanes H; : (y,v) =t for t > «
sufficiently large are compact. Denote by S; the extensions of these slices of conv(C')
to slices of M, and set C,, = Uy~,.S;. The theorems of Sacksteder, and Hartman and
Nirenberg, imply that S; is a convex hypersurface of H;, and so C, is a noncompact
convex cap. If any of the extended slices are compact, then they are all compact
and homeomorphic to 8"~!. Then C, is an end representative whose closure is
homeomorphic to 8"~ x [0, 1) and lies on the boundary of a convex body. Suppose
on the other hand that the extended slices are noncompact. Then we may choose
a recession direction w for these slices, and consider slices Sy, meeting C,, of M by
hyperplanes H} : (y,w) =t for t > a. Increasing « if necessary so that H; does not
meet X for ¢ > a, the S] are again convex hypersurfaces of the H] and we again
have a noncompact convex cap Cy, = Up=4.5;. Then v is a recession direction for Cy;
perturbing v and w if necessary by a slight rotation in the plane they determine,
and invoking the nullity hypothesis, ensures in addition that —v is not a recession
direction for Cy,. Therefore T} := S;N{y : (y,v) < t} is compact and homeomorphic
to a closed (n — 1)-ball. The union T; U T}, where Ty = S; N {y : (y,w) < t}, is
then homeomorphic to S”~!. Thus we obtain an end representative of the form
Cy U Cy = Upso(Ty UTY) (see [, Proof of Theorem 1]). It is easily verified that
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there is a continuous map with a continuous inverse from the closure of this end
representative onto S”~! x [0, 1). O

Now we are ready to prove our finiteness theorem for noncompact, complete
fillings of a given compact submanifold I' of codimension 2 in R™*!, where n > 2.
Let Fr denote all complete, smoothly immersed spanning hypersurfaces of I' having
nonnegative sectional curvature and second fundamental form of nullity at most 1.
We must show that Fr contains only finitely many topological types.

Proof of Theorem[I.7] Step 1. First we “clip off” the ends of M. When M € Fr is
noncompact, its projective image in S"*! need not be complete, so this compactifi-
cation step must precede any projective transformation step. Specifically, by Lemma
we obtain a compact, locally convex (but not smooth) spanning hypersurface
M of T by discarding, for each end, an embedded end representative. The discarded
representative either is a convex cap C,, that lies in a halfspace Ht+ and has bound-
ary coinciding with the boundary of a compact convex body B in the hyperplane
H;, or else is the union C, UC,, of two convex caps, lies in a union H;” U H," of two
orthogonal halfspaces, and has boundary coinciding with the boundary of a union
B U By, where By is a compact convex body in the hyperplane Hy, Bj is a compact
convex body in the hyperplane H; and

BiNint(H;7) =0, B,Nint(H; ) = 0.

The discarded end representative is replaced by gluing in B; in the first case, and
B; U By in the second case, to obtain M. Figure [7] illustrates this procedure when
n = 2.

By

=

By

FIGURE 7.

We are going to prove finiteness of the topological types for the family

?FZ{M:ME.?F}
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of compactified spanning hypersurfaces. For this purpose, we modify the proofs of
Theorems and to accommodate the reduced regularity of members of Fr.

Step 2. Regard each M € Fr as a hypersurface in S”*! by a projective transfor-
mation to a hemisphere, so that from now on M denotes a metric space carrying the
intrinsic metric induced from S™*!. Since local convexity is a projectively invari-
ant property, M is locally convex in S"*!. Thus the metric of M has Alexandrov
curvature > 1 locally in the interior of M [3].

In we will prove the following Bonnet-Myers comparison lemma for M € Fr.
It seems likely that this lemma holds for all local Alexandrov spaces of curvature
> 1, not just for M € Fr, but a proof in the former case is not known and the
technicalities in the latter case are comparatively mild.

Lemma 5.5. The distance of any point of M € Fr to I is not greater than .

Step 3. Now we may proceed as in the proof of Theorem [1.4] There is a fixed
collar C such that for all M € Fr, the glued spaces M Ur C are Alexandrov spaces
of curvature bounded below by a uniform constant. By virtue of Lemma both
the statement and the proof of Lemma [£.7] apply essentially unchanged to give a
uniform bound on the intrinsic diameter of M € Fr. In consequence, the family
{MUrC : M € Fr} has uniform lower curvature bound, upper diameter bound and
lower volume bound, and hence lies in a class M that contains only finitely many
topological types. Since M Ur C' is homeomorphic to M, the class Fr itself admits
only finitely many topological types.

