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Abstract. We show that total generalized mean curvatures of hypersurfaces with
positive reach in Riemannian manifolds, and convex bodies in Cartan-Hadamard
spaces, are continuous with respect to Hausdorff distance.

1. Introduction

Let Γ be an oriented C1,1 hypersurface in a Riemannian n-manifold M . Then the
principal curvatures κ := (κ1, . . . , κn−1) of Γ are well-defined almost everywhere, by
Rademacher’s theorem, and the total rth mean curvature of Γ is given by

Mr(Γ) :=

∫
Γ
σr(κ),

where σr(κ) :=
∑

1≤i1<···<ir≤n−1 κi1 . . . κir are the elementary symmetric polynomials,
for 1 ≤ r ≤ n− 1. By convention, σ0 := 1, and σr := 0 for r ≥ n. Up to multiplicative
constants, depending only on n,Mr(Γ) form the coefficients of the generalized Steiner’s
polynomial and Weyl’s tube formula [12]. They are also known as quermassintegrals
when Γ is a convex hypersurface in Euclidean spaceRn [14]. Here we study the continuity
of these fundamental objects. In particular, we show:

Theorem 1.1. Let Γ be a closed hypersurface with positive reach embedded in a Rie-
mannian manifold M . Suppose there exists a sequence of closed embedded hypersurfaces
Γi ⊂ M with uniformly positive reach such that Γi → Γ with respect to Hausdorff dis-
tance. ThenMr(Γi)→Mr(Γ).

The reach of Γ, denoted by reach(Γ), is the supremum of ε ≥ 0 such that through each
point of Γ there pass a pair of (geodesic) balls of radius ε whose interiors are disjoint from
Γ. If reach(Γ) > 0, then Γ is C1,1 [9, Lem. 2.6]. ThusMr(Γ) is well-defined. Theorem
1.1 was established in Rn by Federer [6, Thm. 5.9]. The general version should follow
from the theory of smooth valuations [1], and convergence of normal cycles [7, 15]. The
latter can be reduced to the Euclidean case [6, Thm. 4.13] via local charts, since positive
reach is preserved under diffeomorphisms [2]. Here we give a more direct and fairly self-
contained argument via universal differential forms introduced by Chern [5].
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The prime motivation for this work is the next observation, which we again establish
geometrically using Theorem 1.1 and some recent results for total curvatures [11]. A
Cartan-Hadamard manifold M is a complete, simply connected manifold with nonposi-
tive curvature. A subset of M is convex if it contains the geodesic connecting every pair
of its points. A convex hypersurface Γ ⊂ M is the boundary of a compact convex set
with interior points. We define

(1) Mr(Γ) := lim
ε↘0
Mr(Γ

ε),

where Γε denotes the outer parallel hypersurface of Γ at distance ε. Note thatMr(Γ
ε)

is well-defined since reach(Γε) ≥ ε and thus Γε is C1,1 for ε > 0. Furthermore, the limit
exists since

(2) ε 7→ Mr(Γ
ε) is nondecreasing,

by [11, Cor. 4.4], andMr(Γ
ε) ≥ 0 since Γε is convex (assuming proper orientation, so

that the principal curvatures are nonnegative). See [9] for basic facts about convex sets
and their distance functions in Cartan-Hadamard manifolds.

Theorem 1.2. The total curvature functionalsMr are continuous on the space of convex
hypersurfaces in a Cartan-Hadamard manifold with respect to Hausdorff distance.

This result simplifies a number of arguments, e.g., see [9, Note 3.7] and [10, Lem. 3.3],
related to the Cartan-Hadamard conjecture on the isoperimetric inequality in spaces of
nonpositive curvature. The conjecture follows if the total Gauss-Kronecker curvature

(3) Mn−1(Γ) ≥ |Sn−1|

for convex hypersurfaces Γ in Cartan-Hadamard manifolds, where |Sn−1| is the volume
of the unit sphere in Rn [9]. Our proof of Theorem 1.2 employs an estimate for total
curvatures of parallel hypersurfaces (Lemma 4.1) which may be of further interest.

