
TOPOLOGY OF CLOSED ASYMPTOTIC CURVES

ON NEGATIVELY CURVED SURFACES

MOHAMMAD GHOMI AND MATTEO RAFFAELLI

Abstract. Motivated by Nirenberg’s problem on isometric rigidity of tight sur-
faces, we study planar projections of closed asymptotic curves Γ on negatively
curved surfaces M in Euclidean 3-space. In particular, using Călugăreanu’s theo-
rem, we obtain a formula for the linking number Lk(Γ, n) of Γ with the normal n
of M . It follows that when Lk(Γ, n) = 0, Γ cannot have any locally star-shaped
projections with vanishing crossing number, which extends observations of Ko-
valeva, Panov and Arnold. These results hold also for curves with nonvanishing
torsion and their binormal vector field. Finally we construct an example where n
is injective but Lk(Γ, n) 6= 0.

1. Introduction

An asymptotic curve on a negatively curved surface M in Euclidean space R3 is
an integral curve of the directions where the second fundamental form of M van-
ishes. These objects form characteristic curves of the hyperbolic PDE for isometric
embeddings, and thus play a fundamental role in surface theory. In particular, a
well-known problem of Nirenberg [20–22, 25, 29, 35, 37], on rigidity of tight surfaces
[3, 7], is concerned with existence of closed asymptotic curves Γ when M forms the
interior of an annular surface M bounded by convex curves in planes tangent to M .
In this setting the Gauss map n : M → S2 is injective, see Note 1.5. Furthermore,
the linking number Lk(Γ, n) = 0 if M is embedded. Thus we consider:

Problem 1.1. Let M ⊂ R3 be a negatively curved embedded surface with Gauss
map n and Γ ⊂M be a closed asymptotic curve. Can Lk(Γ, n) = 0 if n is injective?

A negative answer will settle Nirenberg’s problem in the embedded case (in general
M may self-intersect [5, p. 68], so Lk(Γ, n) may not be well-defined). To study this
problem we assume that M is C3, which ensures that Γ is C2, see Section 2. Let
u ∈ S2 be a random direction, Γu be the projection of Γ into a plane orthogonal to
u, Cr(Γu) be the the sum of signed crossings of Γu, #

{
〈u, n〉 = 0

}
be the number of

zeros of 〈u, n〉, and τg be the geodesic torsion of Γ, which as we will show in Section
2 has a fixed sign. Our main results are as follows.
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Theorem 1.2.

(1) Lk(Γ, n) = Cr(Γu) +
1

2
#
{
〈u, n〉 = 0

}
sign(τg).

This equation is a refinement of Călugăreanu’s formula [9, 10, 32] for the self-
linking number of curves, see Note 3.2. We say that Γu is locally star-shaped if its
tangent lines do not cover the plane of Γu. Using the above formula we show:

Theorem 1.3. If Cr(Γu) = Lk(Γ, n), then Γu cannot be locally star-shaped.

In particular, if Lk(Γ, n) = 0, or M is isotopic to a planar annulus, then Γu cannot
be star-shaped, as had been observed by Kovaleva [26]. Panov [30] and Arnold [4]
reproved Kovaleva’s result in the case where M forms a graph over the xy-plane.
Petrunin [31, p. 31] also gave a proof in this case, see Note 3.1. Our proof of the
above theorem leads to our next result. The absolute rotation index of a closed
curve immersed in the plane is the absolute value of the degree of its Gauss map.
An inflection is a point of vanishing curvature.

Theorem 1.4. If Γu has no inflections, then it cannot be locally star-shaped; in
particular, the absolute rotation index of Γu cannot be less than 3.

Any space curve with nonvanishing torsion may be realized as an asymptotic
curve on a negatively curved surface orthogonal to its binormal vector, see Note 2.1.
Thus the above results hold for curves with nonvanishing torsion and their binormal.
In particular, Theorem 1.4 implies that curves of type (p, 1) on a torus of revolution
cannot have nonvanishing torsion, as had been observed by Costa [33]. This result
also generalizes the fact that a curve of nonvanishing torsion cannot project into
a strictly convex planar curve, which has been observed in various contexts [6, 24].
See [8, 15–17] for other recent results on torsion.

