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Abstract

We characterize submanifolds of Euclidean space which lie on closed hypersurfaces
of positive curvature, and develop some applications of this result for boundary
value problems via Monge-Ampére equations, smoothing of convex polytopes, and
an extension of Hadamard’s ovaloid theorem to hypersurfaces with boundary.

The main result of this dissertation states that every smooth compact submani-
fold M of Euclidean space lies embedded in a smooth closed hypersurface of positive
curvature if, and only if, M is strictly convexr, i.e., through every point of M there
passes a hyperplane, with contact of order one, with respect to which M lies strictly

on one side. As applications of this result we show:

1. Every smooth closed strictly convex submanifold of codimension two bounds

a smooth hypersurface of constant positive curvature.

2. Let M be a closed strictly convex submanifold of codimension 2; then, if M
is C*!, the two hypersurfaces making up the boundary of the convex hull of

M are each C1!; this result is optimal.

3. Every polytope P may be approximated arbitrarily closely by a closed hy-
persurface of nonnegative curvature which coincides with the boundary of P

everywhere outside any given open neighborhood of the singular points.

4. Let M be a compact connected hypersurface of positive curvature in Euclidean
n-space, n > 3, then M is strictly convex, if, and only if, each boundary
component of M lies strictly on one side of the tangent hyperplanes of M at

that component.

Furthermore, we discuss some applications for self-linking number of space curves,

and umbilic points of ovaloids.
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1 Introduction

1.1 Statement of the main theorem

We say a C? submanifold M C R™ is strictly convex if through every point of M
there passes a nonsingular support hyperplane, i.e., a hyperplane, with contact of
order one, with respect to which M lies strictly on one side.

Let O C R™ be an owvaloid, i.e., a closed hypersurface of positive curvature; then,
every C? embedded submanifold of O is strictly convex by Hadamard’s theorem. In

this paper we prove the converse; thus, obtaining the following characterization:

1.1.1. Main Theorem. Let M C R™ be a smooth (C*) compact embedded sub-
manifold, possibly with boundary; then, M lies embedded in a smooth ovaloid if, and

only if, M 1is strictly convex. Furthermore, if M 1is strictly convez, then

1. Any finite number of nonsingular support hyperplanes at distinct points of M
may be extended to a smooth distribution of nonsingular support hyperplanes

along M.

2. For every smooth distribution of nonsingular support hyperplanes along M

there exists a smooth integral ovaloid containing M.

3. This ovaloid may be constructed within an arbitrary small distance of the

convex hull of M.

4. If M is symmetric with respect to some rotation or reflection in R™, then

there exists a smooth ovaloid, containing M, which has the same symmetry.

Finally, if M is strictly convex, but is only of class C*, for some k > 2, then there

erists an ovaloid, containing M, which is also C*.
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1.2 Applications and connection to other work

Let M C R™ be a closed submanifold of codimension 2. If M is strictly convex, then,
by the main theorem, M lies on an ovaloid. In particular, M bounds a hypersurface
of positive curvature. Thus a sufficient condition for M to bound a hypersurface of
positive curvature is that M be strictly convex. This is related to a question posed
by S.-T. Yau [Yaul, problem # 26] who asked for conditions for a Jordan curve
I' € R? to bound a disk with a given metric of positive curvature. H. Rosenberg
[Ros| has shown that a necessary condition is that the self linking number of T" be
zero; however, this condition is not sufficient, as was shown by H. Gluck and L. Pan
[GP]. Also we should note that if M is merely convex (i.e. lies on the boundary of
its convex hull), but is not strictly convex, then it may not bound any surfaces of
positive curvature, see Figure 7 (Appendix A).

One motivation for characterizing submanifolds which bound a hypersurface of
positive curvature is that such a hypersurface provides a “subsolution”, or “barrier”,
for certain Monge-Ampére equations used to study the existence and regularity of
hypersurfaces with prescribed curvature and boundary. For instance, B. Guan and
J. Spruck [GS] showed that if M bounds any strictly convex hypersurface, then
it bounds a hypersurface of constant positive curvature; thus, via this result, an

immediate corollary of our main theorem is the following:

1.2.1. Theorem. Let M C R™ be a smooth strictly convex closed submanifold of
codimension 2; then, M bounds a smooth hypersurface of constant positive curva-
ture. In fact, there exists an € > 0, depending on M, such that for every 0 < K < e,

M bounds a hypersurface of constant curvature K.

The essential idea in [GS] is to apply the continuity method, via some a priori

estimates, to arrive at a prescribed solution, the existence of which is guaranteed
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once it is known that a subsolution exists. A specific value for the € in the above
theorem may be obtained by taking the minimum of the curvature of any subso-
lution. We do not know, however, and it would be interesting to find, a sharp
estimate for e. From a geometric point of view the result in [GS] was a substantial
extension of earlier work in [CNS1], [Krl], and [HRS]; however, it seems that we
should be able to go much further. In fact, we conjecture (see Appendix E) that
if M bounds any hypersurface of positive curvature (regardless of whether or not
the surface is representable by means of a graph), then M bounds a hypersurface
of constant positive curvature, for any constant less than or equal to the smallest
value of the curvature on the initial surface.

The development of the theory of Monge-Ampére equations has a rich history
originating from the Minkowski problem, and includes contributions from many well
known authors. References may be found in the books by R. Schneider [Sch1] and
D. Gilbarg & N. Trudinger [GT]. In particular, see the books by A. Pogorelov [Pog],
T. Aubin [Aub], and the survey articles of H. Gluck [Glk| and S.-T. Yau [Yau2].

Another fundamental problem with regard to strictly convex submanifolds, is
that of regularity of the two hypersurfaces which form the boundary of the convex
hull of M. This question is related to the regularity of certain degenerate Monge-

Ampére equations over spherical domains. Using this machinery, we prove:

1.2.2. Theorem. Let M C R™ be a C>! strictly convex closed submanifold of
codimension 2; then, the boundary of the convex hull of M is made up of two C!

hypersurfaces. (This result is optimal.)

Earlier L. Caffarelli, L. Nirenberg, and J. Spruck [CNS2] had studied the regu-
larity of degenerate Monge-Ampére equations over convex planar domains. Subject

to the existence of a subsolution, B. Guan [Gun| has extended that result to ar-
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bitrary planar domains. Here we extend Guan’s work to spherical domains via a
certain transformation which reduces the problem to the planar case and preserves
the subsolution. The optimality of the above theorem follows from a pair of ex-
amples in [CNS2], one of which is due to J. Urbas. We should note, however, that
as far as C1! regularity in the interior of each cap is concerned, C%' assumption
on the boundary is sufficient [TU]. Note also that if the submanifold is convex
(but not strictly convex); then, the conclusion of the above theorem may not be
true, see Figure 6. We should also mention the work of V. Sedykh [Sed1] who has
classified the generic singularities of the convex hull of space curves. For a study of
the structure of these objects, from the global point of view, see [RCB].

Another application of the main theorem is that of smoothing convex polytopes.
It has been known since H. Minkowski [Min| that the boundary of every convex
polytope may be approximated by a smooth closed hypersurface of nonnegative

curvature. Here we show that this smoothing may be achieved in an optimal way:

1.2.3. Theorem. Let M C R™ be the boundary of a convex polytope P, then, there
exists a smooth closed hypersurface of nonnegative curvature which coincides with

M everywhere outside any given open neighborhood of the singular points of M.

We prove the above by approximating each facet of the polytope by an ovaloid;
turning the edges of each ovaloid inward, using a distance function; and connecting
the rims via the main theorem. In particular, we will have control over the regions
along which the approximation coincides with the boundary of the initial object.
If such control is of no concern, then the above theorem may be proved directly
by applying a certain convolution, see Section 3.4, to the gauge (a.k.a. distance)
function of the given polytope [Sch3]. See [Schl, pg. 164] for a brief description and

references to other work on smooth approximation of convex bodies. For a proof
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of Minkowski’s approximation see the classic book by T. Bonnesen & W. Fenchel
[BF].

Next, we mention a result which may be regarded as an extension of Hadamard’s
theorem, on global convexity of ovaloids, to hypersurfaces with boundary. Hadamard
[Had] proved his theorem for closed surfaces of strictly positive curvature in 3-space.
Over the years this theorem has been generalized by J. Stoker [Stk]|, J. van Hei-
jenoort [Hjn|, S.-S. Chern & R. Lashof [CL], R. Sacksteder [Sac|, and M. do Carmo
& E. Lima [dCLi]. See also related papers by P. Hartman [Htm], H.-H. Wu [Wu],
and M. do Carmo and H. Lawson [dCLa]. In all these papers, however, it is al-
ways assumed that the given submanifold is (geodesically) complete, e.g., without

boundary. Here we relinquish this assumption:

1.2.4. Theorem. Let M C R™, m > 3, be a compact connected hypersurface
with positive curvature; then, M 1is strictly convex if, and only if, each boundary
component of M lies strictly on one side of the tangent hyperplanes of M at that

component.

The hypothesis of the above theorem is not unnatural. It is satisfied, for instance,
when each boundary component of M lies in a hyperplane. Also note that, much
like Hadamard’s theorem, we do not a priori assume that M is embedded (i.e.
without self intersection). Rather, embeddedness is obtained at the end as a bonus.
An outline of the proof is as follows. We will show that if the hypothesis of the
theorem is satisfied, then a collar of each boundary component of M is strictly
convex. This, via our main theorem, is used to show that M can be extended to
a closed hypersurface of positive curvature; therefore, M must be globally strictly
convex by Hadamard’s theorem. In particular, M will be embedded.

There is another point worth noting with regard to the above theorem: if the
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hypothesis is satisfied, then each boundary component will be strictly convex; how-
ever, the mere condition that each boundary component be strictly convex is not
strong enough to guarantee the outcome. In particular, there exists a compact
connected hypersurface of positive curvature which is not strictly convex but has a
strictly convex boundary, see Figure 15. Still, we conjecture (Appendix E) that the
strict convexity of the boundary is strong enough to guarantee the embeddedness
of the surface. The corresponding fact for minimal surfaces is well known. See
the book of R. Osserman [Osm2, pg 143] for a brief description, and references;
specially, the paper by W. Meeks & S.-T. Yau [MY].

In some special cases, other results with regard to global convexity of hypersur-
faces with boundary have been obtained by L. Rodriguez, [Rod], and W. Kiihnel,
[Knl]. Their work involves the notions of tightness of N. Kuiper [Kpr|, and the
two-piece property of T. Banchoff [Ban]. See [CR] for an introduction to these
concepts.

For a survey of some old and new results on complete locally convex hypersur-
faces, in Riemannian manifolds, see [AC]. A proof of Hadamard’s ovaloid theorem
may be found in the lecture notes by H. Hopf [Hpf, chap IV]. Some recent appli-
cation of the generalizations of Hadamard’s theorem include a prove of Efimov’s
theorem [SX], and a beautiful proof of the sphere theorem of Berger & Klingen-
berg, by M. Gromov [Ech]. [GW, chap 1.1] gives further indication of the breadth
and depth of the general problem of characterizing convex objects, not only in
differential geometry, but throughout Mathematics.

In Section 5, we will discuss two more applications of the main theorem of
this work. One (Section 5.5) is concerned with the self-linking number of space
curves. The other (Section 5.6) is a result on deformation of ovaloids, and has

some implications related to a well-known conjecture of C. Carathéodory on umbilic
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points.

Finally, we should mention a paper of W. Weil [WI]] who showed that given a
convex polytope P, it is possible to inscribe a smooth ovaloid inside P which touches
the interior of each facet at prescribed points. This is an immediate implication of
our main theorem, when M is discrete. In this case, much like the general case, the
solution is not unique. It would be interesting, therefore, to study the existence and
uniqueness of solutions to this problem under some restrictions on curvature. For
instance, we could search for the ovaloid which is most spherical, i.e., the variation

in its radii of curvature is small, see Appendix D.

1.3 Outline of the proof of the main theorem

The proof of the main theorem employs a blend of concepts and techniques from
the theory of convex bodies, submanifold geometry, and Monge-Ampére equations.
Given a strictly convex compact C*>? submanifold M C R™, we give a constructive
proof of the existence of a C* ovaloid O containing M in four steps (see Figure 2):

Step 1. We will show that, by extending the outward unit normal of a nonsingu-
lar support hyperplane to a small neighborhood of the point of contact, it is possible
to slide each nonsingular support hyperplane locally. This involves studying the sec-
ond order behavior of the corresponding height functions. By using a partition of
unity we then construct a C*~! nonsingular support, i.e., a unit normal vector field
given by a C* ! mapping o: M — S™ ! which generates nonsingular support hy-
perplanes along M. (The motivation for these techniques comes from considering
the special case of curves in R?, see Appendix B.) Furthermore, through a careful
study of the regularity of the distance function versus that of the end point map

in small tubular neighborhoods of M, we will show that is is possible to construct
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o so that small perturbations of M along ¢ are actually C*; even though, ¢ is in
general only C*~!'. When ¢ has this additional property, we say that o is proper.

Step 2. By perturbing M inward a distance of ¢ along o (see Figure 3), and then
building a tubular hypersurface of radius ¢ around the perturbed submanifold, we
will show that there exists a C* strictly convex patch P, i.e., a compact embedded
hypersurface with boundary, which contains M and is tangent to every hyperplane
generated by o. We do this, in one step, by using a variation of the endpoint map,
based on ¢, to embed a portion of the unit normal bundle of M. For the special
case when M is a space curve, it is possible to carry out this construction quite
explicitly and obtain formulas for the curvature of the patch, see Appendix C.

Step 3. We will show that every strictly convex patch can be extended to a
C! owvaloid O, i.e., a closed hypersurface whose radii of curvature, in a generalized
sense, are bounded above and below by positive constants. We construct O (see
Figure 4) by (i) forming the inner parallel hypersurface of P at a small distance e,
(ii) taking the intersection of all balls of a sufficiently large radius containing the
perturbed hypersurface, and (iii) forming the outer parallel body of the intersection
at the distance e. (The second step involves proving an analogue of Blaschke’s
rolling theorem for hypersurfaces with boundary.)

Step 4. We will show that by applying a certain convolution, due to R. Schnei-
der, to the Minkowski support function of O, and then a gluing with the aid of a
fized bump function on the sphere, it is possible to construct a sequence O; of C*
closed hypersurfaces which contain M and converge to O. We will show that, for
every ¢, O; has uniformly bounded positive curvature except in a small neighbor-
hood of M with fixed radius; however, it turns out that these small neighborhoods
converge to P up to the second order; therefore, this sequence will eventually have

positive curvature near M as well; thus, producing the desired ovaloid.



