
h-PRINCIPLES FOR CURVES AND KNOTS

OF CONSTANT TORSION

MOHAMMAD GHOMI AND MATTEO RAFFAELLI

Abstract. We prove that curves of constant torsion satisfy the C1-dense h-
principle in the space of immersed curves in Euclidean space. In particular, there
exists a knot of constant torsion in each isotopy class. Our methods, which involve
convex integration and degree theory, quickly establish these results for curves of
constant curvature as well.

1. Introduction

Curves of constant torsion, which occur naturally as elastic rods, have long been
studied [1–3, 12, 13, 16, 18, 22, 23], and some knotted examples have been found by
various means. Here we construct knots of constant torsion in every isotopy class
by adapting the convex integration [5, 11, 20] techniques developed for curves of
constant curvature [7,10]. To state our main result, let Γ be an interval [a, b] ⊂ R or
topological circle R/((b−a)Z), and Cα(Γ,R3) be the space of Cα curves f : Γ → R3

with its standard norm | · |α. Let Immα⩾1(Γ,R3) ⊂ Cα(Γ,R3) consist of curves with
speed |f ′| ≠ 0. If |f ′| = 1, the curvature and torsion of f are given by κ := |f ′′| and
τ := det(f ′, f ′′, f ′′′)/κ2 respectively.

Theorem 1.1. Let f ∈ Immα⩾4(Γ,R3) be a curve with κ, τ > 0, and pi ∈ Γ be a fi-

nite collection of points. Then for any ε > 0 there exists a curve f̃ ∈ Immα−1(Γ,R3)

with κ̃ > 0 and τ̃ = constant such that |f̃ − f |1 ⩽ ε and f̃ is tangent to f at pi.

If ε is sufficiently small, then ht := (1 − t)f + tf̃ , t ∈ [0, 1], is a homotopy in
Immα−1(Γ,R3). In the terminology of Gromov or Eliashberg [4, 11], this consti-
tutes a C1-dense h-principle for curves of constant torsion. Let Embα(Γ,R3) ⊂
Immα(Γ,R3) be the space of injective curves, which are called knots when Γ is a
circle. If f ∈ Emb1(Γ,R3) and ε is sufficiently small, then ht is an isotopy. Thus,
since curves in Emb∞(Γ,R3) with κ, τ > 0 are dense in Emb1(Γ,R3), we obtain:

Corollary 1.2. Every knot f ∈ Emb1(Γ,R3) is isotopic in Emb1(Γ,R3) to a knot

f̃ ∈ Emb∞(Γ,R3) with κ̃ > 0 and τ̃ = constant.

Analogous results for curvature were established in [7], see also [10,21] for related
h-principles, and [15, 17] for earlier constructions. As in [7], we prove Theorem 1.1
by reducing it to a problem for spherical curves (Propositions 3.1 and 3.2). More
explicitly, assuming |f ′| = 1, we deform the tantrix T := f ′ of f to a longer spherical

curve T̃ with |T̃ − T |0 ⩽ ε, and then integrate T̃ to obtain f̃ . For τ̃ to be constant,

the product k̃ṽ 2 must be constant (Lemma 2.1), where k̃ is the geodesic curvature
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and ṽ is the speed of T̃ . Furthermore, for f̃ to be tangent to f at pi we need to have∫
T̃ =

∫
T on every interval between pi. We will show that these requirements can

be met via basic convex geometry together with degree theory (Lemma 4.1), which
makes the arguments significantly shorter than those in [7], although less explicit.

Constructing submanifolds with prescribed tangential directions has been a major
theme in h-principle theory, e.g., see [9] and references therein. In particular see
[6, 8] for more results and applications of curves with prescribed tantrices.

Note 1.3. Our methods also establish the analogue of Theorem 1.1 for curvature,

with obvious simplifications since T̃ would only need to have constant speed. In
particular Lemma 2.1 below is not needed. Furthermore, in Proposition 3.1 we may

replace the condition τ̃ = c with κ̃ = c, and in Proposition 3.2 replace k̃ṽ 2 = c
with ṽ = c. The proofs will then proceed along the same lines, with only some
abbreviations.

