h-PRINCIPLES FOR SMOOTH CURVES AND KNOTS
WITH PRESCRIBED CURVATURE

MOHAMMAD GHOMI AND MATTEO RAFFAELLI

ABSTRACT. We show that smooth curves with prescribed curvature satisfy a
C'-dense h-principle in the space of immersed curves in Euclidean space. More
precisely, every C*?? curve with nonvanishing curvature in R"® can be C!-
approximated by C* curves of any larger curvature, prescribed as a function of
arclength. It follows that there exist C*° knots of prescribed curvature in every
isotopy class of closed curves embedded in R3.

1. INTRODUCTION

Wasem [13] showed that every C? curve in Euclidean space R™3 may be C!-
approximated by curves of larger prescribed curvature. The proof, which is based on
the work of Nash and Kuiper [1,9, 11], requires the target curvature function to be
C>, but produces only C? curves. Adopting a more geometric approach, we refine
Wasem’s result to obtain optimal regularity. We also achieve tighter control over the
speed and position of the approximating curves.

To state our main result, let I be the interval [a,b] C R or a topological circle
R/((b—a)Z), and C*(T", R™) be the space of C* maps f: I' = R" with the topology
induced by the C%norm |- |,. The space of (immersed) curves Imm®>*(T', R") C
C*(T",R™) consists of maps with nonvanishing derivative. The curvature of f €
Imm?(T, R") is given by « := [T"|/|f’|, where T := f'/|f'| is the tantriz of f.

Theorem 1.1. Let f € Imm®??*(T',R">?) be a curve with curvature k > 0, and
k: T — R be a C* 2 function with & > k. Then, for any € > 0, there exists a curve
fe Imm®(I', R™) with curvature k and |f— fli < e. If f has unit speed, then so
does ]7 Furthermore, f can be made tangent to f at any finite set of points prescribed
along T

The last two properties of fN’are additional features of our method, not granted
by the Nash—Kuiper approach in [13]. If & in Theorem 1.1 is sufficiently small,
hy = (1 —t)f+tf, t € [0, 1], is a homotopy in Imm®(T", R™). Thus, in the terminology
of Gromov [7] or Eliashberg [2], the above result establishes a C'-dense h-principle
for smooth curves of prescribed curvature. Similar h-principles for curves of constant
curvature or constant torsion were obtained in [4-6]. Theorem 1.1 has the following
quick application. Let Emb®(I', R?) C Imm®(I', R?) be the space of injective curves,
which are called knots when I' is a circle.

Corollary 1.2. Let f € Emb®?(I',R3) be a knot, and %: T’ — R be a positive C*~2
function. Then f is isotopic in Emb®(I', R?) to a constant-speed knot of curvature .
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Proof. After an isotopy, we may assume that f has constant speed. Choose A so large
that the curvature of f is smaller than A\%. Then, by Theorem 1.1, f is C'-close and
therefore isotopic to a unit-speed curve f with curvature Ax. Flnally, f is isotopic to
A f which has curvature k. O

The above corollary generalizes [13, Cor. 1], where a = 2 and the speed was not
constant. See also [4—6] where this result had been obtained for constant k. The
existence of C2 knots of constant curvature was first established by McAtee [10].

As in [4-6], the proof of Theorem 1.1 is based on a variant of convex integration |2,
3,7,12]. Tt hinges on the fact that when |f’| =1, k = |T”|. After reparametrizing f
with unit speed, we deform T to a (longer) spherical curve T with speed K, which
we then integrate to obtain f For fto be C!-close to f, T should be Colclose to
T. Moreover, for f to be tangent to f at the prescribed points p; € I', T should
have the same integral as T on every interval between p;. These requirements will be
met by combining basic convex geometry (Lemma 4.2) with mapping degree theory
(Lemma 4.1). The latter is the novel feature of this work, which makes the arguments
significantly shorter than those in [4].

