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Abstract. We show that smooth curves with prescribed curvature satisfy a
C1-dense h-principle in the space of immersed curves in Euclidean space. More
precisely, every Cα>2 curve with nonvanishing curvature in Rn>3 can be C1-
approximated by Cα curves of any larger curvature, prescribed as a function of
arclength. It follows that there exist C∞ knots of prescribed curvature in every
isotopy class of closed curves embedded in R3.

1. Introduction

Wasem [13] showed that every C2 curve in Euclidean space Rn>3 may be C1-
approximated by curves of larger prescribed curvature. The proof, which is based on
the work of Nash and Kuiper [1, 9, 11], requires the target curvature function to be
C∞, but produces only C2 curves. Adopting a more geometric approach, we refine
Wasem’s result to obtain optimal regularity. We also achieve tighter control over the
speed and position of the approximating curves.

To state our main result, let Γ be the interval [a, b] ⊂ R or a topological circle
R/((b− a)Z), and Cα(Γ,Rn) be the space of Cα maps f : Γ→ Rn with the topology
induced by the Cα-norm | · |α. The space of (immersed) curves Immα>1(Γ,Rn) ⊂
Cα(Γ,Rn) consists of maps with nonvanishing derivative. The curvature of f ∈
Imm2(Γ,Rn) is given by κ := |T ′|/|f ′|, where T := f ′/|f ′| is the tantrix of f .

Theorem 1.1. Let f ∈ Immα>2(Γ,Rn>3) be a curve with curvature κ > 0, and
κ̃ : Γ→ R be a Cα−2 function with κ̃ > κ. Then, for any ε > 0, there exists a curve
f̃ ∈ Immα(Γ,Rn) with curvature κ̃ and |f̃ − f |1 6 ε. If f has unit speed, then so
does f̃ . Furthermore, f̃ can be made tangent to f at any finite set of points prescribed
along Γ.

The last two properties of f̃ are additional features of our method, not granted
by the Nash–Kuiper approach in [13]. If ε in Theorem 1.1 is sufficiently small,
ht := (1−t)f+tf̃ , t ∈ [0, 1], is a homotopy in Immα(Γ,Rn). Thus, in the terminology
of Gromov [7] or Eliashberg [2], the above result establishes a C1-dense h-principle
for smooth curves of prescribed curvature. Similar h-principles for curves of constant
curvature or constant torsion were obtained in [4–6]. Theorem 1.1 has the following
quick application. Let Embα(Γ,R3) ⊂ Immα(Γ,R3) be the space of injective curves,
which are called knots when Γ is a circle.

Corollary 1.2. Let f ∈ Embα>2(Γ,R3) be a knot, and κ̃ : Γ→ R be a positive Cα−2
function. Then f is isotopic in Embα(Γ,R3) to a constant-speed knot of curvature κ̃.
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Proof. After an isotopy, we may assume that f has constant speed. Choose λ so large
that the curvature of f is smaller than λκ̃. Then, by Theorem 1.1, f is C1-close and
therefore isotopic to a unit-speed curve f̃ with curvature λκ̃. Finally, f̃ is isotopic to
λf̃ which has curvature κ̃. �

The above corollary generalizes [13, Cor. 1], where α = 2 and the speed was not
constant. See also [4–6] where this result had been obtained for constant κ̃. The
existence of C2 knots of constant curvature was first established by McAtee [10].

As in [4–6], the proof of Theorem 1.1 is based on a variant of convex integration [2,
3, 7, 12]. It hinges on the fact that when |f ′| = 1, κ = |T ′|. After reparametrizing f
with unit speed, we deform T to a (longer) spherical curve T̃ with speed κ̃, which
we then integrate to obtain f̃ . For f̃ to be C1-close to f , T̃ should be C0-close to
T . Moreover, for f̃ to be tangent to f at the prescribed points pi ∈ Γ, T̃ should
have the same integral as T on every interval between pi. These requirements will be
met by combining basic convex geometry (Lemma 4.2) with mapping degree theory
(Lemma 4.1). The latter is the novel feature of this work, which makes the arguments
significantly shorter than those in [4].

2. Preliminaries

We begin by recording some basic facts from [4] which are needed here.