2. Universal Differential Forms

Let TpM be the tangent space of a Riemannian manifold M at a point p, Sp ⊂ TpM
be the set of unit vectors, and SM := {(p, u) | p ∈ M,u ∈ Sp} denote the unit tangent
bundle of M . Let ν be a (continuous) unit normal vector field along Γ, and ν : Γ→ SM

be given by ν(p) := (p, ν(p)). The following fact is established in [3, Prop. 3.8].

Lemma 2.1 (Bernig-Bröcker [3]). For 0 ≤ r ≤ n − 1, there exists an (n − 1)-form Φr

on SM such that
Mr(Γ) =

∫
Γ
ν∗(Φr),

for any C1,1 hypersurface Γ ⊂M .
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The forms Φr are called universal [3] because they do not depend on Γ. The form
Φn−1 corresponds to Φ0 in Chern [5, p. 675], and is also described by Borbely [4]. See
[8] for a concise construction of Φr in terms of the connection forms of M and dual one
forms of the principal frame of Γ.

We describe a geometric construction for Φ := Φn−1, which avoids exterior algebra.
This is of special interest in connection with conjecture (3). Let GK := σn−1(κ) be the
Gauss-Kronecker curvature of Γ. To motivate our approach, note that in Rn

ν∗(dvolSn−1) = GKdvolΓ,

where dvol stands for volume form. So the Gauss-Kronecker curvature of Γ is the
Jacobian of ν viewed as the Gauss map Γ→ Sn−1. Hence we may set Φ := dvolSn−1 . To
extend this concept to M , note that each tangent space of SM admits a decomposition
[13, Sec. 1.3] into “horizontal” and “vertical” components given by

T(p,v)SM = TpM ⊕ (v⊥) ' TpM ⊕ TvSp,

where v⊥ ⊂ TpM is the subspace orthogonal to v, which may be identified with TvSp by
parallel transport within TpM . Let π : T(p,v)SM → TvSp be projection onto the vertical
component. Then we set

Φ(p,v) := π∗(dvolSp)v.

To check this construction, let ei ∈ TpΓ be an orthonormal set of principal directions
with corresponding curvatures κi. Note that dπ = π and dν(ei) = (ei,∇eiν), where ∇
is the covariant derivative. Thus d(π ◦ ν)(ei) = π(ei,∇eiν) = ∇eiν = κiei. So we have

(ν∗Φ)p(e1, . . . , en−1) = (π ◦ ν)∗(dvolSp)ν(p)(e1, . . . , en−1)

= (dvolSp)ν(p)(κ1e1, . . . , κn−1en−1) = GK (dvolΓ)p(e1, . . . , en−1).

Hence ν∗Φ = GK dvolΓ, as desired.

3. Proof of Theorem 1.1

Let ν be a unit normal vector field along Γ, and u : M → R be the signed distance
function of Γ with respect to ν. For 0 < δ < reach(Γ), let U := u−1([−δ, δ]) be the tubular
neighborhood of Γ of radius δ. Then u ∈ C1,1(U) [9, Lem. 2.6], which means that u is
C1,1 in a collection of local coordinate charts of M covering U . Fix δ < min{reach(Γ)/2,
reach(Γi)/2}. We assume i is so large that Γi ⊂ U .

First assume that Γi do not intersect Γ. Let Ωi be the region between Γ and Γi in U .
Choose a unit normal vector field νi along Γi so that νi points into (away from) Ωi, if ν
points away from (into) Ωi. Let ui be the signed distance function of Γi with respect to
νi. Note that ui ∈ C1,1(U), since δ < reach(Γi)/2. We say that Γi → Γ in C1,1 topology,
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provided that ui → u in C1,1(U), which means that ui → u with respect to the C1,1-norm
in a collection of local charts covering U .

Lemma 3.1. Γi → Γ in C1,1 topology.