2 Basic Notation and Terminology

2.1 Submanifold geometry

We say M C R™ is a C* n-dimensional embedded submanifold if every point of M
has a neighborhood, under the subspace topology, which is C*-diffeomorphic to an
open subset of the halfspace H*. We say a vector X, € R™ is tangent to M at
p if there exists a curve y: (—¢,€¢) — M, such that v(0) = p and +'(0) = X,,. If

f: M — Ris a C* function, then we define

Xpf = (fo7)(0),

the derivative of f at p in the direction X,. The set of all tangent vectors to M
at p is denoted by T,M, the tangent space of M at p. Note that in our definition
T,M is a subspace of R™. The orthogonal complement of 7, M in R™ is denoted by
T,M*, the normal space of M at p.

By a vector field along M we mean a mapping X : M — R™ p N X,. We say
X is a tangent vector field if, for all p € M, X, € T,M. Similarly, X is a normal
vector field if X, € T,M*, for all p € M. If f € C'(M) then, for every tangent

vector field X, we define a new function X f by setting

(XH)p) = Xpf.

Let TM := UMTpM, the tangent bundle of M. Suppose F': M — R™ p N
peE

(fi(p), ..., fm(p))is a tangent vector field, then the differential of F', F,: TM — R™

is defined by

Fu(X,) = (Xpfi,- - s Xpfim)-

Let X, Y: R™ — R™ be a pair of vector fields, then we define a new vector field,
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VxY, by setting
(VxY), == Yi(X,) = VY.

V is the standard Levi-Civita connection on R™. Now recall that, for all p € M,
we can write R™ = T,M & T,M=*. Let ()7 : R™ — T,M, and ()* : R™ — T,M*
be the corresponding projections, and let X and Y be tangent vector fields on M;

then, we set
Vx,Y = (Vx,Y)", and a(X,Y,):=(VxY)"

V is the induced connection on M and a: T,M x T,M — T,M~* is known as the
second fundamental form of M. It can be shown (we will do this shortly) that
(vXpY)L depends only on the value of Y at p; thus, a is well-defined, and yields

the following equation
(Vx,Y)=Vx Y +a(X,,Y,),

known as Gauss’ formula.

An important property of the induced connection V is that it is Riemannian
which means the following: let X and Y be tangent vector fields on M and
(X,Y): M — R be the mapping defined by (X,Y)(p) = (X,,Y},); then, for ev-
ery Z, € T,M,

ZP<X7 Y) = <VZ;DX’ }/;’> + <Xp7 VZ;DY>'

Let &, be a normal vector to M at p. We define the shape operator A¢,: T,M —
T,M by

Aﬁp (Xp) = —(vxp'f)Ta
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where ¢ is any local extension of &, to a normal vector field on M. Now let Y be
any tangent vector field on M, then (Y,¢) = 0, and consequently 0 = X,(£,Y) =

(Vx, 6 Y,) + 1), Vx,Y) = ((Vx,8) 7, V) + (£(p), (Vx,Y) "), which yields
<A‘£pX’ Yp) = <a(Xp’ YZD)@;D)-

The above formula shows that A, depends only on the value of { at p; and, fur-
thermore, it shows that a(X,,Y,) is independent of the extensions X and Y, as we
had claimed earlier.

The Lipschitz-Killing curvature of M at p in the normal direction §, is defined

as

K(p,&) := det(A,).

If M is a hypersurface, i.e., it has codimension 1, then A, is known as the Wein-
garten map and K(p,§,) is better known as the Gauss-Kronecker curvature of M
at p. Furthermore, if M is a two dimensional surface in R?, then K(p,¢,) = K(p)
is referred to simply as the Gaussian curvature of M at p.

It can be shown that A, is a self-adjoint operator and therefore orthogonally
diagonalizable, i.e., there exists an orthonormal basis X; € T,M, 1< 1< n, such

that
Ae, (X)) = ki(p, )X,

ki(p, &) are known as the principal curvatures of M at p with respect to the normal

vector &,, and XI’; are the corresponding principal directions.

2.2 Notions of convexity

Let M C R™ be an embedded submanifold. We say a hyperplane H supports M

at p € M, if p € H and M lies entirely in one of the closed halfspaces determined
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by H. By a strictly supporting hyperplane for M we mean a support hyperplane
which intersects M at only one point. If M is C? embedded, then we say H is a
nonsingular support hyperplane if H is a strictly supporting hyperplane with contact
of order one, i.e., p is a nondegenerate critical point of the height function of M
with respect to H, see Section 3.1.

Let bd M denote the extrinsic boundary of M, i.e., the intersection of the closure
of M with the closure of the complement of M in R™. In particular, note that in
general bd M # OM, where we use M to denote the intrinsic boundary of M.
Also note that if M is compact, then bd M = M whenever codim(M) # 0, and
bd M = OM otherwise.

We say a submanifold M C R™ is convex, weakly strictly convex, or strictly
conver; if, through every point p € bd M there passes, respectively, a supporting,
strictly supporting, or nonsingular supporting hyperplane.

A compact connected submanifold of codimension zero is called a body. We
denote the space of convex bodies in R™ by ™. It is easy to show that K™ is

closed under Minkowski sum, and scalar multiplication defined by

A+B:={z+y|z €A andy € B}, and

rA:={rz|ze A},

where A and B are arbitrary subsets of R™ and r > 0. Also, (K™, dist) is a locally

compact metric space where “dist” denotes the Hausdorff distance defined by
dist(A,B) :=inf{r 20| AC B+ rB™,and BC A+ rB™}.

B™ denotes the unit ball in R™.
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2.3 Global analysis

Let M C R™ be an embedded C* submanifold, then we say f € CY (M), | < k, if
for every p € M, there is a local chart (U, ¢), p € U, such that fo¢™': R™ — R is
C!. Since the transition map between local charts is C*, and [ < k, it follows that
this definition is independent of local charts.

Suppose f € C'(M), then we define the gradient of f as the unique tangent
vector field characterized by the following property: for every tangent vector field

X on M,

((grad f)pa Xp> = Xp(f)-

The Hessian of f, Hess f: TM x TM — R, is defined by
Hess f(X,,Y)) = X, (Y f) = (Vx,Y)f,

where V is the induced connection on M.

We say p is a critical point of f if f,, = 0. Now recall that since f is real valued
X,(f) = fu(X,) for every X, € T,M; therefore, from the definition of gradient
above it follows that p is a critical point of f if and only if grad f = 0. Furthermore,
since Vx,Y € T, M, it follows that, if p is a critical point, Hess f(X),,Y,) = X, (Y f).
We say p is a nondegenerate critical point if Hess f(X,, X,) # 0 for all X, # 0.

Finally, we mention that the Hessian and gradient are related by the following

formula
Hess f(X,,Y),) = (Vx, grad f,Y}).

To see the above, observe that X, (Y f) = X,(grad f,Y) = (Vx,grad f,Y,) +
(grad fp, Vx,Y), and (grad f,, Vx,Y) = (Vx,Y)/f.
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3 Preliminaries

3.1 Convex submanifolds, height functions, and

nonsingular support

Let M C R™ be an embedded submanifold, p € M, and g, € S™ ! a unit vector

associated with p; then, we define the linear height function l,: M — R by

ly(z) == (x, 0p). (3.1.1)

If M is at least C? embedded, we say M is a strictly conver submanifold if for
every point p € M there exists a unit vector o, € S™ ! such that p is the strict
absolute maximum and a nondegenerate critical point of the height function /,, i.e.,

we require that

bp(x) < lp(p), (3.1.2)
for all x € M — {p};
(gradl,), =0, (3.1.3)
for all p € M; and
(Hess l,),(Xp, X,) # 0, (3.1.4)

forall X, e TM, X, #0.
Note that the three previous equations together with Morse’s lemma imply that

the Hessian of [, at p is actually negative definite, i.e.,
(Hess 1), (Xp, Xp) <0 (3.1.5)

forall X, e TM, X, #0.
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If any unit vector o, satisfies equations (2), (3), and (4), we say o, is a non-
singular support vector of M at p. The hyperplane through p with unit normal o,
is denoted by H,, and is called a nonsingular support hyperplane of M at p. Note

that H, = {z € R" | (x — p,0,) = 0 }; or, equivalently,
Hy= {2 e R | L,(2) = ,(p) }. (3.1.6)
From (2) and (6) it follows that
M N H, = {p}. (3.1.7)

Let H;r denote the closed halfspace determined by H, which contains the point

p+o(p), and let H denote the other halfspace, then
Hy = {2 € R |1,(x) < (o)} (3.18)
From (2) and (8) it follows that
M C Hj. (3.1.9)

Thus H, is a supporting hyperplane of M. Moreover, (9) together with (7) shows
that H, is a strictly supporting hyperplane.

Since by assumption p is a critical point of [, i.e., (gradl,), = 0, then for all
X, € TM, X,(l,) = {(gradl,),, X,) = 0. Let v: (—e,¢) — M be a C*' curve with
v(0) = p, and 7/(0) = X, then

0=X,(lp) = (I, ©7)'(0) = (7(0), 05)) = (X, 0)- (3.1.10)
Thus we conclude that o, is normal to M at p, i.e.,

o, € T,M™, (3.1.11)
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which also shows that H), is a tangent hyperplane of M. So the order of contact
between H, and M must be at least one. Also note that since p is a critical
point of [, then for all X,,Y, € TM, (Hessl,),(X,,Y,) = X,(Yl,) = (Vx,Y,0,),
where V denotes the standard Levi-Civita connection on R™. Recall that by Gauss’
formula we have Vx Y = Vx Y +a(X,,Y,) where Vx Y = (Vx Y)T is the induced
connection on M and a(X,,Y,) = (Vx,Y )" is the second fundamental form of M.

Since Vy,Y € T,M, by (11) it follows that (Vx,Y,0,) = 0. Thus we have
(Hesslp), = (a(X,,Y}), 0p) = (Ag, Xp, V), (3.1.12)

where A, : T,M — T,M is the shape operator, or the Weingarten map, of M.
Recall that A, (X,) = —(Vx,0)', where o is any differentiable extension of o, to a
local unit normal vector field. Note that by (12) the non-degeneracy of (Hess[,),, is
equivalent to non-singularity of A, . In particular, the Lipschitz-Killing curvature

of M at p does not vanish in the direction of oy, i.e.,
K(p,0p,) = det(A,,) # 0. (3.1.13)

The above equation shows that the order of contact between M and H, is at most
one. Finally, recall that since by assumption (Hessl,), is negative definite, the
eigenvalues of A,,, i.e., the principal curvatures of M at p in the direction o,, are

negative:
ki(p,o,) < 0. (3.1.14)

Note that the important point here is that all principal curvatures have the same
sign. The actual sign, whether it is positive or negative, is a matter of convention.

More concretely, if we replace o, by —o, then all £;’s will be positive.
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3.2 Tubular neighborhoods, distance functions, and the

end point map

Let M™ C R™ be a C*?? compact embedded submanifold. As always we assume

that M may have a boundary. The normal bundle of M is defined by
NM :={(z,v) |z € M,v € T,M"*}.

It is well known that NM is a manifold of dimension m with a canonical C*~!
differentiable structure induced by the differential structure of M. We define the

end point map, end: NM — R™ by
end(z,v) =z + v.

Since we consider both M and T, M as subsets of R™, x and v are vectors in R™;
thus, the above is well-defined. As is well known, (z,0) is a regular value of end.
To see this, let X € T, 0)NM, and suppose v: (—€,¢) — NM, ¢ s (z(t), v(t)),
is a curve with v(0) = (x,0) and 4/(0) = X. Then end,(X) = (endoy)'(0) =
2'(0) + v'(0). Now since v(t) € T,uyM*, we have (2'(t),v(t)) = 0 which yields
(2'(t),v'(t)) = —{(2"(t),v(t)); therefore, (z'(0),v'(0)) = —(z"(0),0) = 0. Thus z'(0)
and v'(0) are perpendicular; so, end.(X,) = 0 if and only if 2/(0) = v'(0) = 0;
i.e., if and only if X = 0; thus (x,0) is a regular value. This together with the
inverse function theorem, and the fact that end‘ Mx{0} is one-to-one, yields the
tubular neighborhood theorem which states that end maps an open neighborhood of

M x {0} diffeomorphically into R™. More precisely, let

NM :={(z,v) € NM | ||v|| < e}, and Tube.M :=end(N.M),

then there exists an € > 0 such that

end

N.M — Tube. M
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is a C*~1 diffeomorphism. In particular, assuming e is sufficiently small, set
B,M :={(z,v) e NM | ||v]| =7}, and S.M :=end(B,M),

where 0 < 7 < €; then, S, M is a C*~! embedded hypersurface of R™, since B, M is
an m— 1 dimensional submanifold of N.M. We claim, however, that S, M possesses
a higher degree of regularity. To see this let d: R™ — R be the distance function
of M, i.e.,

d(p) := dist(p, M).

We claim that S, M = d~'(r), and d, restricted to Tube.M — M is a C* submersion.
This would show that S,M is in fact C*. To prove these assertions, we first define
a pair of mappings x, v: Tube. M — M by

z(p) :=m(end™'(p)), and v(p):=m(end™"(p)),

where NM 3> (x,v) v o € M, and NM > (x,v) =2 v € R™. Clearly,  and v

are C*~1. Furthermore, since x(p) + v(p) = end(z(p), v(p)) = p, it follows that

v(p) =p — x(p),

i.e., p—x(p) is perpendicular to M at z(p). This shows that x(p) is a candidate for
being the closest point of M to p, and since for every point p, in Tube. M, there is
only one point z(p) € M such that p—z(p) is perpendicular to P, we conclude that

x(p) is indeed the closest point of M to p, i.e., d(p) = ||p — z(p)||, or equivalently

The above equation shows that d ‘Tube w_ny 18 C*71; therefore, the gradient of d is

well-defined for all p € Tube. M — M. We claim that

(grad d), = v(p) :
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The above equation would show that gradd is C*~!, and, therefore, would imply
that d must be C*.

To prove the above we need the generalized Gauss’ lemma which states that
for every p € S.M, v(p) is perpendicular to S,M at p; therefore, since S,M is
a level hypersurface of d, (gradd), must be parallel to v(p). Thus (gradd), =
((gradd)p,v(p»%. Let v: (—¢,¢) — R™ be a curve such that v(0) = p and
7' (0) = v(p), e.g., let y(t) := end(p, tv(p)) = p+tv(p), then (grad d,, v(p)) = v,(d) =
(do7)'(0). Now doy(t) = [[r(t)—z(v()| = [V (&) =z (D)l = lp+t(p—=z(p))—2z()| =
(1 +t)|lp — z(p)||- Thus do +'(0) = 1 which yields the above formula. Hence we

conclude that

d € C*(Tube, M — M).