2. PRELIMINARIES
We begin by recording some basic facts from [4] which are needed here.

2.1. Unit speed reparametrization. It suffices to establish Theorem 1.1 for unit-
speed curves. To see this, note that for any f € C'(I', R") and ¢ € C(I',I"), we have
[4, Lem. 5.1]

|fowl < [fl(1+[eh).

Suppose that Theorem 1.1 holds for unit-speed curves. Given f € Imm®(I',R"),
choose A > 0 such that length(Af) = b — a. Then there exists a C* diffeomorphism

@: I' = I such that Af o ¢ has unit speed. Let )\/f_\o/gp be the unit-speed curve with
curvature Ak o ¢ such that

Afop—Afow|, <er/(1+le '),

and \f o ¢ is tangent to Af o ¢ at = 1(p;), where p; are the prescribed points. Set
f=Afowop'/X Then f has curvature %, and is tangent to f at p;. Furthermore,

F=fl, =M op=Aop)op |/ A<|Mop—Afop|,(1+ o 1)/A<e

as desired.

2.2. Average and center of mass. Let I := [a,b] and |I| :== b — a. For any curve
f € Imm®>1(I,R"), set length(f) := [;1f'] du. The average and center of mass of f
are defined as

1 /
ave(f) == |I|/fdt and cm(f) :length/f’fmt'

In particular, cm(f) = ave(f) when f has constant speed. Moreover, if g: [¢,d] — R"
is a reparametrization of f, i.e., there exists a diffeomorphism ¢: [¢, d] — [a, b] such
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that g = fo, then cm(f) = cm(g). For any positive (density) function p € C°(I, R),
we define the corresponding mass and center of mass of f as

/ ._ 1 !
m(f,p) = /I pIFld anden(fp) = /I Folfdt.

So cm(f,1/|f'|) = ave(f). More generally, letting ¢: [0, m(f, p)] — I be the inverse
of the (mass) function t — fi p|f'| du, we obtain

(1) cm(f, p) = ave(f o @),
see [4, Lem. 2.2]|.

3. REDUCTION TO SPHERICAL CURVES

Here we show that Theorem 1.1 follows from a geometric result (Proposition 3.2)
for spherical curves. First we reduce Theorem 1.1 to the following local problem.

Proposition 3.1. Let f € Imm®*?(I,R™) be a unit-speed curve with curvature
k>0, and V be an open neighborhood of T(I) in S™~t. Then for any C*~2 function

k: I — R with kK > K, there exists a unit-speed curve f € Imm®(I, R™) with curvature
K such that T(I) CV, f=f ondI, and T(U) =T(U) for some open neighborhoods
U, U of 01 in I.

To see that the above proposition implies Theorem 1.1 recall that, as discussed in
Section 2.1, we may assume that f in Theorem 1.1 has unit speed. So T' = f’. Let I;
be a partition of T" into intervals such that 0I; include all the prescribed points, and
set f; = f|1,. Choose I; so small that |I;| < 1 and T'(I;) lies in the interior V; of a

ball of radius £/2 in 8"~!. Applying Proposition 3.1 to f;, we obtain a C* curve fz
with unit speed and curvature k; := K|z, such that T( ) C Vi, fi= fz on 9I;, and
T (U;) =T, (U) for some open neighborhoods U, U; of OI; in I.

Define f by f|[ = fi;. Then f is C°, because fl fz on 0I;. Moreover f is Cl,
because Tj = f/ and T T; on dI;. Hence T := f’ is well-defined. Note that 7' is
piecewise ( C*~1. Furthermore, since T;(U;) = Ti(U ), there are open neighborhoods
W; and W; of 81; in T such that T(W) T(W;). Hence T is a reparametrization of
T with speed k near d1;, and so is CO‘ L Conbequently fis CO‘ and has curvature k.
Next note that for t € I;, f(t) = f(t;) + ft T;du and f(t) = f(t:) + [} Ti du, where t;

is the initial point of I;. Furthermore since T'(I;) C Vi, we have IT —T)o < e. Thus,

HORSICIES /:@ Ty < /

So Proposition 3.1 does indeed imply Theorem 1.1. Next we show that Proposition 3.1
is a consequence of the following result for spherical curves. We say that a curve
f € Imm®(I,R"™) is nonflat if the convex hull of f(I) has interior points.

