
SHORTEST PERIODIC BILLIARD TRAJECTORIES
IN CONVEX BODIES

MOHAMMAD GHOMI

Abstract. We show that the length of any periodic billiard trajectory in any
convex body K ⊂ Rn is always at least 4 times the inradius of K; the equality
holds precisely when the width of K is twice its inradius, e.g., K is centrally
symmetric, in which case we prove that the shortest periodic trajectories are
all bouncing ball (2-link) orbits.

1. Introduction

Motivated by applications to inverse spectral problems (“can one hear the
shape of a drum?”), S. Zelditch [5] has recently raised the question of whether
every shortest periodic billiard trajectory in a bi-axisymmetric smooth convex
planar body is a bouncing ball (2-link) orbit. Our main result (Theorem 1.2
below), which holds for all convex bodies in Euclidean space Rn, implies that the
answer is yes.

By a convex body K ⊂ Rn we mean a compact convex subset with interior
points. A periodic billiard trajectory T in K is a sequence of distinct boundary
points pi ∈ ∂K, i ∈ Z/NZ, N ≥ 2, called links of T , such that, for every i,

(1) ni :=
pi − pi−1

‖pi − pi−1‖ +
pi − pi+1

‖pi − pi+1‖
is an (outward) support vector of K at pi; that is

(2) 〈x − pi, ni〉 ≤ 0, for all x ∈ K.

When T has exactly two links (N = 2) we say it is a bouncing ball orbit. The
length of T is defined by

length(T ) :=
N∑

i=1

‖pi − pi+1‖.

The main question we are concerned with in this paper is:

Problem 1.1. In which convex bodies are the shortest periodic billiard trajec-
tories bouncing ball orbits?
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The following result provides a sufficient criterion in terms of natural geometric
measures: the inradius of K, which is the radius of the largest ball contained in
K; and the width of K, which is the thickness of the narrowest slab which contains
K.

Theorem 1.2. Let K ⊂ Rn be a convex body, and T be a periodic billiard
trajectory in K. Then

length(T ) ≥ 4 inradius(K).

Further, the equality holds for some T , if and only if width(K) = 2 inradius(K).
In this case, every shortest periodic trajectory of K is a bouncing ball orbit.

We say K is centrally symmetric provided that (after a translation) K coincides
with its reflection through the origin of Rn (this notion is weaker than “bi-
axisymmetric”). The above theorem yields:

Corollary 1.3. If K ⊂ Rn is a centrally symmetric convex body, then each of
the shortest periodic billiard trajectories in K is a bouncing ball orbit.

Proof. By theorem 1.2 it is enough to check that width(K) = 2 inradius(K). Set
r := inradius(K). Then K contains a ball B of radius r. Let B′ be the “central
symmetrization” of B, that is,

B′ :=
B + (−B)

2
=

{
x − y

2

∣∣∣ x, y ∈ B

}
.

Then B′ is a ball of radius r centered at the origin of Rn. Further, since K is
centrally symmetric (K = −K), it follows that B′ ⊂ K. Since the inradius of K
is r, the boundary of K, ∂K, must intersect B′ at a point p. Then −p also has
to lie in ∂K ∩ B′ by symmetry. Let H ⊂ Rn be a support hyperplane of K at
p. Then H is also a support hyperplane of B′ which yields that H is orthogonal
to the segment (−p)p. By symmetry, the reflection of H, which we denote by
−H, is also a supporting hyperplane, and is orthogonal to (−p)p at −p. So the
distance between H and −H is 2r, which yields that width(K) ≤ 2r. On the
other hand, we always have width(K) ≥ 2 inradius(K) = 2r, which completes
the proof. �
Note 1.4. Without the central symmetry assumption, Corollary 1.3 does not
in general remain valid. An equilateral triangle, whose corners may be rounded
off by a small amount, would be a counterexample 1. Here the shortest orbit is
the (orthic) triangle which is obtained by connecting the midpoints of the sides
(Figure 1(a)).

Note 1.5. As is known, and easy to show, any smooth convex planar body has
at least two bouncing ball orbits (one is determined by the “diameter” and the
other by the “width”). If one forgoes convexity, however, one may construct
smooth planar regions without any bouncing ball orbits that are contained in

1This observation has been known to Yves Colin de Verdiere [6].
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the region (we say that a billiard trajectory is contained in a region if the line
segment connecting any pairs of consecutive links is contained in that region).
An example of a smooth region which does not contain any bouncing ball orbits
is illustrated in Figure 1(b). This region has been known to Bos [1].