3.3 Ovaloids, their support functions, and a
Monge-Ampére equation

By an owaloid we shall always mean a closed hypersurface with bounded radii of
curvature, i.e., we require that there be positive constants » and R such that through
every point of p € O there passes a sphere S of radius R and a sphere s of radius
r such that a neighborhood of p lies inside S and outside s. By a generalization
of Blaschke’s rolling theorem due to J. Brooks & J. Strantzen [BS], if this (local)
condition is satisfied, then S and s lie, respectively, entirely outside and entirely
inside O. In other words, s rolls freely inside O and O rolls freely inside S. This
definition has the advantage that it presupposes no degree of differentiability on the
part of O. The following are its immediate consequences.

First, through every point p € O there passes a strictly supporting hyperplane.

More explicitly, let H, be the hyperplane tangent to the external supporting sphere
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S at p, then O, being contained inside S, lies strictly on one side of H,.

Secondly, at every point p € M, there passes only one support hyperplane,
because every supporting hyperplane through p must be tangent to some fixed
internal supporting sphere s at p. This implies that every ovaloid is necessarily C*.

Thirdly, if p € O has a neighborhood which admits a C? parameterization, then
it can be shown that the principal radii of curvature of O at p, being well-defined, are
pinched between r and R; therefore, a C? ovaloid has everywhere positive curvature.

Now note that, conversely, if a closed hypersurface M has positive curvature
everywhere then its radii of curvature are bounded above and below by some positive
constants R and r. By the theorem of Brooks & Strantzen (or some earlier rolling
theorems for the smooth case due to to D. Koutroufiotis [Kft], J. Rauch [Rch], or
J. Delgado [Del]) this implies that through every point of M there passes a sphere
of radius R containing M and a sphere of radius r contained in M; i.e., M must be
an ovaloid.

Thus we conclude that our present definition for ovaloid is consistent with the
previous one (i.e. a closed hypersurface of positive curvature) and, at the same
time, allows us to talk about a C' ovaloid.

Now let o: O — S™! be the outward unit normal, also know as the Gauss map,
of O. Tt is well known that if O is C* then ¢ is a C*~! diffeomorphism. Define the
support function h: R™ — {0} — R of O by

h(p) = <a-1<”;%”>,p>.

Intuitively, we may think of h(p) as the signed distance between the support hy-

perplane Ha—l(ﬁ) and the origin. The above equation shows that h is positively
p

homogeneous of degree one, i.e., for every A > 0, h(Ap) = Ah(p).

By looking at the above equation, and noting that ¢ is C*~!, it would seem
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that A is also C*~': however, it turns out that A is actually C*. To see this let,

p=(x1...,2,) and assume 0_1(”;%”) = (y1,...,Ym); then, h(p) = > " x;y;, and

consequently % =1;. Thus

— (P

which shows that grad h is C*~1; therefore, h must be C*.
Now, assuming that O is C?, the Hessian of h is well-defined. We claim that
for every p € R™ — {0} there is an orthonormal basis {E;, ..., EJ'} with respect to

which the matrix representation of the Hessian of h at p is of the form

71 O
0 Tm—1
0

where r; = ri(a_l(”%”)) = l/ki(afl(”;%”)) > 0 are the principal radii of curva-

ture of O at 0*1(”%”). Thus h is a convex function because its Hessian is positive
semidefinite everywhere.

To see the above, let E" := ”;%”, and, for 1 <7< m—1, let Ez X o=1(;2)’
the principal directions of O at o~ (” ”) (Hess h),(E,, E7) = (VE (grad h), EY) =

<VE;;(O'_1 om),El), where m: R™ — {0} — S™~!is the standard projection, i.e.,

7(p) := jby- Moreover, VE( -1

om)=(0c"to W)*(E;) = (0'*)_1(7T*(E;)). Now our
result follows once we observe that m,(E)*) = 0, m.(E:) = E} for 1 <i < m —1,
and o,(E}) = k;El. The latter holds because ¢ is the Gauss map.

Now for all p € S™!let h? denote the restriction of k to the hyperplane 7,S™!.
Since the second fundamental form of 7,S™ ! vanishes, it is easily shown , via

Gauss’ formula, that (Hess h?),(X,,Y,) = (Hess h),(X,,Y,) for all X,,,Y, € T,S™ L.

In particular, since E;, 1 < i< m—1form a basis for 7,S™, it follows that
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the matrix representation of (Hess h?), with respect to this basis is diagonal with
the principal radii of curvature as the main entries. Thus we obtain the following
Monge-Ampére equation:

1
K(o=H(p))’

where K = k'k%-.-k™ ! is the Gauss-Kronecker curvature of O, which by assump-

det((Hess h?),) =

tion is positive, provided the surface is oriented properly. Thus we conclude that,
for every p € S™~1, hP is strictly conver, i.e., its Hessian is positive definite.

To summarize, thus far we have shown that to every C*22 ovaloid O C R™ there
is associated a C* function h: R™ — {0} — R, known as the support function of
O, which is (i) C*, (ii) positively homogeneous, and (iii) convex; moreover, (iv) the
restriction of A to every hyperplane tangent to the sphere is strictly convex.

Now suppose that we are given a function h: R™ — {0} — R which satisfies
the four properties mentioned above; then, there exists a unique C* ovaloid with

support function k. To see this, define f: S™1 — R™ by

f(p) = (grad h),,

and set O := f(S™~!). We are going to show that O is the desired ovaloid.

First, it follows from our assumptions that , for every p € S™! there exists
a basis {E;, ., B}, with B = ”%” with respect to which the Hessian matrix
of h is diagonal with all the main entries, except the last one, positive; there-
fore, since, for 1 < 4,7 < m — 1, ey == (fu(E,), E]) = ((grad h).(EY), E}) =
(Vi (grad h), EJ) = (Hess h),(Ey, F}), we conclude that e;; > 0 and all other terms
are zero. Hence for every X, € T,8™!, X = Y7 1, E!, we have (f,(X,),X,) =
S (f(X0), X)) = S0 e £ 0. Thus fo(X,) # 0, if X, # 0. So f is an

immersion and therefore O is a closed immersed hypersurface which so far appears

to be of class C*~1.
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Next, we are going to show that O is strictly convex and C*. Let o: O — S™!

be defined by

o(f(p)) = p
We claim that o is the Gauss map of O. To see this, let Y,y € Ty O, then
Yiw) = fu(Xp) for some X, € T,8™ 1. Hence (a(f(p)), Vi) = (. fu(X5)) =
(Byr, (grad h), (X)) = 375" el B, (grad h)a(By)) = 0 (B, Vg (grad ) =
"' ci(Hess h),(E™, EL) = 0. Thus we conclude that

o(f(p)) € TypO™.

Now since o, 0 f, = id and f, is an immersion, it follows that o is also an immersion
and therefore O must have everywhere positive curvature. Thus, by Hadamard’s
theorem O must be an ovaloid. Furthermore, since the Gauss map of O is C*~1, by

construction, it follows that O is C*.

3.4 Convex bodies, generalized curvature, and Schneider’s

transform

Let K™ denote the space of convexr bodies is R™, i.e., compact convex subsets with
nonempty interior. K™ is closed under Minkowski sum and scalar product. Further-
more, (K™, dist) is a complete locally compact metric space, where “dist” denotes
the Hausdorff distance. To every K € K™, there is associated a support function

hi: R™ — R defined by

hi(p) == sup{(p,z) | v € K}.

For every p € S™ !, hg(p) is the signed distance from the support hyperplane of K,
with outward unit normal p, to the origin. It is easily shown that hg4 gy = hx+hg

and hq gy = rhg for all K, K’ € K™, and 7 > 0.
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We say a convex body K rolls freely inside a convex body L, if for every p € bd L,
there is a rigid motion g : R™ — R™, (g € SO(m) x R™) such that g(K) C L and
p € g(K).

We say the radii of curvature of K are bounded below by r if there exists a ball
of radius r rolling freely inside K. Similarly, we say the radii of curvature of K
are bounded above by R if K rolls freely inside a ball of radius R. If the radii of
curvature of K are bounded above and below then we say that the boundary of K
has positive curvature (in a weak sense).

Next we are going to describe an operation for smoothing convex bodies. This
is due to R. Schneider, see [Sch1] and [Sch2]. Let 6.: [0,00) — [0, 00) be a smooth
function with supp(f.) C [e/2,€], and [, 0(||z]|)dz = 1. Then the Schneider

convolution of h is defined by

B0 = [ b+ 06 el

Note that the above is just the standard convolution of h, with a kernel function
0., plus a minor adjustment to ensure that the outcome is homogeneous. It is well
known that the convolution of a convex function is convex, thus he is a support
function. This convolution defines a transformation 7, : K™ — K™ by
hr k) = he K-

This transformation has the property that dist(K, T.(K)) < e. Also it turns out that
T(K+K')=T.(K)+T.(K"), T.(AK) = A\T.(K) when A > 0, T.(g(K)) = g(T.(K))
for every rigid motion g, and if K C L, then T.(K) C T,(L). From these properties
if follows that if the radii of curvature of K are pinched between r» and R then the
radii of curvature of 7,(K) must have the same bounds. To see this, observe that

T.(rB™) = rT.(B™) = rB™, where B™ denotes the unit ball in R™; also, note that

if K rolls freely in L then T,(K) rolls freely in T.(L).
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4 Proof of the Main Theorem

Our principal aim here is to prove the first sentence in the statement of the main
theorem, i.e., that there exists a smooth solution containing the given data. The
proof is divided into four propositions, corresponding to the steps outlined in Section
1.3. These are proved in the next four subsections. Each proposition uses a number
of lemmas whose statements and proofs appear at the end of the proof of the
corresponding proposition.

The additional information given in items 1 to 3 of the statement of the main
theorem, is primarily a by product of our method of construction, and is obtained
without too much extra effort. It is only the last sentence in the statement of the
main theorem whose proof requires considerable additional work; in order to ensure
that the solution has the same degree of regularity as the given data (C*), we need
to construct a C*~! nonsingular support which is proper (c.f. step 1 in Section 1.3).
Without this additional requirement, the solution will be C*~1.

Item 4, in the statement of the main theorem, i.e., the existence of a solution
which inherits the symmetries of the given data, is easy to show once we establish
the existence of any solution. The argument is as follows. Let M C R™ be a strictly
convex submanifold. Suppose there exists an ovaloid O containing M. Choose the
origin of the coordinate system inside O. Suppose M is symmetric with respect
to some orthogonal transformation g € O(m), i.e., g(M) = M. We wish to show
that there exists an ovaloid O, containing M, such that g(O) = O. To this end, let
p: S™ ! — R be the function whose (radial) graph is O, i.e., suppose O = {p(z)x |
r € S™ '} Set p:= (p+pog')/2. Then the graph of p is the desired ovaloid. This
follows from observing that the Hessian of a spherical function is positive definite

if, and only if, the corresponding radial graph has positive curvature.
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4.1 Construction of a C*¥~! proper nonsingular support
Here we prove:

4.1.1. Proposition. Every compact C*>? embedded strictly convex submanifold

M C R™ admits a C*~! proper nonsingular support.

Proof. By assumption, for every p € M there exists a nonsingular support vector
& € S™ ' Recall that this means that p is the strict absolute maximum and a
nondegenerate critical point of the height function M 3 z — (x,&,) € R.

We want to show that given any finite number of distinct points z; € M, 1 <

j < n, there exists a mapping o : M — S™ ! such that:
(i) ois C*1,
(ii) o(p) is a nonsingular support vector, for every p € M,

(iii) there exists an €j; > 0 such that M, := {p+ea(p) | p € M} is a C* submani-

fold for every |e| < €y, and, finally,
(iv) o(z;) = &, forall 1 < j < n.

The proof consists of two parts. In part I, we show that the above requirements
follow from a set of local conditions. In part II we prove the local conditions.

Part I. We claim that to prove {(i)---(iv)}, it is sufficient to show that for
every nonsingular support vector §, € S™ !, there exists a pair (U?, 0?) where UP is
an open neighborhood of p and ¢?: UP — S™ ! is a mapping satisfying the following

properties:
(i) of is CF1

(ii)” oP(q) is a nonsingular support vector, for every ¢ € U?,



4 PROOF OF THE MAIN THEOREM 27

(iii)* For every UP there exists an eyr > 0 such that U? := {q+ eo(q) | ¢ € UP} is

a C* submanifold for every |e| < ey», and, finally,

(iv)" oP(p) = &-

Assume that {(i)’,...,(iv)’} hold. We are now going to construct a mapping
satisfying {(i),...,(iv)}. First, observe that {U?},c) forms an open covering for
M, and, since M is compact, there exists a finite subcover & = {UPi}, 1 < i < N.
Furthermore, it is easy to see that we can choose U so that U% € U, for every
1 < 5 < n, and, also, we can require that U® be the only neighborhood in U

containing x;. Now let {¢;} be a C* partition of unity subordinate to ¢/, and set

) e iz $iD)0” ()
P =S e ol

We claim that the mapping o: M — S™ ! p+% o(p), is well-defined and satisfies

(i), (ii), (iv), and, with some care, (iii) as well. o(p) is well-defined and is in
fact a nonsingular support vector by Lemma 4.1.2; thus, (ii) is satisfied. (i) is an
immediate consequence of (i)’, via the assumption that ¢}s are C*. (iv) follows from
(iv)” and the specific way we constructed the subcover U, i.e., the assumption that
each x; is covered only once. Thus, it remains to show that o satisfies (iii).

First, let f: M — R™ be given by

f(p) :=p+ea(p),

then f is clearly C*~!. Furthermore, we claim that f is an embedding. To see this,
observe that f(p) = end(p, eo(p)), where end: NM — R™, (p,v) L, p+ v, is the
end-point map. By the tubular neighborhood theorem, since M is compact, end is
an embedding for small e. Furthermore, by Lemma 4.1.3, ¢ is also an embedding
which implies that so is the mapping p — (p,ec(p)), and consequently f. So we

conclude that, since M, = f(M), M, is at least a C*~! embedded submanifold.
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Now, suppose p € M is covered only by a single neighborhood UP* € U, then, by
(iii)’, it follows that M, is C* in a neighborhood of f(p), because f(p) C UP* C M,.
On the other hand, if p is covered by more than one neighborhood UP* € U, then
f(p) is contained in a neighborhood which is a blending of C* manifolds U¢*. This
blending occurs in Tube. M which is also C* by Lemma 4.1.8, and is completely
determined by the choice of the partition of unity {¢;}. We claim, therefore, that it
should be possible to choose {;} so that the blending of overlapping neighborhoods,
and consequently M., is C* everywhere. This can be done, for instance, by an
appropriate smoothing of f. We show this explicitly only for the local case (iii)’ in
part I1.2 of this proof.

Part II. In this part we show that for every p € M there exists an open
neighborhood UP and a mapping o?: UP — S™ ! which satisfies {(i)’--- (iv)’}. We
do this in two steps: in II.1 we prove that, for every p € M, there exists a pair
(UP, 0P) which satisfies all the required properties except the third; and, in I1.2 we
use the pair constructed in II.1 to construct another pair which satisfies all four
properties.

