CONTINUITY OF TOTAL CURVATURES OF
RIEMANNIAN HYPERSURFACES

MOHAMMAD GHOMI

ABSTRACT. We show that total generalized mean curvatures of hypersurfaces with
positive reach in Riemannian manifolds, and convex bodies in Cartan-Hadamard
spaces, are continuous with respect to Hausdorff distance.

1. INTRODUCTION

Let I' be an oriented C'! hypersurface in a Riemannian n-manifold M. Then the
principal curvatures k := (K1,...,kn—1) of I' are well-defined almost everywhere, by

Rademacher’s theorem, and the total " mean curvature of T' is given by

M (T) = /F o0 (1),

where o,(k) := 21§i1<--~<u§n—1 Kiy - - - K4, are the elementary symmetric polynomials,
for 1 <r <n —1. By convention, og := 1, and o, := 0 for 7 > n. Up to multiplicative
constants, depending only on n, M, (T") form the coefficients of the generalized Steiner’s
polynomial and Weyl’s tube formula [12]. They are also known as quermassintegrals
when I is a convex hypersurface in Euclidean space R™ [14]|. Here we study the continuity

of these fundamental objects. In particular, we show:

Theorem 1.1. Let I' be a closed hypersurface with positive reach embedded in a Rie-
mannian manifold M. Suppose there exists a sequence of closed embedded hypersurfaces
Iy € M with uniformly positive reach such that I'; — T' with respect to Hausdorff dis-
tance. Then M, (T';) — M, (I).

The reach of T, denoted by reach(T"), is the supremum of € > 0 such that through each
point of I" there pass a pair of (geodesic) balls of radius € whose interiors are disjoint from
. If reach(I') > 0, then T is CY! [9, Lem. 2.6]. Thus M, (T) is well-defined. Theorem
1.1 was established in R™ by Federer [6, Thm. 5.9]. The general version should follow
from the theory of smooth valuations [1], and convergence of normal cycles [7,15]. The
latter can be reduced to the Euclidean case [6, Thm. 4.13] via local charts, since positive
reach is preserved under diffeomorphisms [2]. Here we give a more direct and fairly self-
contained argument via universal differential forms introduced by Chern [5].
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The prime motivation for this work is the next observation, which we again establish
geometrically using Theorem 1.1 and some recent results for total curvatures [11]. A
Cartan-Hadamard manifold M is a complete, simply connected manifold with nonposi-
tive curvature. A subset of M is convez if it contains the geodesic connecting every pair
of its points. A convex hypersurface ' C M is the boundary of a compact convex set

with interior points. We define
1 ~([) =1 (%),
(1 My(L) = lim M, (1)

where I'® denotes the outer parallel hypersurface of T" at distance €. Note that M, (I'¢)
is well-defined since reach(I'*) > ¢ and thus I'* is C1'! for ¢ > 0. Furthermore, the limit

exists since
(2) e — M, (I'¥) is nondecreasing,

by [11, Cor. 4.4], and M, (I'*) > 0 since I'* is convex (assuming proper orientation, so
that the principal curvatures are nonnegative). See |9] for basic facts about convex sets
and their distance functions in Cartan-Hadamard manifolds.

Theorem 1.2. The total curvature functionals M, are continuous on the space of convex

hypersurfaces in a Cartan-Hadamard manifold with respect to Hausdorff distance.

This result simplifies a number of arguments, e.g., see |9, Note 3.7] and [10, Lem. 3.3|,
related to the Cartan-Hadamard conjecture on the isoperimetric inequality in spaces of

nonpositive curvature. The conjecture follows if the total Gauss-Kronecker curvature
(3) My (T) > [8" 7

for convex hypersurfaces I' in Cartan-Hadamard manifolds, where |[S"~!] is the volume
of the unit sphere in R"™ [9]. Our proof of Theorem 1.2 employs an estimate for total

curvatures of parallel hypersurfaces (Lemma 4.1) which may be of further interest.

2. UNIVERSAL DIFFERENTIAL FORMS

Let T, M be the tangent space of a Riemannian manifold M at a point p, S, C T,M
be the set of unit vectors, and SM := {(p,u) | p € M,u € S,} denote the unit tangent
bundle of M. Let v be a (continuous) unit normal vector field along I, and 7: I' — SM
be given by 7(p) := (p,v(p)). The following fact is established in [3, Prop. 3.8].

Lemma 2.1 (Bernig-Brocker [3]). For 0 < r < mn —1, there ezists an (n — 1)-form ®,
on SM such that

for any CY' hypersurface T C M.
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The forms @, are called universal |3] because they do not depend on I'. The form
®,,_1 corresponds to ®g in Chern [5, p. 675|, and is also described by Borbely [4]. See
[8] for a concise construction of @, in terms of the connection forms of M and dual one
forms of the principal frame of T'.

