DURER’S UNFOLDING PROBLEM FOR CONVEX POLYHEDRA

MOHAMMAD GHOMI

Convex polyhedra are among the oldest mathematical objects. Indeed the five platonic
solids, which constitute the climax of Euclid’s books, were already known to the ancient
people of Scotland some 4000 years ago; see Figure 1. During the Renaissance, polyhedra
were once again objects of fascination while painters were discovering the rules of perspective
and laying the foundations of projective geometry. This remarkable confluence of art and
mathematics was personified in a number of highly creative individuals including the German
painter Albrecht Diirer, who was based in Niiremberg at the dawn of the 16" century and is
credited with ushering the advent of Renaissance in Northern Europe. During extended trips
over the Alps, Diirer learned the rules of perspective from his Italian contemporaries, and
he subsequently described them in his influential book, The Painter’s Manual. Aside from
being the first geometry text published in German, this work is remarkable for containing
the first recorded examples of unfoldings of polyhedra; see Figure 2.
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FIGURE 1. First Row: Neolithic carved stones from 2000BC discovered in Scot-
land [1]. Second Row: The familiar representations of platonic solids studied in
Euclid’s Elements. Third Row: Examples of unfoldings of the platonic solids.

An (edge) unfolding of a polyhedron P is the process of cutting it along a collection of its
edges, without disconnecting it, so that the resulting surface may be developed isometrically
into the plane. Many school children are familiar with the process of cutting out a template
from craft books, and folding the paper along dotted lines to form simple polyhedra such
as a tetrahedron or a cube; an unfolding is the reverse process. Note that the cuts are
made along a connected subset of the edges of P which contains each vertex of P and no
closed paths. In other words, the cut set forms a spanning tree of the edge graph of P,
and thus a convex polyhedron admits many different unfoldings depending on the choice of
this tree. Furthermore, it is not the case that every unfolding of every polyhedron is simple
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or non-overlapping. For instance there are even some (nonregular) tetrahedra which admit
some unfoldings that overlap themselves. On the other hand, all the examples of unfoldings
which Diirer constructed were simple, and in the intervening five centuries no one has yet
discovered a convex polyhedron which does not admit some simple unfolding.

FIGURE 2. A self-portrait of Diirer completed in the year 1500 at the age of 28,
together with some illustrations from his book, The Painter’s Manual, including
the first known examples of unfoldings.

The problem of existence of simple unfoldings for convex polyhedra was explicitly posed
in the 1970s by Shephard, and the assertion that a solution can always be found, or that
every convex polyhedron is unfoldable (in one-to-one fashion) has been dubbed Diirer’s
conjecture. There is, however, substantial empirical evidence both for and against this
supposition. On the one hand, computers have found simple unfoldings for countless convex
polyhedra through an exhaustive search of their spanning edge trees. On the other hand,
there is still no algorithm for finding the right tree, and computer experiments [4] suggest
that the probability that a random edge unfolding of a generic polyhedron overlaps itself
approaches 1 as the number of vertices grows. To date the problem remains wide open, and
it is not even known whether simple classes of polyhedra such as prismatoids (polyhedra
generated by the convex hull of a pair of convex polygons in parallel planes) are unfoldable.

FIGURE 3. A.D. Alexandrov observed that one may develop a convex polyhedron
injectively into the plane by cutting along geodesics which connect the vertices
to a generic point.

If one is not confined to cut only along the edges, then it is quite easy to develop a
polyhedron into the plane in one-to-one fashion, as had been observed by the influential



geometer A.D. Alexandrov in his seminal work Convex Polyhedra; see Figure 3. Why then
is Diirer’s problem so difficult? Perhaps because the edges of convex polyhedra are not well
understood, in the sense that there is no known procedure or simple algorithm for detect-
ing an edge by means of intrinsic measurements within the surface. Indeed, Alexandrov’s
embedding theorem for convex surfaces—which states that any locally convex polyhedral
metric on the sphere S? may be realized as a convex polyhedron in Euclidean space R3—is
not constructive and gives no hint as to which geodesics between a pair of vertices are re-
alized as edges. In 2008, a more constructive proof was given by Bobenko and Izmestiev;
however, this proof does not specify the location of the edges either.

The edge graph of a convex polyhedron is not the unique 3-connected embedded graph
in the polyhedron whose vertices coincide with those of the polyhedron, whose edges are
distance minimizing geodesics, and whose faces are convex. It seems reasonable to expect
that Diirer’s conjecture should be true if and only if it holds for this wider class of pseudo-
edge graphs. This approach was studied by Alexey Tarasov in 2008, and has been further
investigated by the author and Nicholas Barvinok very recently [2]. We claim to have
constructed a convex polyhedron with 176 vertices and a pseudo-edge graph which does not
admit any non-overlapping unfolding. Thus one may say that Diirer’s conjecture does not
hold in a purely intrinsic sense.

FIGURE 4. The left side shows a truncated tetrahedron (viewed from above)
together with an overlapping unfolding of it generated by a monotone edge tree.
As we see on the right side, however, the same edge tree generates a simple
unfolding once the polyhedron has been stretched.

On the other hand, in 2014 the author [5] had obtained a positive result in this area
by solving a weaker form of Diirer’s problem posed by Croft, Falconer, and Guy [3, B21]:
is every convex polyhedron combinatorially equivalent to an unfoldable one? It turns out
that the answer is yes, and therefore there exists no combinatorial obstruction to a positive
resolution of Diirer’s problem. What the author shows is that every convex polyhedron
becomes unfoldable after an affine (or linear) transformation. More explicitly, suppose that
a convex polyhedron P is in general position in R3, i.e., no two of its vertices are at the same
height. Then it is easy to construct a spanning tree T of P which is monotone, i.e., if T is
rooted at the lowest vertex r of P, then each of the branches of T' which connect its leaves
to r have strictly decreasing heights or z-coordinates. Now stretch P via a rescaling along
the z-axis. Then the corresponding unfolding eventually becomes simple, as illustrated in
Figure 4. The proof that this stretching procedure works is by induction on the number of
leaves (or branches of T which connect each leaf to the root ). The first step, i.e., when
T consists of only one branch, is relatively simple to prove and follows from a topological
characterization for embeddings among immersed disks in the plane. The inductive step is
more technical.
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