IT.1. Let & be a nonsingular support vector for M at p. By Lemma 4.1.4,
&, may be extended locally to a C*~! unit normal vector field. More explicitly,
there exists an open neighborhood V? of p and a mapping o?: V? — S™ ! such
that o?(p) = &, oP(q) € T,M* for every ¢ € VP, and o? is C*~'. We claim that
there exists an open neighborhood UP? C VP p € UP, such that (UP,o?) satisfies
{(1)’,(i1)",(iv)’}. Of course, (i)’ and (iv)’ are immediate, so it remains only to show
(i)’

To prove (ii)’, let [,: M — R be the height function given by

ZQ(J;) = <I’ Up(Q))a
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and recall that we have to show three things: (1) [,(z) < [,(¢) for all x € M — {q¢},
(2) (gradly), = 0, and (3) (Hessl,), # 0. (2) follows because, by construction,
o?(q) € T,M™*, and (3) follows by continuity of ¢” and the fact that (Hessl,), < 0,
see Lemma 4.1.5. Thus it remains to show (1).

To see (1), let L: VP x M — R be defined by

L(q,x) :=l,(x) — 1,(q).

We have to show that there exists an open neighborhood U? C VP, UP 3 p, such

that L| , <0, where A := U? x M — A(UP x M); or, equivalently
A={(g2)|qelr, ze M, &q#a}.
We do this by partitioning A into a pair of subsets:

B, :={(q,x) € A|dist(q,x) <r}, and C,:={(q,x)€ A|dist(q,x) >},

where “dist” denotes here the standard intrinsic distance in M, i.e., the one arising
from the metric induced by the ambient space R™. First, we show that there exists
an r > 0 such that L|, < 0. This follows by means of a Taylor expansion, and

continuity of o?, see Lemma 4.1.6.

So it remains to show that L

o. <0. To see this, let

D:={(p,x) |z e M, & dist(z,p) > = }.

N3

Since ¢?(p) = &, which is a nonsingular support vector by assumption, we have
lp(z) < lp(p) for all x € M — {p}. In particular, L| < 0; therefore, by compactness
of D and continuity of L, L must be negative over some open neighborhood of D

with some radius 6 < §. Now suppose that U? is small enough so that its radius is
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less than ¢, i.e.,
Uy, :={zeM|dist(z,p) <6}

We are going to show that C, C Us(D), which is all we need.

To see that C,. C Us(D), let (qo, zo) € C,, then dist(qo, zq) > 7, by the definition
of C,.. Moreover, dist(g, p) < 6, by definition of C,., and because the radius of U? is
less that ¢, by assumption. Now dist(zo, p) > dist(qo, z¢) — dist(p,qo) =7 — 06 > 3.

Thus, (p,zo) € D; and, therefore,

m((q()a wO)a D) < diSt((quxO)a (pa 'TO)) = dlSt(qup) < 63

where dist: M x M — R is given by by dist((p, q), (¢, ¢')) := (dist(p, p')+dist(q, q’))%.
So we conclude that (gg, zg) € Us(D), which implies C, C Us(D), as we had claimed
earlier.

IT.2 We showed in I1.1 that there exists a pair (U?, o) which satisfies (i)', (ii)’,
and (iv)’. Here we prove that there exists a pair (U?,&P) which satisfies all four
properties {(i)’--- (iv)’}.

First, define ?: UP — BM by

¢+ (g,0%(q)),

where BM denotes the unit normal bundle of M. Also, define end.: BM —
Tube.M by

(qa U) "lde) q + €V,
where |e| is small. Now set f? :=end, oG®, then fP: UP — Tube. M, and we have
fP ol
qr— q+¢€o (q)

Note that by the tubular neighborhood theorem, and Lemma 4.1.3, f? is a C*~!

embedding. Also note that, by Lemma 4.1.8, Tube M is C*; therefore, by Lemma
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4.1.7,if U? is sufficiently small, then there exists a C* embedding fp: UP — Tube. M

such that

°(p) = f(p), and [P =fr.

*p *p

Let my: BM — M, be the standard projection map, i.e., (¢,v) —5 ¢, and set
r:=m oend ",

then z: Tub.M — M. Now let T denote the restriction of z to fP(U?), i.c.,

xXr = x|fp(Up)’

and let UP C M be given by UP:=zo f(Up), then 7: fp(Up) — UP. Finally, set

a”(q) == ;[f_l(q) - q.

We claim that, assuming U? is sufficiently small, 67(q) is well-defined for all ¢ € U®.
Furthermore, we claim that o?: Ur — S™=1 and, finally, we show that (5”,(7”)
satisfies all four properties {(i)’,- - -,(iv)’}.

First, we show that o”(q) is well-defined for all ¢ € U?. To this end, we have
to prove that : fp(U”) — UP is invertible. To see this, let p;, ps € fp(U”), and
suppose that Z(p;) = z(py). We are going to show that p; = p;. Now note that
p1 = fp(ql) and py = fp(q2) for some q1, g € UP; therefore, since z(p;) = Z(ps), we
have 7 o fp(ql) =To fp(qQ), which implies that z o f~p(q1) =zo fp(qQ). Thus, it
is enough to show that z o fpz UP — UP is one-to-one. We do this, via the inverse

function theorem, by showing that (x o fp)*p is nonsingular:

P _ wo_ P
($ °© f )*;u - x*fp(p) O Jap = Tappipy © Jy

= (xo fP)y, = (m oend_loendeoﬁp*
- € P

= (mod?),, = (id),, =1,
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where id denotes the identity map and I the identity matrix. Thus, we conclude
that det((z o fp)*p) =1 # 0; therefore, z o fP: UP — UP is one-to-one, assuming UP
is small. In particular =': UP — fP(U?) is well-defined.

Secondly, we show that &7: UP — S™ !, i.e., ||52(q)|| = 1 for all ¢ € U?. To see
this, note that, by definition, |[o7(¢)|| = /|77 "(¢) — ¢||; thus, it is sufficient to show
that 77'(q) = ¢ + ev for some unit vector v. To this end, recall that, by definition,
T (q) € Tube.M := end (BM); therefore, T '(q) = end (¢, vy) for some ¢’ € e,
and vy € Ty M*. This implies that ¢ = zoend, (¢, vy) = m oend ' oend, (¢, vy) =

¢'; therefore, for every ¢ € (71’, there exists a unit vector v, € T,M~* such that
77 '(q) = end.(q,v,) = q + €v,.

In particular, ||a?(q)|| = ||vql| = 1.

Now that 37: UP — S™ ! is well-defined, we show that (57, UP) satisfies the four
properties {(i)’--- (iv)’}:

(i)’. From the definition of 57(q) it follows that €o?(q) + ¢ = T7'(q); therefore,
oP must be C*~1, because, as we showed earlier, x is a C*~! embedding.

(ii)’. As we showed earlier, 77'(¢q) = ¢ + ev, for some unit vector v, € T,M;
therefore, from the definition of o7, it follows that o = v,. In particular, o is a
local unit normal vector field. Thus, as we showed in II.1, to show that o?(q) is a
nonsingular support vector, it suffices to show that o7(p) is a nonsingular support
vector. This will be shown in part (iv)’.

(iii)’. UP = f(UP), and f? is a C* embedding by construction; therefore, U? is
a C* embedded submanifold.

(iv)’. By construction o?(p) = &,, see II.1; thus it suffices to show that o?(p) =
o®(p). First, note that by definition of f?, o?(p) = Z(fP(p) —p) = L(z7tox o

fP(p) — p). As we showed earlier, z o fP(p) = m o G”(p) = p; therefore, o?(p) =
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@ () —p) = 7 (p) m
4.1.2. Lemma. Let oy...0y be nonsingular support vectors of M at a fized point,

then any normalized convex combination of oy ...oy is well-defined and is also a

nonsingular support vector.

Proof. Let 1 < i < N, and set [;(x) = (x,0;). By assumption, there exists a point
p € M such that p is the strict absolute maximum and a nondegenerate critical
point of the height function /;. Let o := Zf;l c;io;, where ¢; > 0 and Zi\;l ¢ = 1.
We have to show that ¢ := o/||o|| is well-defined and is a nonsingular support
vector, i.e., p is the strict absolute maximum and a nondegenerate critical point of
the height function I(z) := (z, 5).

First, we show that & is well-defined, i.e., ¢ # 0. To see this let I(z) := (z, o).

It is enough to show that [ #Z 0. To see this let z € M — {p}, then

l(z) = Zcz'(%%) = Zcili(x)
< ) eili(p) = Z ci(p, 0i)
- <pa U> - l(p)

So we conclude that [ # 0, which shows that &, and consequently , is well-defined.
Next we show that p is the strict absolute maximum of [. To see this, let

x € M — {p}, then
N 1 1

() = popl(a) < i) = i(p)-

So it only remains to show that p is a nondegenerate critical point of /. This
is an immediate consequence of the fact that [ = ﬁ Zf\il cil;, ¢; > 0, and the
assumption that p is a nondegenerate critical point of [;. More explicitly, since, by
assumption, (grad/;), = 0 and (Hessl;), # 0, it follows, by linearity of the operators

N A,

grad and Hess, that (gradl), = 0 and (Hess!/), # 0. |
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4.1.3. Lemma. Let M C R™ be a compact embedded C*>? submanifold, and sup-

posec: M — S™1is a C! nonsingular support, 0 < 1 < k, then o is a C' embedding.

Proof. Since M is compact, it suffices to show that ¢ is a one-to-one immersion.
To see that o is one-to-one, recall that, by assumption, I,(z) < [,(p) for all
p € M and x € M — {p}, where ,(x) := (z,0(p)). Now let p, ¢ € M, and assume

that p # ¢; then,

(g—p,0(p)—0o(q)) = (¢g—p,0({)+(p—q0(q)

which implies o(p) # o(q).
So it remains to show that o is an immersion. Let p € M. We are going to
prove that 0,(X,) # 0 for all X,, € T,M — {0}. To see this, let X; be the principal

directions of M at p with respect to o(p), and recall that
(0*(X;),X}Z> = <vx;;0a Xj> = <(vx;;0)T, Xj)

0 if § £ 7.

= —(Ap)(X7), X7) =

J

Now if X, € T,M, then X, =Y " ¢;X;, for some ¢; € R. Consequently, it follows

that

n

(0.(Xp), Xp) = ZZQCJ 0. (X)), XJ) Zc ki(p, o

1 5=1

1=
Thus we conclude that 0,(X,) # 0, whenever X, # 0; because, as we showed in
the preliminaries, the assumption that o(p) is a nonsingular support vector implies

that k;(p,o(p)) < 0. |
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4.1.4. Lemma. Let M C R™ be a C*>' embedded submanifold, then any unit

vector normal to M may be extended locally to a C*~ unit normal vector field.

Proof. Let £, € S™ ! be a unit vector which is perpendicular to M at p, i.e.,
o, € T,M*. We are going to show that there exists an open neighborhood U C M,
p € U, and a C*! function 0: U — S™ ! such that o(p) = &,, and o(q) € T, M for
all g e U.

Let f: U — R™ be defined by

flq) == PrOquMJ- (&),

i.e., the projection of ¢, into the normal space of M at ¢, and set

_ f(g)
D= T

We claim that the mapping ¢ *» o(q) is the desired vector field provided U is

sufficiently small.

First note that, clearly, o(p) = &,, and, if o is well-defined, o(q) € T, M. Thus,
it remains to check that o is well-defined and C*~'. To this end, it is enough to
show that f(q) # 0 for all ¢ € U, and f is C*~1.

Secondly recall that, since M is C*, there exists a C*! linearly independent
local vector frame ¢ X, X} defined on U. More explicitly, let (U, ¢) be a C* local
chart for M centered at p; let e; be the standard frame field on R™; and, define

XU — R™ by

X(q) 1= (6 Y)uy, (:(6(0))) = (6(a).

then X* are linearly independent and C*~!, because ¢: U — ¢(U) C R™ is a C*

diffeomorphism by assumption.
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Now a calculation shows that

flg) = Z (Z 99(9)(&, X3) ) X,

where g%/ are the entries of the inverse of the matrix (g;), and g;;(p) := (X, X7)
are the coefficients of the metric tensor of M at p. Clearly, f is C*~'. In particular,
f is continuous and, therefore, f does not vanish in a small neighborhood U of p,

because f(p) =&, # 0. [ |

4.1.5. Lemma. Let M C R™ be a C? embedded submanifold, and suppose that H
1s a nonsingular support hyperplane of M at a point p; then, any continuous local

extension of H to a distribution of tangent hyperplanes has contact of order one

with M at a neighborhood of p.

Proof. Let &, be the outward unit normal of H, and, for every x € M, set [,(z) :=
(x,&,). By assumption, p is a nondegenerate critical point and a local maximum of

l,: M — R. Recall that this implies, via Morse’s lemma, that
(Hessl,), <0

i.e., the Hessian of [, at p is negative definite. Let U be a neighborhood of p in
M, and suppose we are given a continuous map o: U — S™ ! with o(p) := &,
and o(q) € T,M*, for all ¢ € U. We want to show that if U is small, then ¢ is
a nondegenerate critical point for the height function [, i.e., (gradi,), = 0, and
(Hessly), #0 forall g € U.

The fact that (gradl,), = 0, is an easy consequence of the assumption that
o(q) € T,M*. So it remains to show that the Hessian has the required property.
To this end note that since ¢ — o(¢) is continuous, by assumption, it follows that
the mappings

U>qr ki(q,0(q) €ER
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are continuous as well, where k;(¢q, o(q)) are the principal curvatures of M at ¢ with
respect to the direction o(q). Thus, recalling that k;(¢q, 0(q)) are the eigenvalues of
(Hessl,), and k;(p,o(p)) < 0 by assumption, we conclude that k;(¢,0(¢)) < 0 for
all ¢ € U, assuming U is small. Consequently, (Hess[,), is negative definite for all

g € U. In particular, (Hessl,), # 0. [ |

4.1.6. Lemma. Let M C R™ be a compact C* embedded submanifold; then, any
continuous distribution of locally supporting hyperplanes along M uniformly locally

strictly support M, if each hyperplane has contact of order one with M.

Proof. By assumption, there exists a continuous unit normal vector field o: M —

S™ ! such that for every p € M, there exists a 6, > 0 such that

l(9) < lp(p), Vq € Us,(p),

where 1,(q) := (p,0(q)), and Us,(p) C M is an open neighborhood of p with radius
6,. Furthermore, we have (gradl,), = 0 and (Hessl,), # 0 for all p € M. Recall
that these equations, via Morse’s lemma, imply that (Hessl,), < 0 which in turn

implies that the principal curvatures

ki(p,o(p)) <0,

for all p € M. We want to show that there exists a 6 > 0, independent of p, such
that 1,(¢) < l,(p) for all ¢ € Us(p).
To obtain this uniform estimate ¢, identify a neighborhood of p € M with

Euclidean n-space via normal coordinates; then, by Taylor’s theorem we have

(@)~ 1p(p) = 5 (Hess L)y (p — 0.0 — 0) + op(llp — all)

First note that, since we are using normal coordinates, ||p — ¢|| = distx/(p, q), so we

can think of 0, as a function defined on M. Secondly, the mapping p — (Hessl,),
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is continuous; because, the eigenvalues of (Hessl,), are the principal curvatures
ki(p,o(p)) which are continuous functions of p, by continuity of 0. We conclude,

therefore, that the mapping M 3 p — o, € C°(M) is continuous. Now let

k= sup{ki(p,o(p)),. .., kn(p, (D))},

peEM

and note that, since M is compact, £ < 0. Using this we can write

(0) = () < Ghllp =l + oy(llp — all).