(a)
(b)

Figure 1

Note 1.6. Theorem 1.2 gives a lower bound for the length of shortest peri-
odic trajectories of a convex body; however, this bound is sharp only when
2 inradius(K) is equal to width(K). Can one find a lower bound which is sharp in
all cases? (Of course this lower bound should coincide with 4 inradius(K) when-
ever 2 inradius(K) is equal to width(K).) Can one find a sharp upper bound
for the length of shortest periodic billiard trajectories of a convex body? One
estimate, in terms of volume, is given by Viterbo [4].

2. Proof of Theorem 1.2

The proof of Theorem 1.2 follows from the two propositions below. By a poly-
gon P we mean a sequence of distinct points pi ∈ Rn, i ∈ Z/NZ (in particular,
every periodic billiard trajectory is a polygon). Each pi is called a vertex of P ,

and the length of P is defined as
∑N

i=1 ‖pi − pi+1‖. The convex hull of a set
X ⊂ Rn, which we denote by conv X, is the intersection of all convex sets which
contain X.

Proposition 2.1. Let B ⊂ Rn be a ball of radius r, and P ⊂ Rn be a polygon
such that the center of B lies in conv P , and the vertices of P lie outside the
interior of B. Then length(P ) ≥ 4r, with equality only if P has exactly two
vertices.

The proof of the above proposition follows from a little trigonometry (Lemma
3.1) together with some integral geometry (Crofton’s formula). The proof of
the following proposition, uses the above proposition and some basic convexity
theory.

Proposition 2.2. Let K ⊂ Rn be a convex body, and T be a periodic billiard
trajectory in K. Suppose that there exists a ball B of radius r in K whose center
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does not lie in conv T . Then length(T ) ≥ 4r, with equality only if T is a bouncing
ball orbit.

The proof of the above propositions appear in the next two sections. Using
these, we prove Theorem 1.2 as follows:

Let r := inradius(K) and B ⊂ K be a ball of radius r. Then either conv T con-
tains the center of B or not. Thus Proposition 2.1 or Proposition 2.2 respectively
establish that length(T ) ≥ 4r.

Now suppose that length(T ) = 4r, then, either by Proposition 2.1 or 2.2, T is
a bouncing ball orbit. In particular, the support hyperplanes of K which pass
through each link of T , and are orthogonal to the support vectors ni given by
(1), are parallel. So width(K) ≤ 2r. But we always have that width(K) ≥ 2r.
So width(K) = 2r.

Conversely, suppose width(K) = 2r. Then there exists a ball B of radius r
in K, and K is contained in between a pair of parallel support hyperplanes of
separation 2r. So B must intersect both support hyperplanes, and it is clear that
the intersection points generate a bouncing ball orbit T with length(T ) = 4r,
since the line connecting the intersection points is orthogonal to both support
hyperplanes.

So we conclude that width(K) = 2r if and only if K contains some bouncing
ball orbit of length 4r. In particular, whenever width(K) = 2r, every shortest
periodic trajectory T ⊂ K has length 4r. Thus, since inradius(K) = r, it follows
from Propositions 2.1 and 2.2, that every shortest periodic trajectory of K is a
bouncing ball orbit.

3. Proof of Proposition 2.1

Lemma 3.1. Let 0 ≤ αi ≤ π/2, i = 1, . . . N , and
∑N

i=1 αi ≥ π. Then

(3)
N∑

i=1

sin αi ≥ 2,

with equality if and only if all αi = 0 save two.

Proof. Since 2/π < 1, comparing the graph of y = sin x with that of y = (2/π)x
quickly yields that

sin x ≥ 2

π
x

for all 0 ≤ x ≤ π/2. Thus, since by assumption
∑N

i=1 αi ≥ π, we have

N∑
i=1

sin αi ≥ 2

π

N∑
i=1

αi ≥ 2.

If
∑N

i=1 sin αi = 2, then, the above expression yields

N∑
i=1

sin αi =
2

π

N∑
i=1

αi.
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But sin αi ≥ (2/π)αi, thus the above equality yields

sin αi =
2

π
αi.

The last equality holds only when αi = 0, or αi = π/2. Thus we conclude that
the equality holds in (3) precisely when all αi = 0 save two. �

Let pi, i = 1, . . . , N , be the vertices of P , o be the center of the ball B, which
we may assume to coincide with the origin of Rn, and 2αi := ∠piopi+1 be the
corresponding angles. We claim that

(4)
N∑

i=1

αi ≥ π.