2.1. Unit speed reparametrization. It suffices to establish Theorem 1.1 for unit-
speed curves. To see this, note that for any f ∈ C1(Γ,Rn) and ϕ ∈ C1(Γ,Γ), we have
[4, Lem. 5.1]

|f ◦ ϕ|1 6 |f |1(1 + |ϕ|1).
Suppose that Theorem 1.1 holds for unit-speed curves. Given f ∈ Immα(Γ,Rn),
choose λ > 0 such that length(λf) = b− a. Then there exists a Cα diffeomorphism
ϕ : Γ→ Γ such that λf ◦ ϕ has unit speed. Let λ̃f ◦ ϕ be the unit-speed curve with
curvature λ κ̃ ◦ ϕ such that∣∣λ̃f ◦ ϕ− λf ◦ ϕ∣∣

1
6 ελ/

(
1+|ϕ−1|1

)
,

and λ̃f ◦ ϕ is tangent to λf ◦ ϕ at ϕ−1(pi), where pi are the prescribed points. Set
f̃ := λ̃f ◦ ϕ ◦ϕ−1/λ. Then f̃ has curvature κ̃, and is tangent to f at pi. Furthermore,∣∣f̃ − f ∣∣

1
=
∣∣(λ̃f ◦ ϕ− λf ◦ ϕ) ◦ ϕ−1∣∣

1
/λ 6

∣∣λ̃f ◦ ϕ− λf ◦ ϕ∣∣
1

(
1 + |ϕ−1|1

)
/λ 6 ε,

as desired.

2.2. Average and center of mass. Let I := [a, b] and |I| := b− a. For any curve
f ∈ Immα>1(I,Rn), set length(f) :=

∫
I |f
′| du. The average and center of mass of f

are defined as

ave(f) :=
1

|I|

∫
I
f dt, and cm(f) :=

1

length(f)

∫
I
f |f ′| dt.

In particular, cm(f) = ave(f) when f has constant speed. Moreover, if g : [c, d]→ Rn

is a reparametrization of f , i.e., there exists a diffeomorphism ϕ : [c, d]→ [a, b] such
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that g = f ◦ϕ, then cm(f) = cm(g). For any positive (density) function ρ ∈ C0(I,R),
we define the corresponding mass and center of mass of f as

m(f, ρ) :=

∫
I
ρ|f ′| dt, and cm(f, ρ) :=

1

m(f, ρ)

∫
I
fρ|f ′| dt.

So cm(f, 1/|f ′|) = ave(f). More generally, letting ϕ : [0,m(f, ρ)]→ I be the inverse
of the (mass) function t 7→

∫ t
a ρ|f

′| du, we obtain

(1) cm(f, ρ) = ave(f ◦ ϕ),

see [4, Lem. 2.2].

3. Reduction to Spherical Curves

Here we show that Theorem 1.1 follows from a geometric result (Proposition 3.2)
for spherical curves. First we reduce Theorem 1.1 to the following local problem.

Proposition 3.1. Let f ∈ Immα>2(I,Rn) be a unit-speed curve with curvature
κ > 0, and V be an open neighborhood of T (I) in Sn−1. Then for any Cα−2 function
κ̃ : I → R with κ̃ > κ, there exists a unit-speed curve f̃ ∈ Immα(I,Rn) with curvature
κ̃ such that T̃ (I) ⊂ V , f = f̃ on ∂I, and T (U) = T̃ (Ũ) for some open neighborhoods
U , Ũ of ∂I in I.

To see that the above proposition implies Theorem 1.1 recall that, as discussed in
Section 2.1, we may assume that f in Theorem 1.1 has unit speed. So T = f ′. Let Ii
be a partition of Γ into intervals such that ∂Ii include all the prescribed points, and
set fi := f |Ii . Choose Ii so small that |Ii| 6 1 and T (Ii) lies in the interior Vi of a
ball of radius ε/2 in Sn−1. Applying Proposition 3.1 to fi, we obtain a Cα curve f̃i
with unit speed and curvature κ̃i := κ̃|Ii such that T̃i(Ii) ⊂ Vi, fi = f̃i on ∂Ii, and
Ti(Ui) = T̃i(Ũi) for some open neighborhoods Ui, Ũi of ∂Ii in Ii.

Define f̃ by f̃ |Ii := f̃i. Then f̃ is C0, because fi = f̃i on ∂Ii. Moreover f̃ is C1,
because T̃i = f̃ ′i and T̃i = Ti on ∂Ii. Hence T̃ := f̃ ′ is well-defined. Note that T̃ is
piecewise Cα−1. Furthermore, since Ti(Ui) = T̃i(Ũi), there are open neighborhoods
Wi and W̃i of ∂Ii in Γ such that T̃ (W̃i) = T (Wi). Hence T̃ is a reparametrization of
T with speed κ̃ near ∂Ii, and so is Cα−1. Consequently f̃ is Cα and has curvature κ̃.
Next note that for t ∈ Ii, f̃(t) = f(ti) +

∫ t
ti
T̃i du and f(t) = f(ti) +

∫ t
ti
Ti du, where ti

is the initial point of Ii. Furthermore, since T̃ (Ii) ⊂ Vi, we have |T̃ − T |0 6 ε. Thus,∣∣f̃(t)− f(t)
∣∣ =

∣∣∣∣∫ t

ti

(T̃i − Ti) du
∣∣∣∣ 6 ∫ t

ti

∣∣∣T̃i − Ti∣∣∣ du 6 ε|Ii| 6 ε.
So Proposition 3.1 does indeed imply Theorem 1.1. Next we show that Proposition 3.1
is a consequence of the following result for spherical curves. We say that a curve
f ∈ Immα(I,Rn) is nonflat if the convex hull of f(I) has interior points.