As we showed earlier, p — o, is continuous; therefore, there exists a 6 > 0, such
that for all p € M,
oplllp —all®) _ =k

< 5 0
lp — qll? 2

whenever ¢ € Us(p). So we conclude that 1,(¢) — I,(p) < 0 for all p € M, and

QE Ug(p) [ |

4.1.7. Lemma. Let M and N be C* manifolds, p € M, U C M a small neighbor-

hood of p, and f: M — N a C*~' map. Then there exists a C* map g : U — N

such that g(p) = f(p) and f., = g,

Proof. This follows easily by writing the first order Taylor expansion of f in local

coordinates. [

4.1.8. Lemma. Let M C R™ be a compact C* embedded submanifold, then the

tubular hypersurface of M at a small distance is also C*.

Proof. This is an immediate consequence of the fact that the the distance function

of a C* embedded submanifold is C* at points near M, see Section 3.2. |
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4.2 Construction of a C¥ strictly convex patch
Here we prove:

4.2.1. Proposition. Let M C R™ be a compact C*>? embedded submanifold, then
for every C*=1 nonsingular support o for M there exists a C*=1 strictly convex patch
P containing M and tangent to all the hyperplanes generated by o. Furthermore, if

o is proper, then we can construct P so that it is C*.

Proof. Let BM denote the unit normal bundle of M, r > 0, and define f: BM —
R™ by

f(p,v) :==p+r(v—0a(p),
where 0: M — S™ !is a given C*~! nonsingular support. Let 7: M — BM be

given by @(p) := (p,o(p)), and let U C BM be an open neighborhood of 7(M). We

claim that there exist sufficiently small U and r such that
pP:= f(U)

is the desired patch, where U denotes the closure of U.

To prove this assertion, we need to check the following: (i) M C P, (ii) P is
embedded, (iii) P is tangent to all the hyperplanes generated by o, (iv) P has every-
where positive curvature, (v) P is strictly supported by all its tangent hyperplanes,
(vi) P is at least C*71; and, if o is proper, then P is actually C*.

(i) f(p,o(p)) = p, thus f(c(M)) = M. Furthermore, (M) C U, by assump-
tion, so we conclude that M C f(U) = P.

(ii) Here we show that P is embedded, provided U is sufficiently small. To this
end, we have to prove that f: U — R™ is an embedding. Since U is compact and
U is assumed to be a small neighborhood of @(M), it suffices to show that f is a

one-to-one immersion in a neighborhood of @(M). Now since, f(p,o(p)) = p, it
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follows that f |E( M) is one-to-one; therefore, by Lemma 4.2.3, it suffices to show that
f is an immersion in a neighborhood of G(M). Finally, since o(M) is compact, it
suffices to show that every a(p) € (M) is a regular value of f.

Let Z € T5,)BM —{0}. We are going to show that f,(Z) # 0. Let v: (—¢,¢) —
BM be a curve with 7(0) = 7(p), and 7/(0) = Z. We have to show that (fo~)'(0) #
0. Before starting the computations, note that v(¢) = a(q(t)) = (¢(t),0(q(t))) =
(q(t),v(t)) where g(t) is a curve in M and v(t) := o(q(t)) is a curve in S™ ! with
q(0) = p and v(0) = 0(q(0)) = o(p). Also note that Z = (¢'(0),2'(0)) := (X, V),

where X € T,M and V € T,(,)S™ . Now we can write
f(2) = (f29)(0)
= ¢(0)+7r('(0) = (¢049)(0)

= X +7(V - 0.(X)).

Since we have assumed that Z # 0, X and V cannot vanish simultaneously; there-
fore, if X = 0, then f.(Z) = rV # 0 and we are done. So suppose that X # 0,
we are going to show that, in this case, (f.(Z), X) # 0, which would imply that

f+«(Z) # 0. First, note that from the above calculation it follows that
(f(2), X) = | X|* + r({V. X) = (0u(X), X)).

Next, recall that v(t) = v(q(t)) € Ty M*; therefore, (v(t),2'(t)) = 0. So it follows
that (v/(t),q'(t)) = —(v(t),q"(t)), which yields

(V,X) = ('(0),¢(0)) = —(v(0), ¢"(0))
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where [,(z) := (0(p), x). Also, recall that

(0.(X),X) = (Vx0,X)
= ((Vxo)", X)

= _<A0(p)(X)aX>'
From the three previous calculations it follows that
(f(2),X) = || X]]* #0.

So we conclude that f.(Z) # 0, which completes part (ii).

(iii)Here we show that P is tangent to all the hyperplanes generated by o,
ie., o(p) € T,(P), for all p € M. We are going to prove this by showing that
(W,o(p)) =0, for all W € T,P. To see this, let v: (—¢,€) — P be a curve with
v(0) = p and +/(0) = W, then

Now note that v(t) = f(q(t),v(t)) = q(t) + r(v(t) — o(q(t))). Thus

(c), W) = (a(p),q'(0)) +r({a(p),v'(0)) — (a(p), 0.(¢'(0))))

= (o(p), X) +7({o(p), V) = (a(p), 0x(X))),

where X € T,M and V € T,,»)S™'. Now recall that o(p) € T, M*, thus
(o(p),xz) = 0. Also o(p) € (TppS™ 1)+, thus (o(p),X) = 0. Finally, 0.(X) €

TomS™ 1, 50 (o(p), 0x(X)) = 0 as well. So we conclude that

for all p € M and W € T, P, which completes this step.
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(iv)Here we show that the (sectional) curvature of P is positive along M, if r is
sufficiently small; and, conclude that P has positive curvature everywhere, provided
U is small as well.

Let p € M and let [,: P — R be the height function determined by o(p), i.e.,
l,(x) := (z,0(p)). It is sufficient to show that (Hess,), is negative definite; because,
this would imply that all the principal curvatures have the same sign which in turn
shows that the sectional curvatures are all positive. Let W € T, P, and recall that,

since p is a critical point of /,,
(Hessl,),(W, W) = (1 07)"(0),

where 7 is a curve on P as in step (iii), i.e., ¥(t) = f(q(t),v(t)) where z(t) and v(t)

are curves on M and S™~! respectively. We begin our calculations by writing

(1o2)'(0) = (UF(alt),v(t)))'0)
= Sol),alt) + r(0(t) — oGO,

= {o(p),¢"(0)) + r{o(p), v"(0)) — {o(p), (o0 0)"(0))-

Now we perform three calculations corresponding to each of three terms in the last

sentence above. First,

(o). ")) = o). 0t

= (4o»(¢'(0)),4'(0))

= <A‘T(P)(X)7 X>’

where A, is the shape operator of M which is by assumption negative definite.

Secondly, (v(t),v(t)) = 1; therefore, (v(t),2'(t)) = 0, and thus

(o(p),"(0)) = (v(0),2"(0))
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= —((0),0/(0))
= IV,

Thirdly, (o o ¢(t),0 0 q(t)) = 1; therefore, {(c o q)'(t),0 o q(t)) = 0. So we have

(o(p), (029)"(0)) = (o0q(0),(c0q)"(0))
= —((00¢)(0),(c0q)(0))
= —lo(X)].

From the five preceding calculations it follows that
(Hess 1,), (W, W) = (Aygp)(X), X) = r[[V]* + 7l O

Now let & := sup{ki(p, o(p)), ... . kn(p, o(p))}, then (A )(X), X) < k[IX|*. Also
pEM
let A(p) be the norm of the linear operator o, , and set A := supA(p), then

pEM
llo«(X)|| < A||X||. So, assuming W # 0, we have

(Hess ,),(W, W) < (k +rX?)|| X]|.

Thus if we set 7 < —k/)?, then (Hessl,),(W, W) < 0 and we are done.

(v)Here we show that P lies strictly on one side of all its tangent hyperplanes
provided that P is sufficiently thin with respect to M, i.e., provided U is sufficiently
small. Let us say a point p € P is exposed, if the tangent hyperplane at p strictly
supports P, then we have to show that all points of P are exposed. Now since P
has positive curvature, and M C P is compact, it is sufficient to show, by Lemma
4.2.2, that every point p € M is an exposed point, assuming that P is sufficiently
thin.

Let p € M, we showed, in (iii), that o(p) € T,P*. Thus the hyperplane H,

generated by o(p) at p is indeed the tangent hyperplane of P at p. Let [,: P — R
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be given by [,(¢) := (p,q). Recall that to prove that H, is a strictly supporting
hyperplane for P, it is sufficient to show that I,(¢) < [,(p) for all ¢ € P — p. Let
L(p,q) = l,(z) — l,(p). We have to show that L‘A < 0, where A := {(p,q) |
p € M,q € P, &q # p}. The rest of the proof is now very similar to part II.1
of the proof of Proposition 4.1.1. Let B, := {(p,q) € A | dist(p,q) < r}, and

<0

Cr == {(p,q) € A | dist(p,q) > r}. Now if r is sufficiently small then L|_

o <0

by letting D := {(p,q) € M | dist(p,q) > 7/2}, and observing that L|, < 0

by local convexity of P, see Lemma 4.1.6. Also, it can be shown that L

because o supports M by assumption. It follows, therefore, that L must be negative
throughout an open neighborhood of D. Provided P is sufficiently thin, it can be
shown that this open neighborhood contains C,.. Hence L o < 0. The explicit
details, as we mentioned before, are very similar to part II.1 of Proposition 4.1.1;
therefore, we suppress them at this point.

(vi) P must be at least C*~! because f is C*~! and an embedding by (i).
Furthermore, if o is proper, then the perturbations M, := {p —eo(p) | p € M} are
C* for small €; therefore, since P is a segment of the tube around the perturbed
submanifold, i.e., P C Tube.M,, P will be C* as well ; because, as we showed
in the preliminaries, the distance function of a C* submanifold is C* everywhere
except at the focal points. Since f is an embedding, P does not contain any of the
focal points of the perturbed submanifold M,; therefore, the distance function of
M, is a C* submersion when restricted to a neighborhood of P. Hence, P is a C*

submanifold; because, locally, P is a level hypersurface of the distance function of

M. |

4.2.2. Lemma. Let S C R™ be a compact C? embedded hypersurface with positive

curvature, then the set of exposed points of S is open.
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Proof. Let p € S be an exposed point, then p is a nondegenerate critical point and
the strict absolute maximum of the height function [,, where [,(z) = (z,0(p)),
where o(p) is the outward unit normal of S at p. We have to show that there exists
an open neighborhood U of p such that, for all ¢ € U, the height function [, has
a strict absolute maximum and a nondegenerate critical point at ¢. To this end,
recall that we have to check the following: (1) [,(z) < [,(¢), for all ¢ € M —{z}, (2)
(gradl,), = 0, and (3) (Hessl,), # 0. (2) follows from the fact that o(q) € T, (M),
and (3) follows by continuity of ¢ and the assumption that (Hessl,), < 0, see
Lemma 4.1.5. Thus it remains to show (1). To see (1) let L(q,x) := [,(x) — {,(q).
We have to show that L|A < 0, where A := {(¢q,z)|q € U,x € M, &x # ¢q}. This
can be done very explicitly, much like part II.1 of the proof of Proposition 4.1.1 and
the proof of part (v) of Proposition 4.2.1, by partitioning A into a pair of subsets.
One consisting of all pairs (¢, ) where dist(¢,z) < r, and the other its complement.
The fact that L is negative for the nearby points follows from Lemma 4.1.6. To
show that L is positive for far away points let D := {(p,x) | dist(¢,z) > r/2} and

proceed as in part II.1 of the proof of Proposition 4.2.1. [ |

4.2.3. Lemma. Let f: M — N be an immersion, and A C M a compact subset.
If f restricted to A is one-to-one, then f is one-to-one in an open neighborhood of
A. In particular, there exists an open neighborhood U of A such that f restricted to

U is an embedding.

Proof. Let {U;} be a sequence of open sets in M such that U;;; C U; and NU; = A.
This sequence can be constructed, for instance, by putting a metric on M and letting
Uy :={pe M |dist(p,A) < 1}. If f‘m is one-to-one for some ¢ then we are done,
so suppose not. Then, for every i, there exists u;, v; € U; such that u; # v;, but

f(u;) = f(v;). Since M is compact, {u;} has a converging subsequence, say {u;;},
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which must converge to a point a, € A, because A is closed. Now consider the
sequence {v;;}. This sequence also contains a converging subsequence, say {Uijk}’
which necessarily converges to a point a, € A. Let u; := (% and v = Vi, then
U — Gy, and UV, — a,, but iy # V.

Now, since f is continuous, f(ug) — f(a.), and f(0x) — f(a,). This implies that
f(ay,) = f(a,), and since, by assumption, f ‘ , 18 one-to-ome, it follows that a, = a,.
Thus f is not one-to-one in any neighborhood of a,,. This is a contradiction, because

f, being an immersion, must be locally one-to-one. [ |

4.3 Extending the patch to a C! ovaloid

4.3.1. Proposition. Every C* strictly conver patch P may be extended to a C!
ovaloid O. Moreover, we can construct O so that it is C* in an open neighborhood

of P, and, arbitrarily close to the convex hull of P.

Proof. Let P be the inner parallel hypersurface of P at the distance of 7. By Lemma
4.3.2, P is a strictly convex hypersurface once r is sufficiently small; therefore, by
Lemma 4.3.3, through every point 7 € P there passes a ball By, of some fixed radius
R, such that p € bd B; and P C By. Let
K:= nB; K:=K-+rB",
peP

where B™ denotes the unit ball, and set
O :=bd K.

Since, by Lemma 4.3.4, K is a convex body, it follows that K, being the Minkowski
sum of two convex bodies, is also a convex body; therefore, as is well known, O

must be a closed hypersurface. We claim that O is in fact the desired ovaloid; i.e.,
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we have to check the following: (i) P C O, (ii) O is a C" ovaloid, and (iii) for every
€ > 0 there exist r and R such that dist(O, conv P) < e.

(1) We have to prove that P C bd K. Since K is compact, bd K = K — int K.
So it is sufficient to show that P C K but P ¢ int K. First we show that P C K.
To this end, it is sufficient to prove that dist(P, K) < r. This follows easily from

the triangular inequality:
dist(P, K) < dist(P, P) + dist(P,K) =7+ 0 =1.