To see this note that
∑N

i=1 2αi is equal to the length of the projection of P , say
P ′, into a sphere S of radius 1 centered at o. Since o is in the convex hull of
P , o lies in the convex hull of P ′ as well. In particular, every great circle in S
intersects P ′; thus, it follows from Crofton’s formula [2] that length(P ′) ≥ 2π. So
(4) holds which in turn allows us to apply Lemma 3.1 to conclude that (3) holds
as well.

Next note that, since by assumption ‖pi‖ ≥ r,

‖pi − pi+1‖2 = ‖pi‖2 + ‖pi+1‖2 − 2‖pi‖‖pi+1‖ cos 2αi

≥ 2r2(1 − cos 2αi)

= 4r2 sin2 αi.

Thus, the above inequality together with (3) yield that

length(P ) ≥
N∑

i=1

‖pi − pi+1‖

≥ 2 r

N∑
i=1

sin αi

≥ 4r.

Now suppose that the equality in the above inequality holds. Then, by Lemma
3.1, all αi = 0, save two. In this case the remaining two angles must each be equal
to π/2 by (4). Thus all vertices of P must lie on a line which passes through the
center o of B. Since the vertices of P lie outside of the interior of B, and are
distinct, it then follows that P has exactly two vertices.

4. Proof of Proposition 2.2

Since, by assumption, the center o of B does not lie in conv T , which is a convex
set, there exists a unique point p of conv T which is closest to o [3]. After a rigid
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motion we may assume that o is the origin of Rn, and p lies on the negative half
of the xn-axis. So

(5)
p

‖p‖ = (0, 0, . . . ,−1),

and p is the “highest” point of conv T . That is,

π(p) ≥ π(pi),

where π : Rn → R is projection into the nth coordinate and pi, i = 1, . . . , N are
the links of T . Suppose, towards a contradiction, that p ∈ T . That is p = pk, a
link of T . Let n := nk be as in (1). That is,

n :=
p − pk−1

‖p − pk−1‖ +
p − pk+1

‖p − pk+1‖ .

Combining the previous two displayed expressions yields

π(n) ≥ 0.

On the other hand, since o is an interior point of K and n is a support vector,
(5) and (2) yields that

π(n) = 〈− p

‖p‖ , n〉 =
1

‖p‖〈o − p, n〉 < 0,

which is a contradiction. So we conclude that p 6∈ T .
Since p ∈ ∂ conv T , but p 6∈ T , it follows that p lies in the (relative) interior of

a face F of T . Let pk be a vertex of F . Note that since no link of T is higher
than p, F has to be “horizontal” (parallel to xn = 0 hyperplane), which yields
that

π(pk) = π(p) ≥ π(pi),

for all i. So, as we had argued earlier, since

nk :=
pk − pk−1

‖pk − pk−1‖ +
pk − pk+1

‖pk − pk+1‖ ,

it follows that
π(nk) ≥ 0,

which in turn yields

〈p, nk〉 = ‖p‖〈 p

‖p‖ , nk〉 = −‖p‖π(nk) ≤ 0.

Further, note that, since o ∈ K, (2) yields

〈pk, nk〉 = −〈o − pk, nk〉 ≥ 0.

The previous two inequalities yield:

(6) 〈pk − p, nk〉 = 〈pk, nk〉 − 〈p, nk〉 ≥ 〈pk, nk〉.
Next, recall that, since p 6∈ T , p 6= pk. Thus

r
pk − p

‖pk − p‖ ∈ B ⊂ K.
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This via (2) yields 〈
r

pk − p

‖pk − p‖ − pk, nk

〉
≤ 0,

which we may rewrite as

r〈pk − p, nk〉 ≤ ‖pk − p‖〈pk, nk〉.
Comparing the above inequality with (6), we obtain

r ≤ ‖pk − p‖.
Thus all the vertices of the face F are at least a distance r away from p. Let
TF be the subpolygon of T composed of the vertices of F , and with the ordering
inherited from T , then the triangle inequality together with Proposition 2.1 yield

length(T ) ≥ length(TF ) ≥ 2r.

If length(T ) = 2r, then the above expression yields that length(TF ) = length(T ),
which implies TF = T . Further, we also get length(TF ) = 2r, which, by Proposi-
tion 2.1, implies that TF has only two vertices, which completes the proof.
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