Proof. By [9, Prop. 2.8], the Hessians of u and ui are uniformly bounded almost every-
where on U . Hence, on U , the gradients ∇u and ∇ui are uniformly Lipschitz. It only
remains to check that ∇ui → ∇u pointwise on U . For any point p ∈ U \Γ there exists a
(geodesic) sphere S ⊂ U of radius |u(p)| > 0 centered at p with S ∩ Γ = {p}. Similarly,
assuming i is so large that p 6∈ Γi, there exists a sphere Si ⊂ U of radius |ui(p)| > 0

centered at p with Si ∩Γi = {pi}. Since Γi → Γ in Hausdorff distance, ui → u in C0(U).
Thus

dist(pi, S) ≤ dist(Si, S)→ 0, and dist(pi,Γ) ≤ dist(Γi,Γ)→ 0,

where dist is the Riemannian distance inM . Thus any limit point of pi lies in Γ∩S = {p},
or pi → p. It follows that ∇ui(p)→ ∇u(p), since these gradients are unit tangent vectors
at p to geodesic segments pp and ppi. Since the gradients are uniformly Lipschitz,
∇ui(p)→ ∇u(p) for all p ∈ U , which completes the proof. �

The above lemma together with Kirszbraun’s extension theorem leads to:

Lemma 3.2. There exists N > 0 such that, for i > N , νi extends to a uniformly
Lipschitz unit normal vector field on Ωi which coincides with ν on Γ.

Proof. Suppose first that U is parallelizable, so that there exists a smooth orthonormal
frame field ej on U . Then any unit vector in TpU is identified with a point of Sn−1 by

v 7→
(
〈v, e1〉, . . . , 〈v, en〉

)
,

where 〈·, ·〉 denotes the metric onM . In particular, the union of ν and νi yields a mapping
wi : ∂Ωi → Sn−1. By Lemma 3.1, wi are uniformly Lipschitz, say with constant L. So
by Kirszbraun’s theorem, wi admits an L-Lipschitz extension Ωi → Rn, which we again
denote by wi. For any point p ∈ Ωi let p ∈ Γ be its nearest point. Then dist(p, p) ≤ δi,
where δi denotes the maximum length in Ωi of the geodesics orthogonal to Γ. Assume
N is so large that δi < 1/L. Then, by the triangle inequality,

|wi(p)| ≥ |wi(p)| − |wi(p)− wi(p)| ≥ 1− Lδi > 0.

Hence νi := wi/|wi| yields the desired extension.
If U is not parallelizable, cover Γ by open topological balls Bk ⊂ Γ. Let Uk ⊂ U be

the cylindrical neighborhoods foliated by geodesics in U which are orthogonal to Bk.
Then Uk admits a smooth orthonormal frame field. So, as discussed above, there exists
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a unit normal vector field νki on Ωi ∩ Uk which is L-Lipschitz, and coincides with ν and
νi on ∂Ωi ∩ Uk. Let φk be a partition of unity on U subordinate to {Uk}, and set

νi :=
∑
k

φkν
k
i

/∣∣∣∑
k

φkν
k
i

∣∣∣.
We claim that for N sufficiently large,

∑
k φkν

k
i 6= 0 and thus νi is well-defined. Indeed

for any point p ∈ Ωi ∩ Uk, we have p ∈ Γ ∩ Uk. Thus

|νki (p)− ν(p)| = |νki (p)− νki (p)| ≤ Lδi.

Consequently, if p ∈ Ωi ∩ Uk ∩ U`, then

|νki (p)− ν`i (p)| ≤ |νki (p)− ν(p)|+ |ν(p)− ν`i (p)| ≤ 2Lδi.

So if N is sufficiently large, |νki (p)− ν`i (p)| ≤ 1; in particular, these vectors all lie in an
open hemisphere. Hence

∑
φkν

k
i 6= 0, which ensures that νi is the desired extension. �

Let νi be the extension given by Lemma 3.2. Then by Lemma 2.1 and Stokes theorem,
there exists a constant C independent of i such that

(4) |Mr(Γi)−Mr(Γ)| =
∣∣∣∣∫
∂Ωi

ν∗i (Φr)

∣∣∣∣ =

∣∣∣∣∫
Ωi

d(ν∗i (Φr))

∣∣∣∣ =

∣∣∣∣∫
Ωi

ν∗i (dΦr)

∣∣∣∣ ≤ C|Ωi|,

since νi are uniformly Lipschitz, and so the pullbacks ν∗i are uniformly bounded. Thus
|Mr(Γi)−Mr(Γ)| → 0, which concludes the proof in the case where Γi ∩ Γ = ∅.