€|Ii’ L e

Proposition 3.2. Let T € Imm®>!(I,8"1) be a nonflat curve. Then for any C*~!
function v: I — R with v > |T’| and open neighborhood V' of T(I), there exists a
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curve T € Imm® (1,8" Y such that |T'| =7, T( )CV, T(U) =T(U) for some open
neighborhoods U, U of 81, and ave(T) = ave(T).

To see that Proposition 3.2 implies Proposition 3.1, let T be the tantrix of f in
Proposition 3.1. After a small C* perturbation of f on a compact set in the interior
of I, we may assume that T is nonflat. This is possible since by assumption s > 0.
Hence f does not trace a line segment, and so it can be perturbed without changing
its length, which ensures that it remains a unit-speed curve. Furthermore, since the
perturbation is C2-close to the original curve, we will still have & > k. Now let T
be the CO‘ I curve obtained by applying Proposmon 3.2 to T with v := kK. Then
I (t) )+ f T du is a C* curve with f’ T. So f has unit bpeed and curvature

K. Flnally, the assumption that ave(T) = ave(T) ensures that f = f on 8I, which
completes the argument.

4. PROOF OF THEOREM 1.1

It remains to establish Proposition 3.2, which completes the proof of Theorem 1.1
as discussed above. Our proof is based on the following topological lemma, which is
established quickly via basic degree theory.

Lemma 4.1 ([6]). Let B C R™ be a ball of radius R centered at xy, and F: B — R"
be a continuous map. If |F(z) — x| < R for all x € OB, then x¢ € F(B).

We also need the following version of a classical result of Kalman 8|, who con-
structed continuous barycentric coordinates in convex polytopes.

Lemma 4.2. Let p1,...,pr € R™ be a collection of points whose convexr hull has
nonempty intertor, and B be a ball centered at xqg = Zlepi/k. If B is sufficiently
small, then there are positive C*° functions ¢;: B — R such that

k
1=

k
ch(a:) =1, ;cl )pi = x, ci(zo) = %

=1

Proof. We may assume that xg = 0 after a translation. Then there are n linearly
independent vectors among p;, say pi,...,pn. S0 there are unique coefficients
ai(z),...,an(z) such that z = > | a;(z)p; for each x € B. The functions a;: B —
R are C*°, as they are linear. Set a; = 0 for ¢ > n, and let

1 k
ci(z) = z (1 - Zal(:c)> + a;(x).
i=1
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Since > " ai(xo)pi = Zle a;(xo)pi = xo and p1,...,p, are linearly independent,
a;(xg) = 0. Thus ¢;(xo) = 1/k. So ¢; > 0 on B if B is small. Furthermore,

k k k
ch(x) =1- Zai(x) + Zai(x) =1,
i=1 i=1 i=
k 1 k
Zcz'(iﬁ)pi = 20 (1 - Z%(@) + Zaz‘(x)pi =z,
j i=1

as desired. 0

Now we are ready to prove the key result of this work:

Proof of Proposition 3.2. Let 1: [0,1] — I be given by ¥(t) = (b — a)t + a. Then
ave(T o 1)) = ave(T). So, after replacing T with T' o ¢ and v with v o ¢, we may
assume that I = [0,1]. Then

xo = ave(T) = /IT.