2. Reparametrization of the Tantrix

We begin by constructing constant torsion curves with a prescribed tantrix image.
Set I := [a, b], and |I| := b− a. Let f ∈ Imm3(I,R3) be a curve with |f ′| = 1, and
set v := |T ′| = κ. If v ̸= 0, then T ∈ Imm2(I,S2), and N := T ′/v, B := T × N
generate the Frenet frame (T,N,B). Then we may compute that

τ = ⟨N ′, B⟩ = ⟨vT ′′ − v′T ′, B⟩
v2

=
⟨T ′′ − v′N,B⟩

v
=

⟨T ′′, B⟩
v

= kv2,

where k := ⟨T ′′, B⟩/v3 is the geodesic curvature of T . We say T̃ is a reparametriza-

tion of T if T̃ = T ◦ φ for an increasing diffeomorphism φ : I → I. Standard ODE
theory yields:

Lemma 2.1. Let T ∈ Immα⩾3(I,S2) be a curve with k > 0. Then T admits a

unique reparametrization T̃ = T ◦ φ ∈ Immα−1(I,S2) such that k̃ ṽ 2 is constant.

Proof. For c > 0, the equation k̃ ṽ 2 = c may be rewritten as (v ◦φ)φ′ =
√

c/(k ◦ φ)
by the chain rule and invariance of geodesic curvature. Since α ⩾ 3, v and k
are Lipschitz, and may be extended to Lipschitz functions on R without loss of
regularity. So we arrive at the initial value problem{

φ′ = Fc(φ),

φ(a) = a;
where Fc(·) :=

√
c

v(·)
√
k(·)

.

Since Fc : R → R is Lipschitz, for every c there exits a unique solution φc : I → R
by Picard–Lindelöf theorem. Since Fc is Cα−2, φc is Cα−1, and since φ′

c ̸= 0, φc is
a diffeomorphism onto its image. Note that c 7→ φc(b) is a continuous monotonic
function since φc depends continuously on c and Fc varies monotonically with c.
Furthermore φc(b) can be made arbitrarily small or large along with Fc. Hence
φc0(b) = b for a unique c0, which yields the desired reparametrization. □
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Suppose now that f ∈ Immα⩾4(I,R3) is a curve with κ, τ > 0 and tantrix T .
Then T ∈ Immα−1(I,S2) with geodesic curvature k = τ/κ2 > 0. So we may apply

the above lemma to obtain the reparametrization T̃ ∈ Immα−2(I,S2). Then

(1) f̃(t) := f(a) +

∫ t

a
T̃ (u)du

is a Cα−1 curve of constant torsion c with T̃ (I) = T (I). Since c = k̃ṽ 2 = (k ◦ φ)ṽ 2,

and L := length(T ) = length(T̃ ) =
∫
I ṽ, we obtain the following estimate

(2)
L2

|I|2
minI(k) ⩽ c =

(
L

|I| aveI
(
(k ◦ φ)−1/2

))2

⩽
L2

|I|2
maxI(k),

where aveI(·) :=
∫
I(·)/|I|.

3. Reduction to Spherical Curves

Here we use tantrices to reduce Theorem 1.1 to a problem for spherical curves.
First we show that Theorem 1.1 follows from a more geometric local result. We say
that a constant c is arbitrarily large if it can be chosen from an interval [a,∞).

Proposition 3.1. Let f ∈ Immα⩾4(I,R3) be a curve with κ, τ > 0 and V be an open

neighborhood of T (I) in S2. Then there exists a unit-speed curve f̃ ∈ Immα−1(I,R3)

with κ̃ > 0 and τ̃ = c, for c arbitrarily large, such that T̃ (I) ⊂ V , f = f̃ on ∂I, and

T (U) = T̃ (Ũ) for some open neighborhoods U , Ũ of ∂I in I.