To prove the general case, let Γ′ ⊂ U be a hypersurface parallel to Γ, i.e., a level set
of u different from Γ. Let Ω′ be the region between Γ′ and Γ. Then Γi will be disjoint
from Γ′ for i sufficiently large. Let Ω′i be the region between Γ′ and Γi. Since Γ, Γ′, and
Γi all have uniformly positive reach, the same argument for (4) shows that

|Mr(Γi)−Mr(Γ
′)| ≤ C|Ω′i|, and |Mr(Γ

′)−Mr(Γ)| ≤ C|Ω′|,

for some constant C. Thus, by the triangle inequality,

lim
i→∞
|Mr(Γi)−Mr(Γ)| ≤ lim

i→∞
C(|Ω′i|+ |Ω′|) ≤ 2C|Ω′|.

As Γ′ → Γ, we have |Ω′| → 0, which completes the proof.

4. Proof of Theorem 1.2

LetM be a Cartan-Hadamard manifold and Γ be a convex hypersurface inM . Recall
that Γε denote the outer parallel hypersurfaces of Γ at distance ε ≥ 0. Let Ωε be the
region between Γε and Γ, and KM denote the sectional curvature of M .

Lemma 4.1. Let C := supΩε
|KM |. Then

|Mr(Γ
ε)−Mr(Γ)| ≤

(
(r + 1)Mr+1(Γε) + CMr−1(Γε)

)
ε.
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Proof. Let u be the distance function of Γ. Then |∇u| = 1 on the exterior region of Γ,
and [11, Thm. 3.1] quickly yields

Mr(Γ
ε)−Mr(Γ) ≤ (r + 1)

∫
Ωε

σr+1(κu) + C

∫
Ωε

σr−1(κu),

where κu = (κu1 , . . . , κ
u
n−1) refers to the principal curvatures of the level sets of u. More

precisely, we apply [11, Thm. 3.1] to parallel hypersurfaces Γδ for 0 < δ < ε and take
the limit as δ → 0 to obtain the above inequality. By the coarea formula∫

Ωε

σr+1(κu) =

∫
0≤t≤ε

Mr+1(Γt) ≤ εMr+1(Γε),

where the last inequality is due to the monotonicity property (2). Similarly,
∫

Ωε
σr−1(κu) ≤

εMr−1(Γε), which completes the proof. �

Suppose there exists a sequence of convex hypersurfaces Γi ⊂ M such that Γi → Γ

with respect to Hausdorff distance. By the triangle inequality,

|Mr(Γi)−Mr(Γ)| ≤

|Mr(Γi)−Mr(Γ
ε
i )|+ |Mr(Γ

ε
i )−Mr(Γ

ε)|+ |Mr(Γ
ε)−Mr(Γ)|.

As i→∞, the middle term on the right hand side vanishes by Theorem 1.1. To bound
the first term, let B ⊂ M be a closed ball which contains Γ in its interior, and set
C := supB |KM |. For i sufficiently large and small ε, we have Γi, Γεi ⊂ B; therefore,
Lemma 4.1 yields

|Mr(Γi)−Mr(Γ
ε
i )| ≤

(
(r + 1)Mr+1(Γεi ) + CMr−1(Γεi )

)
ε.

But Mr+1(Γεi ) → Mr+1(Γε) and Mr−1(Γεi ) → Mr−1(Γε) by Theorem 1.1, since these
hypersurfaces have uniformly positive reach. Thus

lim
i→∞
|Mr(Γi)−Mr(Γ)| ≤

(
(r + 1)Mr+1(Γε) + CMr−1(Γε)

)
ε+ |Mr(Γ

ε)−Mr(Γ)|.

Letting ε→ 0 and recalling (1) completes the proof.
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