So it remains to show that P ¢ int K. Pick a point p € P, and let p C P be a point
with dist(p,p) = r. By assumption, there exists a ball By such that p € bd By and
K C Bp. Let B, := By +rB™; then, p € bd B, and K C B,. Hence p ¢ int K.

(ii) Here we prove that O is a C' ovaloid. Recall that we have to show that
there exists a ball which rolls freely inside O and that O rolls freely inside some
ball. First, since K := K 4+ rB™, it is clear that a ball of radius 7 rolls freely inside
O. Secondly, K rolls freely inside a ball of radius R, by Lemma 4.3.4; therefore, K
must rolls freely inside a ball of radius R + r.

(iii) First note that, since K is convex, dist(O, conv P) = dist(K, conv P). Sec-
ondly, since P C conv P, dist(K, conv P) < dist(K, P). Finally, by the triangular

inequality,
dist(K, P) < dist(K, K) + dist(K, P) + dist(P, P) = r + dist(K, P) + .

By by Lemma 4.3.5, dist(K, P) can be made arbitrarily small by choosing R suffi-
ciently large. So we conclude that if R is large and r is small then dist(O, conv P)
is small.

Finally, in order for O to be C* in a neighborhood of P, we can extend P along

its boundary to a slightly larger strictly convex patch P’ which contains P in its
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interior; and, carry out the above construction for P’ instead of P. The fact that

P’ exists follows from Lemma 4.3.6. [ ]

4.3.2. Lemma. Let P C R™ be a C* strictly convex patch, then there exists a
0 > 0 such that, for all r < 6, the inner parallel hypersurface of P at the distance r

is a C* strictly convex patch.

Proof. First note that P, being a strictly convex hypersurface, has a unique C*!
nonsingular strict support ¢ which is just its outward unit normal vector field. We

define the inner parallel hypersurface of P at the distance r by
P:={z—ro(z)|ze P}

We have to show that there exists a § > 0 such that, for all r < §, (i) P is a
C* embedded hypersurface, (ii) P has everywhere positive curvature, and (iii) P is
strictly supported by all of its tangent hyperplanes. Form (ii) and (iii) it follows
that through every point of P there passes a nonsingular support hyperplane, which

shows that P is strictly convex.

(i) Define f: P — R™ by

f(p) ==p—ra(p),

and note that P = f(P). We are going to show that there exists a 6; < 0 such that,
for every r < 61, f is an embedding. This would show that P is a C*~! embedded
submanifold. Once we show this, we can use the distance function to show that
P is actually C*; because, P is a C* submanifold by assumption and the distance
function of a C* embedded submanifold is C* in a small tubular neighborhood of the
submanifold, as we showed in the preliminaries. In particular, if f is an embedding,

then P does not contain any of the focal points of P. Therefore, it can be shown
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that the distance function of P restricted to a small neighborhood of P is a C*
submersion; from which it follows that P is a C* submanifold; because, locally, P
is a level hypersurface of the distance function of P. This argument is very similar
to the one we gave in part (v) of the proof of the Proposition 4.2.1.

First, we show that f is an embedding. Since P is compact, it is sufficient to show
that f is a one-to-one immersion. To see that f is an immersion let p € P, and let le;
be the principal directions of P at p. Recall that 0, (X)) = —A,,)(X}) = —k*(p) X},
where k*(p) := k*(p, o(p)) are the principal curvatures of P at p in the direction o (p).
Also recall that, by assumption, o(p) is a nonsingular support vector; therefore,
k'(p) < 0 for all p € P. Now we are going to compute f,(X}). Let v: (—¢,€) — P

be a curve with (0) = p and +/(0) = X}, then

f(X,) = (fo)(0)=+(0)—r(c07)(0)

= X, —ro.(X}) = (147K (p)) X" (p).
Thus f.(X}) #0if r # #110) In particular, if 0 < r < A, where

1 1
A := inf ey )
peM{Ikl(p)| |k"(:0)|}

then f is an immersion. To see this let X, € T, P, and suppose that f.(X,) = 0;

then 0 = 77" cifu(X)) = i, ci(1 + 7ki(p))X*(p). This is possible only when
all ¢js are zero, because {X}} is linearly independent. Hence ker(f,,) = 0 for all
p € P,i.e., fisan immersion.

Next we show that f is one-to-one. To see this let F': P x R — R™ be defined
by F(p,r) := p—ro(p). From what we have shown so far it follows that F Px(—A)

is an immersion. Thus, by Lemma 4.2.3, F|P><(— must be an embedding for some

€,€)’

small € > 0; because, F' | Px {0} is one-to-one. In particular, if

61 < min{e, A},



4 PROOF OF THE MAIN THEOREM 50

then f is a C*~! embedding for every 0 < r < é;.
(ii) Let &, be as in part (i), then, as we showed above, P is a C* embedded
submanifold, if 0 < r < ¢;. Assuming that 0 < r < §;, we now show that P has

everywhere positive curvature. To see this let : P — S™~! be defined by

We claim that & is the Gauss map of p, and use this map to calculate the curvature
of P. First we show that 7 is the Gauss map of P, i.e., 5(f(p)) € Tf(p)FL. To
see this, let X! be the principal directions of P at p, and note that {f,(X})} forms
a basis for Tf(p)ﬁ; because, f, is an immersion. Thus all we need is to show that

(@(f(p), f(X;)) = 0. This is done in the following calculation:

@(f(0), f(Xp)) = (o(p),(1+ 7k (p))X})

= (1+7k(p))(o(p), X,) = 0.

Now we show that P has positive curvature, i.e., at every point f(p) € P all principal
curvatures are nonzero and have the same sign. Since 7 is the Gauss map of P, and
recalling that the principal curvatures are simply the eigenvalues of the differential
of the Gauss map, it suffices to show that the eigenvalues of 7, are positive. This

is shown in the following calculation:
(1+7k(p)7(X]) = T.((1+7k(p)X,) = 7.(fu(X]))
= U*(X;) = —ki(p)X;;,
from which it follows

— iy _ki(p) i
0*(Xp)—Tki(p)Xp.

Note that, since a(f(p)) = o(p), T,P and Tf(p)ﬁ are parallel; and, consequently,

X, € Tf(p)ﬁ. Hence, the above calculation shows that the principal directions
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of P at f(p) are the X; with corresponding principal curvatures %. These
curvatures are well-defined, because r is sufficiently small, i.e., r < 6;; and all have
the same sign, because all k% have the same sign by assumption. Thus we say that
P has positive curvature.

(iii)Assume 0 < 7 < §;, then, as we showed above, P, is embedded and has
everywhere positive curvature. Here we show that there exists a 0 < § < 6; such

that, if 0 < 7 < § then P is strictly supported by all of its tangent hyperplanes.

For every p € P let [;: P — R be defined by

l5(q) = (2,9(p))-

We have to show that I5(q) < I(p) for all § € P — {p} and p € P. To see this, let
L(p,q) := I5(q) — I5(P); then, we have to show that Z‘A < 0, where A := {(p,7) |
pEP,ge P, &p #q}. Now note that A = B, U C,, where B, := {(p,7) € A |
dist5(p, ) < a}, and C, is the complement of B, in A. Since P is compact and ,
by Lemma 4.1.6, has positive curvature, P is uniformly locally strictly convex. In
particular, there exists an a > 0 such that f‘ 5, <0. Thus it remains to show that
L| ¢, < 0. This follows from the following calculation.

First, note that § = f(¢) = ¢ — ro(q) for some ¢ € P. Also, note that (p) =

a(f(p)) = o(p), by definition of . Thus we can write

5@ -p) = (@70) - ©.70)
= (g—ro(q),o(p)) — (p—ro(p),o(p))
= (q,0(p)) —r{a(q),a(p)) = {p,o(p)) +r
= b(q) = L(p) +r(1 = (a(g),a(p)))

< bp(g) —lp(p) +2r,
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where [, is the height function of P. Now, recalling that L(p, q) := l,(q) — ,(p), we

can write

L(p,q) < L(p,q) + 2r.

Note that if (p,q) € C., then (p,q) € Cu, where Co := {(p,q) | p € P,q €

p, & distp(p, q) > o'}. Let

n = sup{ L(p,q) | (p,q) € Cu }.

Recall that, since P is strictly convex, n < 0. Now it is clear that if »r < —n/2, then
L|, < 0. Hence we conclude that if r < §, where § := min{6;, —n/2}, then P is

strictly convex. [ ]

4.3.3. Lemma. For every strictly conver patch P there exists a A > 0 such that,

if R > A, through every point of P there passes a sphere of radius R containing P.

Proof. Let o: P — S™ ! be the outward unit normal map of P and set
BP" := B.(p —ro(p)),

i.e., BP" is a ball of radius r with center at p—ro(p). Note that p € bd BP", because
lp— (p—ro(p))|| = r. We claim that there exists a 0 < A < oo such that P C BP”"

for all p € P, if r > A. To see this let

Ai=sup{ri(p),-...,m(p) },

peEP
where 7;(p) := 1/|k*(p)| are the principal curvatures of P at p. If 7 > A, then it
is easily shown that every p € P has an open neighborhood Us,(p) C P such that
Us,(p) C BP". Furthermore, since P is compact, it can be shown that there is a 0,
independent of p such that
Us(p) C B*,
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for all p € P. Now define a function f: P — R by setting

P { _2<|<|1q__§lf<p>> ‘ 1€ P—Usp) } |

Note that [(¢ — p,o(p))| = dist(T,P,q) > 0, for all ¢ € P — {p}; because, P is
strictly convex by assumption. Hence f is well-defined. Furthermore, it is not hard

to see that f must be continuous as well. Let

n :=sup f.

Now if r > n, then for all ¢ € Us(p) we have

lg = (0 — ra@)| = (lg = plI* + 2r{q — p, o (p)) + %)% <1,

which implies

P — Us(p) C BP".

Thus if we set A := maz{\,n}; then, for every R > A, PC B*R forallpe P. W

4.3.4. Lemma. Let K be an arbitrary intersection of balls of fired radius R, then
through every point in the boundary of K there passes a sphere of radius R con-

taining K. In particular if K contains more than one point, then K is a convex

body.

Proof. Let {B;};cr be an arbitrary collection of balls of fixed radius R, and set
K .= iQIBi' We have to show that for every z € bd K, there is a ball B of radius R
such that K C B and = € bd B.

To see this, note that if x € bdB; for some ¢ € I, then we are done. So suppose
that z € int B; for every ¢ € I. Then for every ¢ > 0, there is an ¢ € I such
that U.(z) N bd B; # 0; because, otherwise, x would be an interior point of K. In

particular, for every € = %, n € N, there is a ball, say B, such that Uy,,NB, # 0. If
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K # () then the sequence {B,},en is bounded. So by Blaschke’s selection principal

there is a subsequence B,y converging to some body B, i.e.,

lim dist(B, B,) =0,

where dist is the Hausdorff distance. We claim that B is the desired ball. To show
this, we have to check the following: (i) B is a ball of radius R, (ii) K C B, and
(iii) € bd B. Furthermore, we claim that (iv) if K contains more than one point
then [ K # (). This ensures that, unless K is trivial, K is indeed a convex body.
(i) Clearly B, being the limit of balls of radius R, is itself a ball of radius R.
(ii) Since K C by, for every n/, it follows that K C B; otherwise, there would
be a k € K, with k£ # B, so we would have dist(k, B) > ¢ > 0. But for n’ sufficiently

large, dist(B, B,) < € which would yield k& ¢ B,; because,
dist(k, By) > dist(k, B) — dist(B, Bp) > € — e = 0.

Of course this is a contradiction; because, by assumption, K C B,:. So we conclude
that K C B.

(iii) Since by construction U 1 () Nbd B,y # 0, it follows that € bd B; oth-
erwise, we would have x € int B which would yield dist(x,bd B) = ¢ > 0. In that

case, we can choose n' large enough so that
dist(z, bd B,y) > dist(z, bd B) — dist(bd B,bd B,y) = € — ¢/2 = ¢/2.

So Ue/s(x) C By, which means x € int By, a contradiction.

(iv) Now we prove that if K contains more than one point, then the interior of
K is not empty. Suppose z, y € K, and pick a z € (z,y); then, z = (1 — M)z + \y
for some X\ € (0,1). We are going to show that that z € int K. This follows from

the following calculation. If o; is the center of B;, then for every ¢ € I we have:

[z =0l = |1 =X(z—=0)+ Ay — o)
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N

= [(1= M|z = oif> + N[y — os]> + 201 = N)(& — 05,y — 0,)]
= [ =Nz — o2+ Aly— o> = A1 = Nz — ¢|?]

< (R=M1- Nz —yP)e.
Now let 0 < r < R — (R> = A(1 — \)|z — y|?)2, and w € B(r, z), then

lw—o0;] < |w—z|+|z— 0]

< r+(R=21-N]z—y")? <R
Hence B(r,z) C B(R,o0;) for every i which implies z € int K. |

4.3.5. Lemma. Let A C R™ be a compact subset, and Kg be the intersection of
all balls of radius R containing A. Then for every € > 0, there exists an R < oo

such that dist(Kg,conv A) < e.

Proof. Fix an ¢ > 0, and suppose dist(p,conv A) > € for some point p € R™. It
is enough to show that for every such point p, there exists a ball B of radius R,
depending only on ¢, such that conv A C B, but p ¢ B. We are going to show that

this is possible and we will derive the following estimate for R:

52
Rs .8
4
where 6 := diam(A), the largest distance between pairs of points in A. To see

this let p’ be the (unique) point of conv A which is closest to p, and let [ be the
line determined by p, and p’. Let H be the hyperplane which contains p’ and
is perpendicular to /, and let H* be the half space which does not contain p.
Then convA C H*. Let Bt := B(p/,6) " H'. Then convA C BT, because
diam(conv A) = diam(A) = §. Next, choose a point o on [ which lies in H*, and

suppose dist(o,p') + ¢/2 = R. Then p ¢ B(o, R). Furthermore, for the conv A
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to be contained in B(o, R), we must have sup {dist(z,convA)} < R. Since

xrEconv A

convA C B, we have

sup {dist(z, conv A)} < sup {dist(z, B*)} = (R — §)2+52)%.

zE€conv A z€Bt
The last equality follows because the farthest point of B* with respect to p lies on
the equator, i.e., the boundary of the intersection of BT with H. Now if we set
the right hand side of the above to be less than or equal to R, then we obtain the

desired estimate. [ |

4.3.6. Lemma. Every C* strictly convex patch P may be extended to a C* strictly
convex hypersurface without boundary. In particular, P is contained in the interior

of a C* strictly convex patch.