Proposition 3.2. Let T ∈ Immα>1(I,Sn−1) be a nonflat curve. Then for any Cα−1
function ṽ : I → R with ṽ > |T ′| and open neighborhood V of T (I), there exists a
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curve T̃ ∈ Immα(I,Sn−1) such that |T̃ ′| = ṽ, T̃ (I) ⊂ V , T (U) = T̃ (Ũ) for some open
neighborhoods U , Ũ of ∂I, and ave(T ) = ave(T̃ ).

To see that Proposition 3.2 implies Proposition 3.1, let T be the tantrix of f in
Proposition 3.1. After a small Cα perturbation of f on a compact set in the interior
of I, we may assume that T is nonflat. This is possible since by assumption κ > 0.
Hence f does not trace a line segment, and so it can be perturbed without changing
its length, which ensures that it remains a unit-speed curve. Furthermore, since the
perturbation is C2-close to the original curve, we will still have κ̃ > κ. Now let T̃
be the Cα−1 curve obtained by applying Proposition 3.2 to T with ṽ := κ̃. Then
f̃(t) := f(a) +

∫ t
a T̃ du is a Cα curve with f̃ ′ = T̃ . So f̃ has unit speed and curvature

κ̃. Finally, the assumption that ave(T ) = ave(T̃ ) ensures that f = f̃ on ∂I, which
completes the argument.

4. Proof of Theorem 1.1

It remains to establish Proposition 3.2, which completes the proof of Theorem 1.1
as discussed above. Our proof is based on the following topological lemma, which is
established quickly via basic degree theory.

Lemma 4.1 ([6]). Let B ⊂ Rn be a ball of radius R centered at x0, and F : B → Rn

be a continuous map. If |F (x)− x| < R for all x ∈ ∂B, then x0 ∈ F (B).

We also need the following version of a classical result of Kalman [8], who con-
structed continuous barycentric coordinates in convex polytopes.

Lemma 4.2. Let p1, . . . , pk ∈ Rn be a collection of points whose convex hull has
nonempty interior, and B be a ball centered at x0 :=

∑k
i=1 pi/k. If B is sufficiently

small, then there are positive C∞ functions ci : B → R such that

k∑
i=1

ci(x) = 1,

k∑
i=1

ci(x)pi = x, ci(x0) =
1

k
.

Proof. We may assume that x0 = 0 after a translation. Then there are n linearly
independent vectors among pi, say p1, . . . , pn. So there are unique coefficients
a1(x), . . . , an(x) such that x =

∑n
i=1 ai(x)pi for each x ∈ B. The functions ai : B →

R are C∞, as they are linear. Set ai = 0 for i > n, and let

ci(x) :=
1

k

(
1−

k∑
i=1

ai(x)

)
+ ai(x).
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Since
∑n

i=1 ai(x0)pi =
∑k

i=1 ai(x0)pi = x0 and p1, . . . , pn are linearly independent,
ai(x0) = 0. Thus ci(x0) = 1/k. So ci > 0 on B if B is small. Furthermore,

k∑
i=1

ci(x) = 1−
k∑
i=1

ai(x) +
k∑
i=1

ai(x) = 1,

k∑
i=1

ci(x)pi = x0

(
1−

k∑
i=1

ai(x)

)
+

k∑
i=1

ai(x)pi = x,

as desired. �

Now we are ready to prove the key result of this work:

Proof of Proposition 3.2. Let ψ : [0, 1] → I be given by ψ(t) := (b − a)t + a. Then
ave(T ◦ ψ) = ave(T ). So, after replacing T with T ◦ ψ and v with v ◦ ψ, we may
assume that I = [0, 1]. Then

x0 := ave(T ) =

∫
I
T.

Since T is nonflat, there exists a ball B of radius R > 0 in the convex hull of T (I)
centered at x0. By Lemma 4.1 it is enough to construct a continuous mapping

B 3 x 7→ T̃x ∈ Immα(I,Sn−1)

such that T̃x satisfies the first three required properties in the statement of the
proposition, and |ave(T̃x)−x| < R. To this end we first construct a continuous family
of reparametrizations T x ∈ Immα(I,Sn−1) of T such that

(2)
∣∣ave(T x)− x

∣∣ < R/2, and T x0 = T.