When n is injective, Γ must have inflections, see Note 5.1. At these points the
Frenet frame of Γ is not well-defined, but the Darboux frame of Γ with respect
to M will be useful, as we describe in Section 2. Applying Călugăreanu’s formula
to the Darboux frame will yield Theorem 1.2, and Theorems 1.3 and 1.4 follow
quickly in Section 3. In Section 4 we construct an example where Lk(Γ, n) 6= 0
but n is injective, which complements constructions by Kovaleva [27] and Arnold
[4] where Lk(Γ, n) = 0 but n is noninjective. This example also contradicts a claim
of Kovaleva [27], see Note 5.5. Other observations concerning Problem 1.1 will be
discussed in Section 5.

Note 1.5. To see that the Gauss map n in Nirenberg’s problem is injective on
M note that since M has curvature K < 0 it must lie within the convex hull of
∂M . Thus the inward normal of ∂M in M points to the interior of the convex
bodies bounded by ∂M . So the geodesic curvature of each component of ∂M is the
same as the curvature of that component in the plane where it lies. Hence, by the
convexity assumption, the total geodesic curvature of each component of ∂M is 2π.
The Gauss-Bonnet theorem then yields that

∫
M K = −4π. But n is onto, since it

maps each boundary component of M to a point, and is locally injective on M since
K 6= 0. Hence n must be injective on M .
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2. Preliminaries

2.1. Regularity and simplicity of Γ. Throughout this work we assume that M ⊂
R3 is a Ck≥3 embedded orientable surface with Gauss curvature K < 0, Gauss map
n, second fundamental form II(X,Y ) := 〈dn(X), Y 〉, and closed asymptotic curve
Γ: S1 ' R/(2πZ)→M . We will write Γ to refer both to the mapping and its image
Γ(S1), and will write n(t) to mean n(Γ(t)). We assume that the speed |Γ′| = 1, after
a rescaling, and set T := Γ′. Then

II(T, T ) = 0.

This equation may be written as `11(du1/du2)2 + 2`12(du1/du2) + `22 = 0 in local
coordinates where (u1, u2) represent Γ and `ij are the coefficients of II. Thus Γ is

Ck−1 since `ij are Ck−2. It is easy to see that one can distinguish precisely two fields
of asymptotic lines on M [29, p. 184]. Thus, by the uniqueness of solutions to ODE,
Γ cannot self-intersect in M . Since M is embedded in R3, it follows that Γ is simple.

2.2. The Darboux frame. Set n⊥ := n × T . Then (T, n⊥, n) forms the Darboux
frame of Γ with respect to M . Since M is C3 and Γ is C2, (T, n⊥, n) is C1, and we
have

(2) T ′ = κgn
⊥, (n⊥)′ = −κgT + τgn, n′ = −τgn⊥,

where κg := 〈T ′, n⊥〉 and τg := 〈(n⊥)′, n〉 are the geodesic curvature and geodesic
torsion of Γ respectively. Let κ := |T ′| be the curvature of Γ. Then |κg| = κ. So
there is no distinction between inflections of Γ with respect to κ or κg. If κ 6= 0 at
any point, then the principal normal N := T ′/κ and the binormal B := T ×N of Γ
generate the Frenet frame (T,N,B). We have (N,B) = ±(n⊥, n) depending on the
sign of κg. So when κ 6= 0 the Darboux and Frenet frames coincide up to reflections.
In particular, when k ≥ 4, or Γ is C3, the torsion τ := 〈N ′, B〉 of Γ coincides with
τg. Note that |τg| = |n′| = |dn(T )|, and dn is nondegenerate since K 6= 0. Thus

(3) τg 6= 0.

This observation also follows from the Beltrami-Enneper theorem [36, p. 200] [23, p.
609].

2.3. Crossings. For any simple closed immersion Γ: S1 → R3 and direction u ∈ S2,
let Γu denote the projection of Γ into a plane Π orthogonal to u. For almost every u,
or random direction, Γu is in general position. More explicitly, there are only finitely
many points pi ∈ Π, called crossings, such that Γ−1

u (pi) consists of more than one
point. Furthermore all pi will be transversal double points, i.e., Γ−1

u (pi) = {t+i , t
−
i }

with Γ′u(t+i ) × Γ′u(t+i ) 6= 0. We assume that 〈Γ(t+i ), u〉 > 〈Γ(t−i ), u〉. Then sign(pi)

is defined as the sign of 〈Γu(t+i ) × Γu(t−i ), u〉, i.e., 1 or −1 depending on whether

〈Γu(t+i ) × Γu(t−i ), u〉 > 0 or < 0 respectively. Then the crossing number of Γu is
given by Cr(Γu) :=

∑
sign(pi).