Proof. Using the notion of the double of a manifold, see [Mun]|, it can be shown
that every compact embedded hypersurface with boundary may be extended along
its boundaries. Thus there exists an embedded hypersurface S without boundary
such that P C S. Now since P is compact and has positive curvature, then there
exist an open neighborhood U C S, P C U, such that U has positive curvature. We
claim that if U is sufficiently small, then U is strictly convex. Since U has positive
curvature, it suffices to show that U lies on one side of all its tangent hyperplanes.
To see this, suppose U is small enough so that it has compact closure U. Then
U is uniformly locally strictly convex by Lemma 4.1.6, i.e., every ¢ € U has a
neighborhood of radius ¢ > 0 which lies on one side of the tangent hyperplane at q.
We claim that there exists an 0 < ¢ < 6 such that if the radius of U with respect
to P is less than €, then U is strictly convex. It is not very difficult to write down

the details explicitly. They are somewhat similar to the proof of Lemma 4.3.4. W
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4.4 Smoothing the ovaloid

4.4.1. Proposition. Let O C R™ be a C' ovaloid, and let U C O be a C*>? open
subset; then, for every closed subset A C U there exists a C* ovaloid 19 containing

A. Furthermore, 0 may be constructed arbitrarily close to O.

Proof. First note that since A C U is closed, we can replace U by a slightly smaller
neighborhood containing A. Thus we can assume, without loss of generality that
U is C* up to its boundary. Let V C U be an open set with V C U, and A C V.
Set V' := o(V), and U’ := ¢(U), where o: O — S™! is the outward unit normal
map of O. Then U’ and V' are open in S™ !, see Lemma 4.4.2. Let ¢: S™ ! — R
be a smooth function with supp(¢) C U’, and $|IV = 1. Let ¢ be the homogeneous
extension of p to R™, i.e., set ¢(0) := 0, and ¢(x) := [|z[|¢(7;), when = # 0. Now
let A be the support function of O and let h¢ be the Schneider convolution of .
Finally, define g: R™ — R by

g(x) == h*(z) + $(x)(h(x) = h*(x)).
We claim that, there exists an ¢ > 0, such that ¢ is a support function, and the
boundary of the convex body determined by ¢ is the desired ovaloid.
In order to prove the above assertion, we have to check the following: (i)g(rz) =
rg(z), for all r > 0, (ii) g is C* on R™ — {0}, (iii) (Hess g), is positive semidefinite,
for all p € R™ — {0}, (iv) ¢

= h|v,, and (v) (Hess gP), is positive definite for all
p € S L, where ¢P is the restriction of g to the tangent hyperplane to S™~! at p.
(i), (ii), and (iii) show that g is a C* support function. Thus g determines a
convex body with some boundary 0. (iv) shows that V' C 5; and, consequently,
implies that A C O. Finally, (v) implies that O is a C* ovaloid. (i) and (iv) are

immediate from the definition of ¢ and (ii) follows from the fact that A

g 18 C*, see

Lemma 4.4.2. Thus it remains to check only (iii) and (v).
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(iii) First note that, by homogeneity of g, it is enough to check this only for
p € S™~1. Secondly, since g|Sm7U, = i/va, and ke is convex, it follows that we need
to check (iii) only for p € U’.

For every p € U’, let {EI’;}, 1 < i < m, be an orthonormal basis for R™ with
E = p, and set g;; = (Hess g),(E}, E}). We have to show that the principal
minors of the matrix (g;;) are nonnegative for small e. First note that, since g is
homogeneous,

gi,m =0= gm,za

i.e., the last row and column of (g;;) are zero. Thus all the principal minors con-
taining the last row and column of (g;;) are zero. It remains, therefore, to check the
principal minors of (g;;) not containing the last row and column.

Let hi; := (Hess h),(E,, EJ), and recall that if Ef, 1 <4 < m — 1, are chosen so

that they coincide with the principal directions of U at o~1(p), then

)

0 i#7],

where 7; are the principal radii of curvature of U at o~!(p), which are positive by
assumption. Thus the principal minors of (h;;) not containing the last row and
column are positive; therefore, to show that the corresponding principal minors of
(gi;) are also nonnegative, it would be sufficient, by continuity of the determinant,
to show that |h;; — g;;| — 0 as e — 0, i.e., we have to show that || — g||c2@r — 0.

To see this note that

19 = hllcz@y < lg = Pl 2@y + 1€ = Bllce@my  and  ||A€ = Rl 2@y — O,
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by Lemma 4.4.3. Thus, it is enough to show that ||g — }’?:/EHCQ(W) — 0. This follows

from the following calculations:

9(p) — he(p)| < [o)] 1h(p) — h< ()],

IDg, — Dh,|| < |h(p) — b (p)| | Dé(p)|| + |¢(p)| || Dhy — Dhe, |,

and

||D29p - DQhep” <

h(p) — B (p)| | D*¢yl| + |6(p)| | D*hyy — D2hey|| + 2|| Dby || | DRy — Dl

Thus, since ||h — i;llcz(ﬁ) — 0, we conclude that ||g — l;||02(ﬁ) — 0.

(v) (Hessg),(E;, E]) = (HessgP),(E}, EJ), for all 1 < 4,j < m —1. As we
showed in (iii), if p € U’, then the matrix obtained from (g;;) by eliminating the
last row and column is positive definite; therefore, Hess gP is positive definite for
all p e U'. If p e S™ ' — U, then (Hess g),(E,, E}) = (Hess g?),(E;, E}) which is

positive definite by Lemma 4.4.4. [ |

4.4.2. Lemma. Let O C R™ be a C' ovaloid, and let U C O be an open set which
is C*22 up to its boundary, then U has positive curvature. In particular, V|U 1S a
C*=1 embedding, and h‘U is C*~1 as well, where v is the Gauss map of O and h is

its support function.

Proof. The first statement is an elementary consequence of the definition of a C*
ovaloid. The next two statements, as we showed in Section 3.3., are immediate

corollaries of the first. [ |

4.4.3. Lemma. Let h: R — R™ be a support function and suppose h|, is C*,
where A C R™ is a compact subset; then, ||h — if”cz(A) — 0 as € — 0 where h*

denotes the Schneider’s convolution of h.
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Proof. This is an immediate consequence of the convolution properties of A¢. The
details are similar to the corresponding proof of this fact for the ordinary convolu-

tion. [ |

4.4.4. Lemma. Let O C R™ be a C' ovaloid, and let O be the surface obtained
by applying Schneider’s convolution to the support function of O; then, O is a C®
ovaloid. In particular the restriction of the support function of O to any tangent

hyperplane to the sphere is strictly convex.

Proof. We proved these statements in Sections 3.3 and 3.4. |
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5 Applications

In the first four subsections we give condensed proofs of theorems mentioned in 1.2.
In 5.5 and 5.6, we prove, respectively, results on the self-linking number of space

curves, and umbilic points of ovaloids.

5.1 Hypersurfaces of constant positive curvature

As we explained in Section 1.2, Theorem 1.2.1 is an immediate corollary of the main

theorem via a result of Guan and Spruck [GS].

5.2 Regularity of the convex hull of strictly convex

submanifolds

Proof (Theorem 1.2.2). By our main theorem we know that there exists a C* ovaloid

O containing M. If we choose the origin o of the coordinate system in R™ so that
0 € conv(0O) — conv(M),

then M projects radially injectively into a submanifold contained in a hemisphere
of the unit sphere S™ 1. Choose the direction of the m' axis in R™ so that the
projection of M is contained in the upper hemisphere (S™')*; then, M projects
into the boundary, U, of some open set U with closure U C int((S™~!)*). Note
that OU is a C*! embedded submanifold of (S™71)T, and there exists a function
¢ € C*1(dU) such that

M= { o)z |z edU},

i.e., we can represent M as a radial graph over the boundary of U. Now for every

p € C*(U) define S, := { p(z)x | z € U }. We say p is strictly convex, if S, is strictly
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convex. Now set
A:={peC*(U) ]| pis strictly convex, and p|,, = ¢},

and let p = inf A; then, S, is the upper half of the boundary of the convex hull of
M. Thus, it is sufficient to show that p € C*(U). We do this by transforming
this situation to a planar problem and applying a result of B. Guan, [Gun] who
extended a theorem in [CNS2].

Let m: (S™1)* — T,,S™ ! be the stereographic projection, where n.p. :=
(0,0,...,1) denotes the north pole. Let Q := 7(U), and set u, := h o 7!, where
h :=1/p; and set @i,(x) := v/1+ 22 u(x); then, u, € C*(Q). Now it turns out that
the mapping C*(U) 2 p — @, € C?*(Q) preserves the positiveness of the curvature

of the corresponding surfaces. Set
B:={i,|pe A},

and let @ := inf B. Now it follows from a theorem in [Gun] that @ is C*!; therefore,

. 1’1 ~ o~
pis C™7, because, & = u,. |

5.3 Optimal smoothing for convex polytopes

Proof (Theorem 1.2.3). First recall that the boundary of a convex polytope is made
up from a collection of n facets F;. We may think of each F; as a compact embed-
ded hypersurface with boundary. By Minkowski’s approximation theorem, we can
approximate each F; by a compact embedded hypersurface f’, such that ﬁz C F,
and bdﬁ}- is a smooth ovaloid in F;. It is sufficient to show that each E may be
extended to a smooth hypersurface Plate; with a compact annular collar C; such
that C' := [LJ C; is a strictly convex submanifold of R™. To see this recall that,

1=

by the main theorem, C' may be extended to a smooth ovaloid O. Now since, by
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assumption, each C; is homeomorphic to an n — 1 dimensional annulus, then, by
the generalized Jordan curve theorem, C; divides O into a pair of regions, say O}
and O; . Let O be the region neighboring the outside boundary of C;, where by
the outside boundary we mean the boundary component which coincides with the

boundary of Plate;. Finally, set

0 = (CJlPlatei) U (,r_ﬁloj),

1=

then O’ is a closed hypersurface with nonnegative curvature which contains each
F,.

Thus it remains to show that we can construct the collection Plate; so that C
is strictly convex. To construct Plate;, suppose F; C R™™ ! x {0} and the positive
direction of the m!™ axis points into the interior of P. Next, define f: F; — R by

0, if x € Fj;
flx) =

-1 .
exp (m ) , otherwise.

And let Plate; be the graph of f over Us(F;). We claim that there exists a § > 0
such that {Plate;} has the desired property, i.e., their collective collar C' is strictly

convex. |

5.4 Global convexity of hypersurfaces with boundary

Proof (Theorem 1.2.4). It is enough to show that a collar of each boundary com-
ponent of M is strictly convex. To see this, let I';, 1 <7 < N, denote the boundary
components of M (since M is compact there are finitely many components). Sup-
pose a collar U; of T; is strictly convex. We can assume that U; is a strictly convex

submanifold; therefore, by the main theorem, U; may be extended to an ovaloid O;.
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Now note that I'; separates O; into a pair of domains, say O;" and O; . Let O be

the region which contains U;. Finally, set

N
M:=M U 0;.

2

Then M is a closed hypersurface, and it has everywhere positive curvature; there-
fore, by Hadamard’s theorem, M is strictly convex. So M is strictly convex, and,
in particular, embedded.

Thus it remains to show that each component I'; has a collar U; which is strictly
convex. To see this, let p € I';, Then T,M NT; = {p}, by assumption. Since M
has positive curvature, there is a neighborhood Vi (p) such that Vi) (p) N T,M =
{p}. Furthermore, since I'; is compact, there exists a ¢ independent of p. Thus
Vs(p) NT,M = {p} for every p € I';. Let U; := {x € M |dist(z,I;) < 6}. Then it
can be shown that U; N T,M = {p} for all p € T';, i.e., p is an exposed point of U;.
Now recall that, by Lemma 4.2.2, the set of exposed points of U; is open. This set

is an open neighborhood of I';, and it contains U; provided ¢ is small. [ |

5.5 Self-linking number of space curves

Here we prove:

5.5.1. Theorem. Let ' C R? be a simple closed C? curve with non-vanishing cur-
vature. Suppose through every point of I' there passes a hyperplane which intersects

[' at no other point. Then the self-linking number of I' is zero.

Proof. 1f T" satisfies the hypothesis of the above theorem, then it is weakly strictly
convex (c.f. Section 2.2). Since, in addition, I" has non-vanishing curvature, it can
be shown that I' is strictly convex (in the strong sense), see Appendix B. Now,

by the main theorem, I' lies on a C? ovaloid. In particular, I' bounds a surface of
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positive curvature, which is embedded and is homeomorphic to a disk. According
to H. Rosenberg [Ros], this can happen only when the self-linking number of T is

Zero. |

5.5.2. Note. This result should remain true under a weakened hypothesis. See

Conjecture E.0.3.

5.6 Deforming ovaloids; umbilic points

Here we prove:

5.6.1. Theorem. Let O C R™ be a smooth ovaloid, and p € O. Let S be a smooth
surface of positive curvature, and p' € S. Then for every open subset U C O, p € U,

there exists a smooth one-parameter family of smooth ovaloids, t — O, such that:

2. M —U C Oy, p € Oy, and T,0, = T,0, for all t € [0,1],
3. A neighborhood of p in Oy coincides with a neighborhood of p' in S.

Proof. By a rigid motion, if necessary, we can assume that p’ = p, T, = 7,0, and
S lies on the same side of 7,0 as does O. Since O is strictly convex, and p € U,
T,5N (O —U) = 0. Since O — U is compact, by a continuity argument it follows
that 7,5 N (O —U) = 0 for all ¢ € V, where V' C S is some open neighborhood of
p. Furthermore, by choosing V' sufficiently small, we can ensure that 7,0 NV =0
for all ¢ € O — U. Hence, we can assume that (O — U) UV is strictly convex.
Now, by the main theorem, (O —U) UV lies on some ovaloid, say O;. Suppose the
origin of the coordinate system is inside O and O;. Let p and p;: S™! — R be
a pair of functions whose radial graphs coincide with O and O; respectively. Set

pt = (1 —1t)p+tp1, and let O; be the graph of p;. [ |
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By letting S be a sphere, we obtain the following:

5.6.2. Corollary. In the space of ovaloids, with respect to the Hausdorff metric,

the set of ovaloids with infinitely many umbilic points is dense.

There is a well known conjecture [BG, pg 418], attributed to C. Carathéodory:
every ovaloid in R?® has at least two umbilic points. This conjecture is known to
be true in the analytic case, see the paper by T. Klotz [Klz]. Also see the paper
by E. Feldman [Fel], where he obtains related results in terms of generic properties
of immersions; more specifically, he proves that, in the space of immersions of the
sphere into the Euclidean space, there exists an open and dense subset which has an
even number of isolated umbilic points. We should also mention a local, but more
general, conjecture due to C. Loewner. This concerns the “index” of an isolated
umbilic point, and implies Carathéodory’s conjecture via Hopf’s formula. In the
analytic case, there is a proof of Loewner’s conjecture due to C. Titus [Tit], and
there has been some recent work on extending this result to the smooth case, see

the paper by G. Carlos, M. Francesco, and S.-B. Federico [CFF].
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A Pictures

All pictures in this work have been created by the author using Adobe Illustrator
and Mathematica. Some of the graphs were generated with the aid of the packages

written by A. Gray [Gry].