Proposition 3.1 implies Theorem 1.1 as follows. Let Ii be a partition of Γ into
intervals such that ∂Ii include the prescribed points pj . Choose Ii so small that
T (Ii) lies in the interior Vi of a disk of radius ε/2 in S2. Applying Proposition 3.1

to fi := f |Ii , we obtain Cα−1 curves f̃i with τ̃i = ci, f̃i = fi on ∂Ii, T̃i(Ii) ⊂ Vi, and

Ti(Ui) = T̃i(Ũi) for open neighborhoods Ui, Ũi of ∂Ii in Ii. The last condition yields

open neighborhoods Wi and W̃i of ∂Ii in Γ such that T̃ (W̃i) = T (Wi). Furthermore,

since ci are arbitrarily large, they may assume the same value c. Define f̃ : Γ → R3

by setting f̃ := f̃i on Ii. Then f̃ is C0, since f̃ = f on ∂Ii. Since f̃
′
i = T̃i and T̃i = Ti

on ∂Ii, f̃ is C1. So T̃ = f̃ ′ is well-defined. Note that T̃ |Ii = T̃i = f̃ ′
i is Cα−2 and,

since T̃ (W̃i) = T (Wi), T̃ is a reparametrization of T with speed
√
c/k near ∂Ii. So,

by Lemma 2.1, T̃ is Cα−2. Hence f̃ is Cα−1. Thus τ̃ is well-defined and is equal to

c. Finally since T̃ (Ii) ⊂ Vi, |T̃ − T |0 ⩽ ε, which yields |f̃ − f |1 ⩽ ε as desired.
It remains then to prove Proposition 3.1, which we reduce in turn to a more basic

result. Let conv(f) denote the convex hull of f . Note that aveI(f) lies in the relative
interior of conv(f) [7, Lem. 2.1]. We say that f is nonflat provided that conv(f)
has interior points, or int(conv(f)) ̸= ∅.
Proposition 3.2. Let T ∈ Immα⩾3(I,S2) be a nonflat curve with k > 0, V ⊂ S2

be an open neighborhood of T (I), and x0 ∈ int(conv(T )). Then there exists a curve

T̃ ∈ Immα−1(I,S2) with k̃ṽ 2 = c, for c arbitrarily large, T̃ (I) ⊂ V , T (U) = T̃ (Ũ)

for some open neighborhoods U , Ũ of ∂I in I, and aveI(T̃ ) = x0.
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Proposition 3.2 implies Proposition 3.1 as follows. After a perturbation of f on a
compact set in the interior of I we may assume that T is nonflat. Let x0 := aveI(T ),

T̃ be the corresponding curve given by Proposition 3.2, and f̃ be given by (1).

Then f̃ ′ = T̃ . So |f̃ ′| = 1, κ̃ = |T̃ ′| > 0, and τ̃ = k̃ṽ2 = c as desired. Finally,∫
I T = |I| aveI(T ) = |I| aveI(T̃ ) =

∫
I T̃ which ensures that f = f̃ on ∂I and

completes the argument.

4. Controlling the Average

Here we establish Proposition 3.2, which completes the proof of Theorem 1.1 as
discussed above. First we record the following basic fact.

Lemma 4.1. Let B ⊂ Rn be a ball of radius R centered at x0, and F : B → Rn be
a continuous map. If |F (x)− x| < R for all x ∈ ∂B, then x0 ∈ F (B).

Proof. For t ∈ [0, 1], let Ft(x) := (1 − t)x + tF (x), and set ft := Ft|∂B. Since

|F (x)−x| < R, for x ∈ ∂B, x0 ̸∈ ft(∂B). So f̃t := ft/|ft| : ∂B → ∂B is well-defined.

Since f̃0 is the identity map, deg(f̃0) = 1. Thus, since f̃t is a homotopy, deg(f̃1) = 1.