For any pair of disjoint immersions Γ1, Γ2 : S1 → R3, the crossing number
Cr(Γ1

u,Γ
2
u) is defined similarly. Again, assuming u is a random direction or Γ1 and

Γ2 are in general position, then Γ1
u ∩ Γ2

u consists of only a finite number of points
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pi, and for each pi there will be exactly one pair of points t1i , t
2
i ∈ S1 such that

Γ1
u(t1i ) = Γ2

u(t2i ) = pi. Then sign(pi) is defined as the sign of 〈(Γ1
u)′(t1i )× (Γ2

u)′(t2i ), u〉
or 〈(Γ2

u)′(t2i ) × 〈(Γ1
u)′(t1i ), u〉 if 〈Γ1(t1i ), u〉 > 〈Γ2(t2i ), u〉 or 〈Γ1(t1i ), u〉 < 〈Γ2(t2i ), u〉

respectively. Finally we set Cr(Γ1
u,Γ

2
u) :=

∑
sign(pi).

Let v be a unit normal vector field along Γ. The pair (Γ, v) is called a ribbon
based on Γ. Let ε > 0 be so small that the perturbation Γ + εv is disjoint from Γ.
The crossings Γu∩ (Γ+ εv)u fall into two categories [11]: a crossing formed at t ∈ S1

is local if Γu(t) = (Γ(t) + εv(t))u, or v(t) = ±u; otherwise, it is nonlocal. Nonlocal
crossings converge in pairs to self-crossings of Γu as ε→ 0. Thus

(4) Cr
(
Γu, (Γ + εv)u

)
= 2 Cr(Γu) + Crlocal

(
Γu, (Γ + εv)u

)
,

where Crlocal is the signed sum of local crossings.

2.4. Călugăreanu’s formula. For a ribbon (Γ, v), Călugăreanu’s formula [1, 11,
13,28] states that

Lk(Γ, v) = Wr(Γ) + Tw(Γ, v),

where Lk, Wr and Tw stand for the linking number, writhe and twist respectively.
The linking number is defined as Cr

(
Γu, (Γ + εv)u

)
/2. So by (4)

(5) Lk(Γ, v) = Cr(Γu) +
1

2
Crlocal

(
Γu, (Γ + εv)u

)
.

The twist of (Γ, v) is given by
∫

Γ〈(v
⊥)′, v〉/(2π) where v⊥ := v×T . Let θv : S1 → R

be the continuous function such that v(t) = cos(θv(t))n
⊥(t) + sin(θv(t))n(t), and

Rot(v, n) := (θv(L) − θv(0))/(2π) denote the total rotation of v with respect to n.
A computation using (2) yields that

Tw(Γ, v) =
1

2π

∫
Γ
τg + Rot(v, n).

Finally, the writhe of Γ is the average of the crossing numbers of Γu,

(6) Wr(Γ) :=
1

4π

∫
u∈S2

Cr(Γu).

Note that Wr(Γ) = Lk(Γ, n)−Tw(Γ, n) = Lk(Γ, n)−
∫

Γ τg/(2π). Thus we conclude
that

(7) Lk(Γ, v) = Lk(Γ, n) + Rot(v, n).

Note 2.1. A curve Γ in R3 which admits a family of nonstationary osculating
planes, i.e., an orthonormal frame satisfying (2) and (3), has been called a rotating
curve by Arnold [4]. These objects, which generalize curves of nonvanishing torsion,
were also described by Fenchel [12]. If Γ is a rotating curve, then a routine compu-
tation shows that Γ(t) + sv(t) generates a negatively curved surface, for −ε < s < ε,
which contains Γ as an asymptotic curve. More specifically, K(t, 0) = −τ2

g (t). Thus
rotating curves are precisely asymptotic curves of negatively curved surfaces.
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3. Proofs of the Main Results

3.1. Proof of Theorem 1.2. Let u ∈ S2 be a direction which is not parallel to
any tangent line of Γ, and set u⊥ := u× T/|u× T |. By (7)

Lk(Γ, n) = Lk(Γ, u⊥)− Rot(u⊥, n).

Note that (Γ + εu⊥)u is locally disjoint from Γu. Thus (5) yields that

Lk(Γ, u⊥) = Cr(Γu).