Then we construct T̃x by adding certain loops to T x so that |ave(T̃x)−ave(T x)| < R/2,
which will complete the proof.

(Part I ) We need to find a continuous family of Cα diffeomorphism ϕx : I → I
such that T x := T ◦ ϕx satisfies the conditions listed in (2). To this end it suffices to
construct a continuous family of positive Cα−1 functions ρx : I → R such that

(3) |cm(T, ρx)− x| < R/2, ρx0 = 1/|T ′|, and
∫
I
ρx|T ′|dt = 1.

Then the inverse of the function [0, 1] 3 t 7→
∫ t
0 ρx|T

′| du gives the desired ϕx. Indeed
the last condition in (3) ensures that ϕx : I → I, and since ρx is Cα−1 and positive,
ϕx is a Cα diffeomorphism by the inverse function theorem. Furthermore, the first
condition in (3) yields the first condition in (2) by (1). Finally, the second condition
in (3) guarantees that ϕx0 is the identity, which yields the second condition in (2).

To construct ρx we rewrite (3) as

(4)
∣∣∣∣∫
I
ρxT dt− x

∣∣∣∣ < R/2, ρx0 = 1, and
∫
I
ρx = 1,



6 MOHAMMAD GHOMI AND MATTEO RAFFAELLI

where ρx := |T ′|ρx. Hence it suffices to construct a continuous family of positive
Cα−1 functions ρx : I → R satisfying (4). To this end let Ii be a partition of I into
k > n equal segments, and θi be a C∞ partition of unity subordinate to Ii. Set

pi := ave(θiT ) = k

∫
I
θiT dt.

Then

x0 =
∑
i

∫
I
θiT dt =

1

k

∑
i

pi.

Assuming k is sufficiently large, the convex hull of pi, conv({pi}), has interior points,
since T is nonflat. In particular x0 lies in the interior of conv({pi}). Fix k and choose
R so small that B lies in conv({pi}). Then, by Lemma 4.2, there exist positive C∞
functions ci : B → R with

∑
ci = 1 such that

∑
ci(x)pi = x and ci(x0) = 1/k. Set

ρx := λ(x)
∑
i

ci(x)θi, where λ(x) := 1
/∫

I

∑
i

ci(x)θi dt.

Then ρx0 = 1, and
∫
I ρx = 1. Furthermore,∫

I
ρxT dt = λ(x)

∑
i

ci(x)

∫
I
θiT dt =

λ(x)

k

∑
i

ci(x)pi =
λ(x)

k
x.

Since λ(x0) = k, choosing R sufficiently small we can make sure that |λ(x)/k − 1| <
1/2. Then ∣∣∣∣∫

I
ρxT dt− x

∣∣∣∣ =

∣∣∣∣λ(x)

k
− 1

∣∣∣∣ |x| < R

2
,

as desired.
(Part II ) Partition I into subintervals Ii such that for all x ∈ B, T x is injective

on Ii and length(T x|Ii) < R/2. So T x(Ii) lies in a ball Uxi of radius less than R/4
centered at the midpoint qxi of T x(Ii). Let Cxi ⊂ (V ∩ Uxi ) be a family of Cα loops,
depending continuously on qxi , that coincide with T x(Ii) near qxi . For instance, we
may construct Cxi by gluing a segment of T x(Ii) to an arc of a circle centered at
qxi and rounding off the corners. Similarly we may construct a continuous family
of Cα loops Cxi,` nested inside Cxi with length 0 < ` 6 length(Cxi ) that contain a
neighborhood of qxi in T x(Ii); see Figure 1. Now for any L > 0 we can define a unique

T x(Ii)

qxi

Cx
i,`

Figure 1.
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composite loop of length L at qxi as follows. Let m be the largest integer satisfying
m length(Cxi ) 6 L. Then go m laps around Cxi , in the direction induced by T x, and
one lap around Cxi,` for ` = L −m length(Cxi ), if ` > 0. Since ṽ > |T ′| = |T ′x0 |, we
may choose R so small that ṽ > |T ′x| for all x ∈ B. Then

`xi :=

∫
Ii

ṽ dt− length
(
T x|Ii

)
> 0.

Finally, let T̃x be the curve of speed ṽ tracing T plus loops of length `xi at qxi . Then
T x(Ii) ⊂ T̃x(Ii) ⊂ Uxi . Thus |T̃x−T x|0 < R/2, which yields that |ave(T̃x)−ave(T x)| <
R/2 as desired. �
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