We describe a geometric construction for @ := ®,,_;, which avoids exterior algebra.
This is of special interest in connection with conjecture (3). Let GK := 0,,—1(x) be the
Gauss-Kronecker curvature of I'. To motivate our approach, note that in R"

v*(dvolgn-1) = GKdvolr,

where dvol stands for volume form. So the Gauss-Kronecker curvature of I' is the
Jacobian of v viewed as the Gauss map I' — S"~!. Hence we may set ® := dvolgn-1. To
extend this concept to M, note that each tangent space of SM admits a decomposition
[13, Sec. 1.3] into “horizontal” and “vertical” components given by

Ty SM = T,M & (vh) = T,M & T,S,,

where v+ C T, »M is the subspace orthogonal to v, which may be identified with T;,S, by
parallel transport within T, M. Let 7: T(,, ,ySM — T,S, be projection onto the vertical
component. Then we set

Dy = 7" (dvolg, ).
To check this construction, let e; € T,I" be an orthonormal set of principal directions
with corresponding curvatures k;. Note that dr = 7 and dv(e;) = (e;, Ve, v), where V

is the covariant derivative. Thus d(7w o 7)(e;) = (e, Ve, ) = Ve, v = Kie;. So we have

(ﬁ*@)p(el, ce en_l) = (7[' o U)*(dvolgp),,(p) (61, Ce en_1)
= (dvols, ), (p)(K1€1, - -, kn—1€n—1) = GK (dvolr),(e1, ..., en1).

Hence 7*® = GK dvolr, as desired.

3. PROOF OF THEOREM 1.1

Let v be a unit normal vector field along I', and u: M — R be the signed distance
function of I' with respect to v. For 0 < § < reach(I'), let U := u~!([—4, §]) be the tubular
neighborhood of T of radius §. Then u € CH1(U) [9, Lem. 2.6], which means that u is
CY! in a collection of local coordinate charts of M covering U. Fix § < min{reach(T)/2,
reach(I';)/2}. We assume 7 is so large that I'; C U.

First assume that I'; do not intersect I'. Let ; be the region between I' and I'; in U.
Choose a unit normal vector field v; along I'; so that v; points into (away from) €, if v
points away from (into) €2;. Let u; be the signed distance function of I'; with respect to
v;. Note that u; € CH1(U), since § < reach(T';)/2. We say that I'; — T" in C! topology,
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provided that u; — u in C1*(U), which means that u; — u with respect to the C1*'-norm
in a collection of local charts covering U.

Lemma 3.1. T; — T in CY! topology.

Proof. By |9, Prop. 2.8], the Hessians of u and u; are uniformly bounded almost every-
where on U. Hence, on U, the gradients Vu and Vu; are uniformly Lipschitz. It only
remains to check that Vu; — Vu pointwise on U. For any point p € U \ T there exists a
(geodesic) sphere S C U of radius |u(p)| > 0 centered at p with SNT' = {p}. Similarly,
assuming ¢ is so large that p ¢ I';, there exists a sphere S; C U of radius |u;(p)| > 0
centered at p with S; NT'; = {p;}. Since I'; — I' in Hausdorff distance, u; — u in C°(U).
Thus

dist(p;, S) < dist(S;, S) — 0, and dist(p;, I') < dist(I';,I') — 0,

where dist is the Riemannian distance in M. Thus any limit point of p; lies in I'NS = {p},
or p; — p. It follows that Vu;(p) — Vu(p), since these gradients are unit tangent vectors
at p to geodesic segments pp and pp,. Since the gradients are uniformly Lipschitz,
Vu;(p) — Vu(p) for all p € U, which completes the proof. O

The above lemma together with Kirszbraun’s extension theorem leads to:

Lemma 3.2. There exists N > 0 such that, for i > N, v; extends to a uniformly

Lipschitz unit normal vector field on §; which coincides with v on T'.

Proof. Suppose first that U is parallelizable, so that there exists a smooth orthonormal
frame field e; on U. Then any unit vector in T,,U is identified with a point of S™1 by

v ((v,e1),..., (v, en)),

where (-, -) denotes the metric on M. In particular, the union of v and v; yields a mapping
w;: 08 — S™ 1. By Lemma 3.1, w; are uniformly Lipschitz, say with constant L. So
by Kirszbraun’s theorem, w; admits an L-Lipschitz extension 2; — R, which we again
denote by w;. For any point p € Q; let p € I be its nearest point. Then dist(p,p) < d;,
where d; denotes the maximum length in ; of the geodesics orthogonal to I'. Assume
N is so large that 6; < 1/L. Then, by the triangle inequality,

lwi(p)| > |wi(p)| — |wi(p) — wi(p)] > 1~ Lé; > 0.