It remains then to compute Rot(u⊥, n). To this end consider the mapping ν : S1 →
S1 given by ν(t) := eiθ(t), where θ := θu⊥ is as defined above, i.e., u⊥(t) =
cos(θ(t))n⊥ + sin(θ(t))n. Then Rot(u⊥, n) = deg(ν). To compute deg(ν) assume
that S1 is oriented counterclockwise. So it0 ∈ Tt0S1 has positive orientation. We
have dνt0(it0) = iν(t0)θ′(t0) ∈ Tν(t0)S

1. To find θ′ note that

cot(θ) =
〈u⊥, n⊥〉
〈u⊥, n〉

=
〈u× T, n⊥〉
〈u× T, n〉

=
〈u, T × n⊥〉
〈u, T × n〉

= − 〈u, n〉
〈u, n⊥〉

.

Differentiating the far sides of this expression using (2), we obtain

θ′

sin2(θ)
= −τg −

〈u, n〉〈u,−κgT + τgn
⊥〉

〈u, n⊥〉2
.

Suppose ν(t0) = (0,±1), or θ(t0) = mπ + π/2, for m ∈ Z. Then u⊥(t0) = n(t0),
which yields 〈u, n(t0)〉 = 0. It follows that θ′(t0) = −τg(t0). So dνt0(it0) =
−iν(t0)τg(t0), which does not vanish by (3). Thus (0,±1) are regular values of
ν, and dνt0 preserves orientation if and only if τg(t0) < 0. Hence, since τg has
constant sign, −sign(τg) deg(ν) = #{ν−1(0,±1)}/2 = #

{
〈u, n〉 = 0

}
/2. So

Rot(u⊥, n) = −1

2
#
{
〈u, n〉 = 0

}
sign(τg)

which completes the proof.

3.2. Proof of Theorem 1.3. If Cr(Γu) = Lk(Γ, n) then 〈u, n〉 6= 0 by (1). So M
is locally a graph over a plane orthogonal to u, which we may identify with the xy-
plane. After an affine transformation, given by (x, y, z) 7→ (x, y, λz), we may assume
that M is arbitrarily close to the xy-plane, since affine transformations preserve
asymptotic curves. Suppose, towards a contradiction, that Γu is locally star-shaped
with respect to the origin, i.e., tangent lines of Γu do not pass through o. Then
〈Γu, u⊥〉 6= 0. Let h := 〈Γ, n〉. Then h′ = −τg〈Γ, n⊥〉. But 〈Γ, n⊥〉 → 〈Γu, u⊥〉 as
λ→ 0. So h′ 6= 0, for λ small, which is impossible since Γ is closed.

3.3. Proof of Theorem 1.4. We may again assume that u = (0, 0, 1) and Γu lies in
the xy-plane. When the curvature of Γu does not vanish, the curvature κ of Γ does
not vanish either, and the principal normal N 6= ±u. But if κ does not vanish, then
n⊥ = ±N , as discussed in the last section. So n⊥ 6= ±u. Then, after the rescaling
(x, y, z) 7→ (x, y, λz), we may assume that |〈T, u〉| and |〈n⊥, u〉| are arbitrarily small,
which implies that n is almost parallel to u or −u. In particular 〈n, u〉 6= 0. Thus
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M is locally a graph over the xy-plane. Now if τg 6= 0, then we again arrive at a
contradiction, as shown in the proof of Theorem 1.3.

Note 3.1. An alternative argument for finishing the proofs of Theorems 1.3 and 1.4,
once we know that M is locally a graph over the xy-plane, can be given following
Petrunin [31, p. 31]. Let u = (0, 0, 1) and set h := 〈Γ, n〉/〈u, n〉, i.e., the height over
the origin of the tangent planes of M along Γ. We compute that

−h′〈u, n〉2 = τg
(
〈Γ, n⊥〉〈u, n〉 − 〈Γ, n〉〈u, n⊥〉

)
= τg〈Γ, T × u〉 = τg|T × u|〈Γ, u⊥〉.

If Γu is locally star-shaped with respect to the origin, then 〈Γ, u⊥〉 = 〈Γu, u⊥〉 6= 0.
So h′ 6= 0, which is again a contradiction.

Note 3.2. As we mentioned in Section 2, if Γ has no inflections, then n = ±B
and τg = τ . So Lk(Γ, n) = Lk(Γ, B) = Lk(Γ, N) which is known as the self-linking
number of Γ and is denoted by SL(Γ) [32,34]. Thus (1) yields that

(8) SL(Γ) = Cr(Γu) +
1

2
#
{
〈u,B〉 = 0

}
sign(τ).