Since T is nonflat, there exists a ball B of radius R > 0 in the convex hull of T'(1)
centered at rg. By Lemma 4.1 it is enough to construct a continuous mapping

B>z T, € Imm®(I,S" )

such that T} satisfies the first three required properties in the statement of the
proposition, and |ave(T}) — x| < R. To this end we first construct a continuous family
of reparametrizations T, € Imm® (I, S"~1) of T such that

(2) |ave(T,) — x| < R/2, and T, =T.

Then we construct T}, by adding certain loops to T, so that |ave(T})—ave(T,)| < R/2,
which will complete the proof.

(Part I) We need to find a continuous family of C* diffeomorphism ¢, : I — I
such that T, := T o ¢, satisfies the conditions listed in (2). To this end it suffices to
construct a continuous family of positive C*~! functions p,: I — R such that

(8)  lem(T,pe)—al < R/2.  pay=1/IT),  and /Ipx\T’dtzl.

Then the inverse of the function [0,1] 3 ¢ — fg pz|T’| du gives the desired .. Indeed

the last condition in (3) ensures that ¢,: I — I, and since p, is C*~! and positive,

g is a C diffeomorphism by the inverse function theorem. Furthermore, the first

condition in (3) yields the first condition in (2) by (1). Finally, the second condition

in (3) guarantees that ¢, is the identity, which yields the second condition in (2).
To construct p, we rewrite (3) as

(4) /prdt —z| < R/2, Py = 1, and /px =1,
1 1
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where p, := |T’|p,. Hence it suffices to construct a continuous family of positive
C~! functions p,: I — R satisfying (4). To this end let I; be a partition of I into
k > n equal segments, and 6; be a C* partition of unity subordinate to I;. Set

pi = ave(0;T) =k / 0T dt.
1

Then .

Assuming k is sufficiently large, the convex hull of p;, conv({p;}), has interior points,
since T is nonflat. In particular z¢ lies in the interior of conv({p;}). Fix k and choose
R so small that B lies in conv({p;}). Then, by Lemma 4.2, there exist positive C*
functions ¢;: B — R with > ¢; = 1 such that > ¢;(z)p; = x and ¢;(xg) = 1/k. Set

e = A(x) Zci(x)ﬁi, where A(z) == 1//}2&@)@ dt.

7

Then p,, = 1, and [;p, = 1. Furthermore,

/pr dt = \(z) Zcz(az) /GZT dt = A(]j) Z ci(z)pi = )\(kx)x

I i 1 i

Since A(zg) = k, choosing R sufficiently small we can make sure that |A\(z)/k — 1| <
1/2. Then
/ Pl dt —x
I
as desired.

(Part II) Partition I into subintervals I; such that for all z € B, T, is injective
on I; and length(T|;,) < R/2. So T,(I;) lies in a ball UF of radius less than R/4
centered at the midpoint ¢¢ of T, (I;). Let C¥ C (V NUY) be a family of C* loops,
depending continuously on ¢7, that coincide with T, (I;) near ¢f. For instance, we
may construct C¥ by gluing a segment of T,(I;) to an arc of a circle centered at

¢; and rounding off the corners. Similarly we may construct a continuous family
of C* loops C¥, nested inside C{ with length 0 < ¢ < length(CY’) that contain a

neighborhood of ¢¥ in T, (1;); see Figure 1. Now for any L > 0 we can define a unique

Az) R
— 2 1 —

FiGURE 1.
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composite loop of length L at ¢f as follows. Let m be the largest integer satisfying
mlength(C¥) < L. Then go m laps around C?, in the direction induced by T, and
one lap around Cf, for £ = L — mlength(CY), if £ > 0. Since v > |T"| = \T;OL we

may choose R so small that v > ]TZ,| for all z € B. Then

o [ =t (11) >0
I

Finally, let T, be the curve of Speed v tracing T plus loops of length ¢7 at gf. Then

To(I;) C Tp(I;) C U¥. Thus |T,—T.|o < R/2, which yields that |ave(T,)—ave(T,)| <
R/2 as desired. O
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