Moreover, by Lemma the number of clipped ends is uniformly bounded, and
by Lemma the closure of each clipped end representative is homeomorphic to
S"~1x[0,1). So it follows that Jr itself contains only finitely many homeomorphism
classes. Here we have used the fact that any gluing of the end representative to the
rest of the manifold is determined by a homeomorphism of S"~! to itself, which is
isotopic to the identity; thus, topologically speaking, there is only one way to glue
the end representative back to the rest of M, which in turn yields the finiteness that
we seek. g

Remark 5.6. If Theorem s restricted to strictly positively curved spanning
hypersurfaces M, the proof may be simplified by appealing to known results, avoiding
Lemmal5.5 In this case, it is shown in [4] that each end of M € Fr may be replaced
by gluing in a compact convex body By lying in a hyperplane Hy. Then the main result
of [14] may be used to show that the resulting M has a positively curved smoothing.
Thus the theorem is reduced to the smooth compact case considered in §j|

5.2. Proof of Lemma In Step 1 of the proof of Theorem [1.7] a compact,
locally convex hypersurface M is constructed in R™*! by clipping off the ends of
M. That is, we replace a certain end representative of each end of M by a compact
cap, namely, a compact set of the form B U B’, where B is a compact convex body
in a hyperplane H, B’ is a compact convex body in an orthogonal hyperplane H’,
and BNint(H'") =0, B'Nnint(H*) = 0. (It is possible that a single B suffices.

Since the argument there is simpler, we consider the general case here.)
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Since the number of ends is bounded by Lemma then there are finitely many
of these compact caps, say B; U B], 1 < ¢ < k. By Step 2, we then regard each
M € Fr as a locally convex hypersurface in a given open hemisphere S of S"*1, so
that the B; and B] become convex bodies in totally geodesic hyperspheres.

We use the following slightly nonstandard terminology adapted to our construc-
tion. The n-faces of M are the relative interiors of the compact caps and of the
portion of M that remains after clipping, respectively, namely

int(B; U BY), int(M N M),

1 < i < k. An n-face int(B; U B}) is intrinsically isometric to an open subset of a
totally geodesic hypersphere. The (n — 1)-faces are

int(B; N M) = 0B; — H', int(B,n M) = 0B, — H,
and the (n — 2)-faces are
B;,NB:NM =090(B;NB))=9(B;"M) =9(B.NM).

The (n — 2)-faces are smooth convex hypersurfaces that bound the convex bodies
B; N B} in the totally geodesic (n — 1)-spheres determined by H; N H.

In this setting, the basic constructions of Alexandrov geometry are fairly simple
(see [8]): The direction space U,M of M at any interior point p is the metric space of
unit tangent vectors at p with the angle metric, while the tangent space T,M is the
linear cone over U,M. If p is not on an (n — 2)-face, then T, M is isometric to R™.
If p lies on an (n — 2)-face F', then T, M bounds the intersection of three transverse
halfspaces through the origin, and hence is the metric product of a Euclidean factor
R"~2 with the cone over a homeomorph of a circle obtained by gluing together three
circular arcs of radius 1, the sum of whose lengths is less than 27. (The intersection
of M with the 3-plane orthogonal to F at p has a neighborhood as shown around a
corner point in Figure ) Furthermore, any geodesic in int M that has an internal
point on an (n — 2)-face ' must be tangent to the R"~2 factor there [8, p. 109].

Suppose 7 is a geodesic in int M. By the convexity of B;, the shortest path in the
hemisphere S and hence in M between two points of B; lies in B;, and similarly for
B!. Therefore v N (B; U B}) has zero, one or two components; we call a nonempty
component a clipping segment. Then -~y is a disjoint union of clipping segments and
nontrivial geodesic segments of int(M N M), which alternate.

Lemma 5.7. Suppose v is a geodesic of M such that if v has an endpoint in an
(n — 2)-face, then a nontrivial end subsegment of v lies in that face. Then any
clipping segment o of ~ either lies in an n-face int(B; U BY), except possibly for
endpoints at which o strikes an (n — 1)-face transversely, or else lies in a lower-
dimensional face.

Proof. Suppose the clipping segment ¢ contains a point p on a lower-dimensional
face F. If F' is an (n — 2)-face, then by assumption, p may be taken interior to
o. Then o must be tangent to F = 9(B; N B) at p. By convexity of B; N B, o
cannot enter int(B; U BY), so lies in F. If F is an (n — 1)-face to which o is tangent
at p, then by convexity of B; and B}, o could only leave F by striking an adjacent
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(n — 2)-face, which as we have just seen is impossible. If F'is an (n — 1)-face to
which o is transverse at p, then o enters int(M N M). O

Now we are ready to prove the Bonnet-Myers comparison result Lemma [5.9

Proof of Lemma[5.5. Suppose to the contrary that there is a point of M whose

distance to I' is greater than 7. Then there is a geodesic vy : [0,¢] — int(M) of
length
£ = d(3(0),4(0)) > .
We show this is impossible by constructing a length-shortening variation of ~.
By shortening v slightly if necessary, we may ensure that if v has an endpoint in

an (n — 2)- face, then a nontrivial end subsegment of + lies in that face. Thus by
Lemma [5.5] either

(1) each clipping segment of ~ lies in an n-face except possibly for endpoints at
which it strikes an (n — 1)-face transversely, or
(2) ~ additionally contains clipping segments that lie in lower-dimensional faces.