By Crofton’s formula,∫
u∈S2

#
{
〈u,B〉 = 0

}
sign(τ) = 2 Length(B) sign(τ) = 2

∫
Γ
τ.

Thus (8) together with (6) yields SL(Γ) = Wr(Γ) + 1
2π

∫
Γ τ, which is a special case

of Călugăreanu’s formula [32]. Hence (1) may be regarded as a generalization of
Călugăreanu’s formula for self-linking number of curves with nonvanishing curvature
and torsion. For this class of curves (8) may be rewritten as

SL(Γ) = Cr(Γu) +
1

2
Inflection(Γu),

where Inflection(Γu) denotes the number of inflections of Γu. Indeed Γu(t) is an
inflection if and only if the principal normal N(t) projects into the tangent line of
Γu at Γu(t), or N(t) lies in the plane spanned by T (t) and u, which is the case if
and only if 〈u,B(t)〉 = 0.

4. Examples

Here we describe a pair of examples which illustrate some of the subtleties of
Problem 1.1.

Example 4.1. For the sake of comparison we start with Kovaleva’s example [26],
which is given by the coordinate functions

Γ1(t) := (3 + sin(t)) cos(
√

63/8 cos(t)),

Γ2(t) := (3 + sin(t)) sin(
√

63/8 cos(t)),

Γ3(t) := sin(2t) + 46 cos(t)− 27 cos3(t) + 27/8 cos5(t),

see Figure 1(a). We have provided a Mathematica notebook [18] where one can check
that this curve admits a Darboux framing (T, n⊥, n) with nonvanishing torsion τg,
as described in Note 2.1, and therefore is a rotating or asymptotic curve. Figure
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(a) (b)

Figure 1.

1(b) shows that n(Γ) is not injective. Furthermore, by (1) we have Lk(Γ, n) = 0,
since as Figure 1 shows, Cr(Γu) = 0 = #{〈n, u〉 = 0} for u = (0, 0, 1).

Aicardi [2] showed that curves of nonvanishing curvature and torsion can be con-
structed with any self-linking number. Thus there exists closed asymptotic curves
with any self liking number, as we discussed in Note 2.1. The special feature of Ko-
valeva’s example, and similar constructions by Arnold, however, is that the surface
forms a graph, which makes them much more subtle.

Example 4.2. Next we construct a closed asymptotic curve with opposite proper-
ties, i.e., n injective but Lk(Γ, n) 6= 0. Again the reader can verify our computations
via the Mathematica notebook [18] that we have provided. This example is obtained
by starting with an embedding n : S1 → S2 given by

n1(t) := (3 + sin(t)) cos(5/2 cos(t)),

n2(t) := (3 + sin(t)) sin(5/2 cos(t)),

n3(t) := (1− n2
1(t)− n2

2(t))1/2,

see Figure 2(a). Set τg := |n′|, and T := −n × n′/τg. Note that T traces the

(a) (b)

Figure 2.

center of oriented great circles tangent to n. We have constructed n so that these
circles cover S2, i.e., n is not star-shaped. It follows that the origin is contained in
the interior of the convex hull of T , see Figure 3. Thus there exists a C∞ positive
function ρ : S1 → R with

∫
ρT = 0, which can be constructed using methods of

convex integration [14, Lem. 2.3] [19, p. 168]. Setting Γ(t) :=
∫ t

0 ρ(s)T (s)ds, for
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an appropriate choice of ρ, yields the desired curve depicted in Figure 2(a). Here
Cr(Γu) = 2 whereas, #{〈n, u〉 = 0} = 0. Thus by (1), Lk(Γ, n) = 2.

It remains to find ρ. Let t1 = 7π/6, t2 = 11π/6, t3 = π/6, t4 = 5π/6, and
t5 = π/2. Then the origin o of R3 is contained in the interior of the convex hull of
pi := T (ti), see Figure 3. One may also note that the pairs (p1, p2) and (p3, p4) are

p1
p2

p3
p4

p5

Figure 3.

symmetric with respect to the yz-pane, while p5 lies on the yz-plane. Furthermore,
p1 and p2 lie on the cusps of T which correspond to the inflections of n. Set p′i :=∫
φiT for positive functions φi : S1 → R with

∫
φi = 1. If φi are concentrated near

ti then |p′i − pi| are small. So o lies in the interior of the convex hull of p′i. For
instance we may set φi(t) := (1.1 + cos(t− ti))10/

∫
(1.1 + cos(t− ti))10. Then there

exist constants ci > 0 such that
∑
cip
′
i = o. In particular we may set c1 = c2 = 1,

c3 = c4 ≈ 0.0815, and c5 ≈ 0.7465. Then we set ρ :=
∑
ciφi.