Hence v; := w;/|w;| yields the desired extension.

If U is not parallelizable, cover I" by open topological balls By, C I'. Let U, C U be
the cylindrical neighborhoods foliated by geodesics in U which are orthogonal to Bj.
Then Uy, admits a smooth orthonormal frame field. So, as discussed above, there exists
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a unit normal vector field Vf on §2; N Uy, which is L-Lipschitz, and coincides with v and
v; on 0Q; N Uyg. Let ¢y be a partition of unity on U subordinate to {Uy}, and set

Vi 1= Z(Zﬁkl/@k/‘ > vt
k k
We claim that for N sufficiently large, ), gbkl/f = (0 and thus v; is well-defined. Indeed
for any point p € ; N U, we have p € I' N Ug. Thus
v (p) = v(®)| = |vf (p) — v} (P)| < Lé:.
Consequently, if p € Q; N U N Uy, then
i (p) = v{(p)| < Vi (p) = v(D)| + [v(P) — v/ (P)| < 2L6;.

So if N is sufficiently large, |[v¥(p) — v/(p)| < 1; in particular, these vectors all lie in an

open hemisphere. Hence gbkuf = 0, which ensures that v; is the desired extension. [J

Let v; be the extension given by Lemma 3.2. Then by Lemma 2.1 and Stokes theorem,
there exists a constant C' independent of ¢ such that

/891- Ui (@) /Q d(y;‘(@,,))‘ _ /Q 7 (dDy)

since v; are uniformly Lipschitz, and so the pullbacks 7} are uniformly bounded. Thus
|IM,.(T;) — M,(T")| — 0, which concludes the proof in the case where I'; N T' = ).

To prove the general case, let IV C U be a hypersurface parallel to I, i.e., a level set
of u different from I'. Let €' be the region between IV and I'. Then I'; will be disjoint
from I" for 7 sufficiently large. Let 2, be the region between I and I';. Since I', I, and

4) M () = M (D)| = < O8],

I'; all have uniformly positive reach, the same argument for (4) shows that
M (L) = M(T)] < C],  and  [M(T7) = M,(T)| < C|9],
for some constant C'. Thus, by the triangle inequality,
lim [M,(T%) — M, (T)] < lim C(102%] + |8]) < 20192,
1— 00 11— 00
As T — T', we have || — 0, which completes the proof.

4. PROOF OF THEOREM 1.2

Let M be a Cartan-Hadamard manifold and I" be a convex hypersurface in M. Recall
that I'® denote the outer parallel hypersurfaces of I' at distance € > 0. Let €. be the
region between I'® and I', and Kj; denote the sectional curvature of M.

Lemma 4.1. Let C :=supgq_|Ky|. Then
IM, (%) = M (D)] < ((r + 1)My11(T%) + CM,_1(T%))e.
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Proof. Let u be the distance function of I'. Then |Vu| = 1 on the exterior region of I',
and [11, Thm. 3.1| quickly yields

M%) = MAT) < (1) [ apia(e) +.C [ orma(),
£ QE
where k" = (kY,...,kl_,) refers to the principal curvatures of the level sets of u. More
precisely, we apply [11, Thm. 3.1] to parallel hypersurfaces I'’ for 0 < § < ¢ and take

the limit as § — 0 to obtain the above inequality. By the coarea formula
[ ot = [ M) £ Mo (@),
Qe 0<t<e

where the last inequality is due to the monotonicity property (2). Similarly, fﬂg or—1(K") <
eM,—1(I'¢), which completes the proof. O

Suppose there exists a sequence of convex hypersurfaces I'; C M such that I'; — T
with respect to Hausdorff distance. By the triangle inequality,

(M, (L) = M (I)] <
(M (Ti) = My ()| + M (1) = M (I%)] + [M, (T%) = M,.(T)].
As i — o0, the middle term on the right hand side vanishes by Theorem 1.1. To bound
the first term, let B C M be a closed ball which contains I' in its interior, and set

C := supp |K|. For i sufficiently large and small €, we have I';, I'; C B; therefore,
Lemma 4.1 yields

M (Ti) = Me(T5)] < ((r + M1 (T5) + C M1 (T5) )e.
But M, 1(I'%) = M;11(I¥) and M,_1(I'§) = M,_;(I'*) by Theorem 1.1, since these
hypersurfaces have uniformly positive reach. Thus

B (M (1) = Me(D)] < (7 D) Mys (1) £ CMy1(T9)e + [ M (T9) = My (I).

Letting € — 0 and recalling (1) completes the proof.
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