In case (i), we are going to show that the standard treatment of Bonnet-Myers
comparison via second variation works with an adjustment. In case (ii), we make a
local modification of M in a neighborhood of v in order to recover case (i).

Case (i). We use [27] as our reference for Bonnet-Myers comparison in Riemann-
ian manifolds. As there, let x : [0,4] x [-§,5] — M be a variation of v with fixed
endpoints, which is smooth on each [u;_1,u;] X [=9, ] for some partition of [0, ¢].
This is possible by taking the partition breaks u; at the transverse crossings between
adjacent n-faces, so that x(u;, v) lies on an (n—1)-face F'. On each [u;_1,u;] x [—0, d],
write x, = V and x,, = A, where x,, = V'V denotes the Euclidean or M covari-
ant derivative alternately, depending on the n-face. The second variation of length
L”(0) is calculated by adding the corresponding piecewise contributions at v = 0; see
[27, Theorem 4, p. 266 & Comment (1)]. In the Riemannian case, a term cancels,
namely

(5.1) (' A) () = (' A) () = 0,

because (7', A) is continuous along 7. In our case, the tangent cone at y(u;) is
isometric to R", and under that isometry 7/(u; ) = +/(u;). If 4/ is replaced in
by its projection tangent to F', equality continues to hold since the tangential
projection of A is determined only by F', being its intrinsic covariant derivative
Vv V. However, the projection of A on a unit vector normal to F' depends on the
side, u; or uf, being I1(V, V) for the second fundamental form of F relative to the
corresponding n-face. If \ is the value of IT1(V, V) relative to the compact cap n-face
with the inward normal, then A > 0 by convexity. The value of II(V,V) relative
to the opposite face with its inward normal is A cos @ where 6 is the angle between
the two normals. Since A + Acos@ > 0, if 4 is replaced in by its projection
orthogonal to F', then the lefthand side becomes nonpositive. Thus in our case,
is replaced by

(5-2) (o, A) () = (v, A) () < 0.
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When (j5.2)) replaces (5.1]), the derivation of the second variation formula in [27,
Corollary 8, p. 270] yields an inequality in place of the equation given there:
(5.3)

4
L") < - /0 (VEH =RV ), VEydu — S(VE (uf) = (V5 (u)), V(w)),

where we fix v = 0, and L indicates the component orthogonal to ~'.

Now choose x with x(0,v) = ¥(0), x(¢,v) = y(£), and V(u,0) = sin ZLE(u),
where E(u) is a unit vector field that is orthogonal to 7 and parallel along each
unbroken parameter interval. By ,

0 2
(5.4) L") < —/0 (—72—2 sin? % + sin? % K(+, VL)) du

¢ 2
< / siHZH(W—— )du < 0,
0
since the sectional curvature of the n-faces is > 1 and m < /.

Since L'(0) = 0 by first variation ([27, p. 264]) and we have just shown L”(0) < 0,
there is a variation with fixed endpoints of v in M that reduces length.

Case (ii). For a clipping segment of 7 that lies in a lower-dimensional face, the
switchpoints to its two adjacent segments in int(M N M) need not vary smoothly
under a variation of v, although they clearly vary upper semicontinuously, and so
the preceding argument does not apply. We avoid this difficulty by making a local
modification of M in a neighborhood of each of the (finitely many) clipping segments
o that lie in lower-dimensional faces.

Such a o lies in M N M and joins two nontrivial geodesic segments 71 and 7
that lie in int(M N M). Thus if we replace a neighborhood U, of o in M by a
neighborhood U, of ¢ in M, then U, joins smoothly with neighborhoods in M of 7;
and 7o.