5. Further Observations

Here we include some observations on the structure of Γ and its projections Γu
in the case where n is injective.

Note 5.1. When n is injective, Γ must have inflections. To see this note that the
geodesic curvature of n in S2 is given by

(9) κ̃g :=
〈n′′, n× n′〉
|n′|3

=
〈−τ ′gn⊥ − τg(n⊥)′, τgT 〉

τ3
g

=
〈−(n⊥)′, T 〉

τg
=
κg
τg
,

and recall that |κg| = κ. Thus if κ 6= 0, then κg has a fixed sign. Consequently n
bounds a geodesically convex domain Ω in S2. In particular n lies in a hemisphere
centered at a point of Ω. It follows that T lies in the opposite hemisphere, since T is
traced by the centers of oriented great circles tangent to n. But since Γ is closed, the
origin of R3 must lie in the relative interior of the convex hull of T . Hence T must
be a great circle, which in turn implies that Γ is a planar curve, or n is constant,
which is a contradiction.

Note 5.2. An alternative argument for showing that injectivity of n forces inflec-
tions along Γ has been given by Kovaleva [27]. Since that work has been published

only in Russian, we include the argument here. Let Γ̃ := n(Γ), and A1, A2 be the
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areas of the components of S2 \ Γ̃. Then the Gauss-Bonnet theorem yields that

(10)

∣∣∣∣∫
Γ̃
κ̃g

∣∣∣∣ =
1

2
|A1 −A2| < 2π.

Furthermore, since |n′| = τg it follows from (9) that

(11)

∫
Γ̃
κ̃g =

∫ 2π

0
κ̃g(t)|n′(t)|dt = sign(τg)

∫ 2π

0

κg(t)

τg(t)
τg(t)dt = sign(τg)

∫
Γ
κg.

So |
∫
κg| < 2π. Now suppose that κg does not change sign. Then

∫
κ =

∫
|κg| =

|
∫
κg| < 2π. But since Γ is a closed curve in R3,

∫
κ ≥ 2π by Fenchel’s theorem.

Hence we arrive at a contradiction.

Note 5.3. When n is injective,

(12)

(∫
Γ
κg

)2

+

(∫
Γ
τg

)2

> 4π2.

To see this let L denote the length of Γ̃ = n(Γ), and A be the area of the region

bounded by Γ̃ into which n × n′ = −τgn × n⊥ = τgT points. Assuming τg > 0,
we have L =

∫
Γ |n

′| =
∫

Γ τg. Furthermore, by Gauss-Bonnet theorem and (11)

A = 2π−
∫

Γ̃
κ̃g = 2π−

∫
Γ κg. By the isoperimetric inequality on S2, L2 ≥ 4πA−A2

with equality only if Γ̃ is a circle. Since Γ̃ has inflections, as discussed in Note 5.1,

Γ̃ cannot be a circle. Thus L2 > 4πA−A2, which yields (12).

Note 5.4. If n is injective and 〈u, n〉 6= 0, or M is locally a graph over a plane
orthogonal to u, then the absolute rotation index of Γu is 1 (which was precisely
the case in Example 4.2). To see this suppose again that u = (0, 0, 1) and consider
the rescaling (x, y, z) 7→ (x, y, λz) as in the proofs of Theorems 1.3 and 1.4. Then,
as λ → 0,

∫
κg converges to the total geodesic curvature of Γu. But

∫
κg = ±

∫
κ̃g

by (11). Furthermore,
∫
κ̃g converges to ±2π by (10), since Γ̃ converges to u or −u.

So the total geodesic curvature of Γu is ±2π, which means the rotation index is ±1.

Note 5.5. In [27] Kovaleva studied Problem 1.1 in the case where Γ has only
finitely many inflections, and claimed that when n is injective, Lk(Γ, n) is equal to
half the number of inflections. But as we pointed out in Note 5.1, inflections of Γ
correspond to inflections of n in S2. As Figure 2(b) shows, n has only two inflections
in Example 4.2, whereas Lk(Γ, n) = 2 as we discussed above. Thus Example 4.2
contradicts Kovaleva’s claim.
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