But f̃1 = F/|F |. So if x0 /∈ F (B), f̃1 may be extended to B, which implies that it is

homotopic to a constant map; therefore deg(f̃1) = 0, which is a contradiction. □

Now we prove Proposition 3.2. By Steinitz’s theorem [19, Thm. 1.3.10], there is
a minimal set of points vi ∈ T , i = 1, . . . , n ⩽ 6, such that x0 ∈ int(conv({vi})). Let
B ⊂ int(conv({vi})) be a ball of radius R centered at x0. Then, by Carathéodory’s
theorem [19, Thm. 1.1.4], for each x ∈ B there are constants λi(x) > 0, with∑

i λi(x) = 1, such that x =
∑

i λi(x)vi. By a theorem of Kalman [14], we may

assume that λi : B → R are continuous. Then λ := minB{λi} > 0.
Let Ci ⊂ V be circles of radius r < R/(4n) which are tangent to T at vi, and

lie on the convex side of T . Let k̃C be the geodesic curvature of Ci, which depends

only on r. Choose r so small that k̃C ⩾ maxI(k). Then, after a perturbation of
T , we may assume that a neighborhood of vi in T lies on Ci, see Figure 1. Let

T

vi

Ci

Ci,ℓ

Figure 1.

Ci,ℓ be a continuous family of nested Cα curves of length 0 < ℓ < length(Ci) and
nondecreasing curvature which contain an open neighborhood of vi in T and shrink
to vi as ℓ → 0. Then for any ℓi > 0 we can construct a unique composite loop of
length ℓi at vi as follows. Let m be the largest integer with mℓi ⩽ length(Ci). Then
go m times around Ci and once around Ci,ℓ for ℓ = length(Ci)−mℓi.
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Set L := length(T ), and choose L̃ > L. For x ∈ B, let T x ∈ Immα(I,S2) be the

constant speed curve of length L̃ which traces the image of T plus loops of length

ℓi(x) := λi(x)(L̃− L)

at vi. Then x 7→ T x is continuous with respect to the C0-norm on C0(I,S2). Next

let T̃x be the reparametrizations of T x given by Lemma 2.1, and note that T x 7→ T̃x

is continuous with respect to the C0-norm. Thus the mapping

B ∋ x
F7−−−−→ aveI(T̃x) ∈ R3

is continuous. We may assume that |I| = 1. Then by (2) and since k̃C ⩾ maxI(k),

c =
(
L̃/ aveI

(
k̃−1/2
x

))2
⩾ L̃2minI(k̃x) = L̃2minI(k).

So c → ∞ as L̃ → ∞. We will show that if L̃ is sufficiently large, then |F (x)−x| < R,
which will complete the proof by Lemma 4.1.

Let T̃ i
x be the part of T̃x which forms the loop at vi, and Iix ⊂ I be the subinterval

such that T̃ i
x = T̃ |Iix . Set I

′
x := I − ∪iI

i
x. Then

F (x) =
∑
i

|Iix| aveIix(T̃
i
x) + |I ′x| aveI′x(T̃x).

Since aveIix(T̃
i
x) ∈ conv(T̃ i

x) ⊂ conv(Di), where Di ⊂ S2 is the small disk bounded

by Ci, we have |aveIix(T̃
i
x)− vi| ⩽ 2r < R/(2n). So subtracting

∑
i |Iix|vi from both

sides of the above equation yields

(3)
∣∣∣F (x)−

∑
i

|Iix|vi
∣∣∣ < R

2
+ |I ′x|

∣∣ aveI′x(T̃x)
∣∣.

Now let L̃ → ∞. Note that |I ′x| = L/ aveI′x((c/k̃x)
1/2), and minI′x(k̃x) = minI(k) >

0, since T̃x(I
′
x) = T (I). So |I ′x| → 0. But, since aveI′x(T̃x) ∈ conv(T ), |aveI′x(T̃x)|

is bounded above. So the right hand side of (3) converges uniformly to R/2. Next
note that

|Iix| =
ℓi(x)

√
c aveIix

(
k̃
−1/2
x

) =
λi(x)(L̃− L) aveI

(
k̃
−1/2
x

)
L̃ aveIix

(
k̃
−1/2
x

) .

We have ℓi → ∞ since λi ⩾ λ > 0. So aveIix(k̃
−1/2
x ) → k̃

−1/2
C . Since |I ′x| → 0,

aveI(k̃
−1/2
x ) → k̃

−1/2
C as well. Thus |Iix| → λi(x). So the left hand side of (3)

converges uniformly to |F (x)− x|, which completes the proof.
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