Since the second fundamental form of M has nullity at most 1, it is nonvanishing,
so M and M are one-sidedly locally convex; and since M was obtained from M by a
clipping procedure, U, lies to the inward side of M. Moreover, U, may be taken to
lie on a convex hypersurface. To see this, let us transform from S"*! back to R**!
for simplicity of terminology. Since o is a line segment in the nonnegatively curved
hypersurface M, then by the Gauss Equation, ¢ is tangent to the nullity subspace.
Equivalently, the tangent hyperplane to M is constant, say H,, along o. Then U,
lies on the boundary of a body K constructed as follows. Cover ¢ by a finite union
of convex neighborhoods in M, each lying on the boundary of a convex body, and
let B be the intersection of the corresponding union of convex bodies with a closed
halfspace H* containing H,, where H is parallel to H,. By the nullity hypothesis,
the slices of M by hyperplanes orthogonal to ¢ are strictly positively curved at
points of o. Moreover, the clipping segment o is not extendible as a line segment in
M, since if it were it would remain in its clipping hyperplane( ), H; and/or H], and
hence be extendible as a clipping segment. Therefore U,Nint Ht = 0Knint H + if H
is chosen sufficiently close to H,. Thus the body K has a locally convex boundary,
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so is convex. By the clipping procedure, if U, is sufficiently small, it lies on the
boundary of the intersection of K with either one or two halfspaces. Therefore U,
lies on a convex hypersurface in the inward side of U,.

By a classical theorem of Busemann-Feller [I0], projection to a convex hyper-
surface from the outside does not increase length. It follows that if we choose U,
sufficiently small, U, has a well-defined and length-nonincreasing projection map to
U,

Let M be the hypersurface obtained by replacing U, by U, for each clipping seg-
ment o that lies in a lower-dimensional face. As in case (i), there is a length-reducing
variation with fixed endpoints of v in M. Since there is a length-nonincreasing map
from M to M, there is a shorter curve than v in M joining the endpoints of 7. This
is the desired contradiction. g

6. COMMENTS AND QUESTIONS

6.1. In light of the results we have obtained thus far, one outstanding question
which naturally presents itself is:

Question 6.1. What is the biggest integer d such that every smooth compact sub-
manifold of codimension d in R™ bounds only finitely many topological types of
positively curved fillings?

By Theorems [I.6] and 2 < d < 15, although it is possible that d = 2. Indeed,
if the question [41, Problem 25| of whether any 3-manifold with almost constant
positive sectional curvature isometrically embeds in R%, had an affirmative answer,
then one might be able to construct the examples of T heoremin RS. Specifically,
it would be enough to show that there exists an infinite subfamily of lens spaces
which may be embedded with positive curvature in RS so that they all coincide
over an open neighborhood. This may be plausible since by a well-known theorem
of Hirsch [23], every orientable 3-manifold embeds in R®; further, Zeeman [42] has
shown that an infinite subfamily of punctured lens spaces even embed in R?.

6.2. It is also natural to want to estimate the number of topological types of posi-
tively curved fillings for a given submanifold. To this end we should point out:

Remark 6.2. In Theorems 1.2, 1.4, 1.6, and 1.7, the bound to the number of
topological types of fillings may be estimated explicitly. It depends on the lower
curvature bound of the ambient manifold, the norm of the second fundamental form
of the given submanifold, as well as its intrinsic diameter and lower volume bound
(and in 1.3, on the integral of curvature), but on no other characteristic of the
submanifold.

Further, we should mention that, as it was proved in [I], if ' € R" is a compact
submanifold of codimension 2 which lies on the boundary of a convex body, then it
bounds at most two topologically distinct locally strictly convex compact hypersur-
faces. Incidentally, no further regularity is required of I' in this case.
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6.3. Finally, in light of the Soul theorem of Cheeger-Gromoll-Meyer [19, 12], it
is interesting to ask to what extent Theorem might reflect intrinsic finiteness
phenomena. Recall that a complete, open, positively curved Riemannian manifold
M without boundary is diffeomorphic to R". Perelman proved the same statement
if M is merely nonnegatively curved with a point of strictly positive curvature [29].
Moreover, there are only finitely many homeomorphism types of complete, open,
nonnegatively curved Riemannian manifolds of fixed dimension, with a uniform
upper bound on the diameter of the soul, and a uniform lower bound on the volume
of some ball of uniform radius lying at uniformly bounded distance from the soul
(see [7]). However, except for dimension 2, “intrinsic” finiteness does not hold for
the class of complete open manifolds which are positively curved off compact sets
with uniform upper diameter and lower volume bounds. This remains true even in
the context of submanifold geometry:

Example 6.3. Modify the example of Theorem[I1.5 by ambiently attaching a warped
product S% x4 [0,00) to S?(1) C R!8. One can choose ¢ so that this results in a
sequence of complete 3-manifolds embedded in R'® with one end (topologically just
punctured lens spaces), and the curvature can be made positive off a ball of fized
radius. Moreover, the curvature of the resulting manifolds is bounded from below,
since the second fundamental form of the fized boundary S%(1) C R® of the filling
manifolds (S3/Zi) \ B3 is uniformly bounded in norm.
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