Figure 1: Every embedded submanifold of an ovaloid is strictly convex.
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Step 1: Constructing a C*(k-1) proper nonsingular support

G
ook
(ONURS:

Step 2 : Constructing a C"k strictly convex patch

Step 3 : Extending the patch to a C*1 ovaloid

U
l&

Step 3 : Smoothing the ovaloid without perturbing the submanifold

©
lb
U

Figure 2: The four steps involved in proving the main theorem.
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Figure 3: The details for the step 2 in the proof of the main theorem.
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Figure 4:

The details for the step 3 in the proof of the main theorem.

70
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he () WA

Figure 5: A closed strictly convex submanifold of codimension 2, and the two

hypersurfaces forming the boundary of its convex hull.

e

Figure 6: If the submanifold is not strictly convex, then the boundary of its convex

hull may have singularities within the interior of each cap.
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Figure 7: Double-S: a convex space curve which does not bound any surfaces of

positive curvature.

Figure 8: Double-S from other view points.
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The formula for double-S is given by

y(t) = (ﬁFmsnelS“/ésin(t)), ﬁFresnelC(\/ggm(t))7 \/gcoz(t) ) |

where
T

FresnelC(z) = [ cos(wt?/2)dt,

T

FresnelS(x) = [ sin(wt*/2)dt,

S— S—

and ¢ € [0, 27].

k(t) Torsion

—
P Pi
2

Figure 9: Curvature and torsion of double-S.

Figure 10: The Tangent, Normal, and Binormal spherical images of double-S.
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Figure 11: A curve by H. Gluck & L. Pan. Even though this curve has self-linking

number zero, it does not bound any surfaces of positive curvature.

Figure 12: Side views of the curve by Gluck & Pan.

Figure 13: Top view of the curve by Gluck & Pan.
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Figure 14: A surface of positive curvature which is not strictly convex but has

strictly convex boundary.

S
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Figure 15: The steps for constructing the above surface.
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Figure 16: The steps for an elementary construction of a C! ovaloid in R" for a
discrete prescription of points and strictly supporting hyperplanes. The radii of the

curvature of the solution are bounded above and below by A + ¢ and € respectively.
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B Support Properties of Space Curves

In step 1 of the proof of the main theorem, we showed that every smooth compact
strictly convex submanifold M C R™ admits a smooth nonsingular support. Here
we give an explicit proof of this fact for the special case where dim(M) = 1, and
m = 3. Besides providing some motivation for the general proof, the propositions
in this section explore natural properties of space curves, and, therefore, may be of
independent interest.

The central result of this appendix is as follows. Let I' C R? be a weakly strictly
convex Jordan curve without inflection points. Then I' admits a C*~2 nonsingular
support. Thus, in particular, if T" is strictly convex in the weak sense and has no
inflection points, then T" is strictly convex in the strong sense (see Section 2.2 for
a review of the terminology). The proof is divided into three steps carried out in
Sections B.2, B.3, and B.4.

In B.1 we develop some preliminary notation and terminology; specifically, the
concept of exposure.

In B.2 we show that through every point of I' there passes a nonsingular support
plane, i.e., one whose unit normal is not perpendicular to the principal normal of '
at the point of contact.

In B.3 we show that it is possible to slide each nonsingular support plane along
a small neighborhood of the point of contact, and, thus, construct a local one-
parameter family of nonsingular support planes in a neighborhood of each point of
I.

In B.4 we complete the construction of a nonsingular support by using a partition

of unity to glue together the local nonsingular supports constructed in B.3.
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B.1 Notation and preliminaries
We begin with a definition:

B.1.1. Definition. Let X C R™ be an arbitrary subset, then for every z, € R™

we define the ezposure of X at xy by
E,(X)={neS™ | {z—z¢,n) <0, VreX—{n}} (B.1.1)

B.1.2. Note. E, (X) is the set of outer unit normals to strictly supporting hy-
perplanes of X U {x¢} passing through z,. In particular, if z is an interior point of
X, then E, (X) = 0; and, if x is a boundary point of X and X is a strictly convex
body, then E, (X) # 0.

There are four elementary propositions on the properties of general support

cones which we need to know:

B.1.3. Proposition. For every X,Y C R™, and z € R", E,(XUY) = E,(X)N
E.(Y).

Proof. This is an immediate consequence of the definition of F, and follows easily

from manipulating formula (B.1.1). |

B.1.4. Proposition. Let X C R™, z,29 € X, and suppose r1 # x5, then
Ey (X)) N Epy(X) = 0.

Proof. Let ny € E,,(X) and ny € E,,(X), then from (B.1.1) it follows that
<$2 —T1,N — 712) = <.T2 — .1'1,711) + <CC1 — SUQ,’I'IQ) < 0.
Hence ny — ny # 0. [ |

B.1.5. Proposition. Let X C R™ be compact and xy € R™ — X, then E,,(X) is

open (in S™71).
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Proof. Define f: R™ x S"™! — R by f(x,n) = (x — x¢,n). Suppose n € E(X, ),
then f(xz,n) < 0 for all z € X. Since X is compact, f(z,n) < € < 0. Let
A= f71(—o0,€¢/2), then (x,n) € A for all z € X, and, since A is open, it follows
that (z,n) € U, x V., C A where U, is an open neighborhoods of z in X, and
Ve.n 18 an open neighborhood of n in S"~*. {U,}.cx is an open covering for X and
therefore must have a finite sub-covering, say {U,, }1<i<r. Let V,, = iéan,Ii, then
X x 'V, C A, that is for each z € X, f(z,n) = (x — xg,n) < 0 for all n € V,,. Hence

Vn C E(X, 330). |
B.1.6. Proposition. F, (X) is path connected for all X C R™ and xy € R™.

Proof. Let ng,n; € E,,(X) and suppose ng # —ny, then, for all A € [0,1], (1 —
A)ng+Any # 0 and therefore n(A) := migi;:h is well-defined. It is easy to verify
that (x —x¢,n,) <0 forall z € X, x # x, and A € [0,1]. Thus n(A\) € E,(X). So
no and ny are connected by a path in E, (X).

Now suppose ng = —nq, then for all x € X, x # x4, we have (x —x¢, ny) < 0 and

—(x — xo,m9) = (¥ — xg,n1) < 0. This is possible only when X = {z,}, in which

case E,,(X)=S""!. Hence E,,(X) is path connected. |

Next we fix some notation and prove a basic proposition on support properties

of space curves.

B.1.7. Notation. Throughout this appendix I' C R® denotes a weakly strictly
convex C*>? simple closed oriented curve without inflection points; 7, is an arbi-
trary point of I'; T'(v0), N(7), B(7), and k() denote, respectively, the tangent,
principal normal, binormal, and curvature of I' at 7p; (R, ) denotes a unit speed
periodic parameterization of I' consistent with the given orientation, i.e., v: R — R3

is a C*>? mapping of period L, ¥(R) = T, |'(t)| = 1, 7(to) = 70, and ' (to) = T'(70);



B SUPPORT PROPERTIES OF SPACE CURVES 80

I'c o, denotes an open neighborhood of I' of radius € > 0 centered around -, more
explicitly,

Leqo = {7 [t =to] <€}

ng(70), 0 < 0 < 27, denotes a unit normal vector to I' at v defined by
ne(70) := cos(6)N (o) + sin(0) B()-

We say a unit normal n to I' at vy makes an angle § € [0,27) with the principal

normal of " at 7y, N(7), if and only if n = ng(vp)-

B.1.8. Proposition. If ng € E, ('), then (no,T(v)) = 0 and (N(v),n0) < 0.

In particular, n = ng(yo) for some 6 € [1/2,3n/2].

Proof. Let (I,7v) be a regular parameterization by arclength with v(¢y9) = 7o. Let
ft) = (y(t) — v(to),mo). By (B.1.1) f(¢) has a maximum at t = t;. Hence
(v'(to), m0o) = f'(to) = 0 and (N(%),no) = (¥"(t0)/K(%0),m0) = f"(t0)/K(70) < 0.
This proves the first statement. To see the second, note that {T(vo), N(70), B(7)}
forms an orthonormal basis for R?, so we can write ng = aT(vg) + bN () + cB(70)
where a? + b2 + ¢ = 1. Now it is clear that a = 0 and b < 0; therefore, we can set

b = cos(f) and ¢ = sin(f) where 6 € [r/2,37/2]. |

B.2 Rotating the support planes

In this section we show that every strictly supporting plane of I' can be rotated
around the tangent line at the point of contact by a small angle without coming
into contact with I' at a new point. In particular, at every point of I' there exists
a strictly supporting plane whose outer unit normal is not perpendicular to the

principal normal of I' at the point of contact. So through every point there passes a
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nonsingular support hyperplane, and, therefore, I is strictly convex (in the strong
sense).

First, we show that locally T' has many support planes at every point. In fact,
every unit normal to [' at 75 whose angle with the principal normal of I' at ~q is

strictly between 7/2 and 37/2 generates a plane which locally strictly supports I':

B.2.1. Proposition. For everyng € S? such that (ng, T(70)) = 0 and {ny, N(7)) <

0 there is an € > 0 such that ng € E,(Tc,)-

Proof. Recall that v"(t) = k(y(¢))N(v(t)). By Taylor’s Theorem we have:

(t —tg)?

¥(8) = (to) = T(to)(t = to) + k(v(s))N(7(s)) =5 (B.2.1)

where s is between t and ty. Let ny be as in the statement of the proposition, then

(t —to)?

(v(t) = v(to)s mo) = k(v(8)){N(7(s)), 10) 5

As t — to, (N(7(s)),n0) — (N(v(to)),n0) < 0. It follows, then, that there exists
an € > 0 such that (y(t) — v(¢p),n0) < 0 for all 0 < [t — to| < e. Thus the

plane with outer unit normal ny passing through ~, strictly supports I'c ., i.e.,

ng € E’YO (Feﬁo). [ |

Next, we show that if ' has a unique strictly supporting plane H, passing

through 7y, then Hy must be locally unique as well:
B.2.2. Proposition. If E, (I') = {no}, then E, (Tc,) = {no} for every e > 0.

Proof. Let A:= E,(I'..,) and B := E, (I' =T ), then, from Proposition B.1.3 it
follows that

ANB= E’YO(FE,'YO U (F - Ff,’Yo)) = E’YO(F) = {nO};
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therefore, A N B is closed in A. By Proposition B.1.5, B is open in S% therefore,
AN B is open in A. Thus {ng} is an open and closed subset of A which is connected

by Proposition B.1.6. Hence A = {ny}. |

From these two propositions it follows that the strictly supporting planes of I’

are not unique at any point:
B.2.3. Corollary. For all v € T, E, (') contains more than one point.

Note that if the assumption of non-vanishing of curvature is removed, then the

above is false, as the following example shows:

B.2.4. Example. Let 7 : [—1,1] — R® be defined by () = (¢,t3,%). First note
that the xy — plane strictly supports vy at the origin because v3(t) = t5 > 0, and
v(t) = 0 if and only if ¢t = 0. Furthermore, note that the xy — plane is the unique
strictly supporting hyperplane for I' at the origin. To see this, let H be a strictly
supporting hyperplane for v at ¢ = 0 with outer unit normal n = (nq,ns,n3),
then f(t) := (y(t),n) = (y(t) — v(0),n) < 0, for all ¢t € [—1,0) U (0,1]. Hence
1(0) = (4/(0),n) = ny = 0. Consequently, f(t) = nyt> + nst®. For f(t) to be
negative for all ¢ € [—1,0) U (0, 1], we have to have ny = 0. So we conclude that H

is the xy — plane.

Now we show that if I' admits two distinct strictly supporting planes at vy, then
each one of these planes may be rotated, in the appropriate direction, to coincide
with the other. More precisely, let Hy, H; be strictly supporting planes for I' at
Yo with outer unit normals ngy, n; making angles 6y, #; with the principal normal
of ' at 79, N(7); then, every unit normal n to I' at 7y whose angle with N ()
is between 6y and 6, generates a strictly supporting plane H for I' at ~y. This is

proved in the following proposition:
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B.2.5. Proposition. Suppose ng,(70), 7o, (70) € Ey(I), 6o < 61, then ng(v) €
E..(T) for all 0 € [6y, 64].

Proof. By Proposition B.1.6, there is a continuous map n : [0,1] — E, (v) such
that n(0) = ng,(v) and n(1) = ng, (70).

Define © : E. (') — [7/2,37/2] by ©(ng(7)) = 6. By Proposition B.1.8, O is
well-defined; moreover, it is clear that © is continuous. Thus © on is a path joining
0y and 6.

Now suppose 8 € [6y, 0;], then, for some A € [0,1], ©on(A) = 6. O is one-to-one;

therefore, ny(Ag) = ©71(#) = n()). Thus we conclude ny(7yp) € E,,(T). |

Using the above proposition and the previous corollary we can now show that
at every point of I' there passes a strictly supporting plane whose outer unit normal

is not perpendicular to the principal normal of I' at the point of contact:

B.2.6. Lemma. For every~y, in [ there exists a 0y € (7/2,37/2) such that ng,(v) €
B,y (D).

Proof. By Corollary B.2.3, there are ng, ny € E, (T') such that ng # n;. By
Proposition B.1.8, we have ng = ng,(7), and n; = mnp, (7o) for some 6y, 6; €
[7/2,3m/2]. By Proposition B.2.5, ng(v) € E,,(I'), for every 6 € [, 64].

Now, since ng # ny, we have 6y # 0;. Consequently (6o, 6;) # 0. Let 8 € (6, 61),

then 6 € (7/2,37/2). |

B.3 Sliding the support planes

Here we show that every point of I' has an open neighborhood where we can con-

struct a local one-parameter family of strictly supporting hyperplanes.
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First we are going to show that for every § € (7/2,37/2), there is an € > 0 such
that for all 7y € I" the unit normal to I' at 7y making an angle of # with the principal
normal of I' at 7y generates a plane which strictly supports an open neighborhood

of I' of radius € centered around ~y:

B.3.1. Proposition. For every 6 € (m/2,37/2), there is an ¢ > 0 such that

ne(%) € E’ro(re,’m) for all vp €.

Proof. Recall that (R,7) is a unit speed parameterization of I' by arclength with
period L. Define f : R? — R by

f(t,t0) == (v(t) = 7(to), no(7(to))-

We have to show that, for some ¢ > 0, f(t,t5) < 0 for all (¢,%y) € R? such that
0< |t —1to] <e.

First note that, if such an € exists, we must have € < L, because, if |t —to| = L,
then f(t,to) = f(to,to) = 0. Also note that, since f is doubly periodic, it enough
to consider only (¢,%9) € R x [0, L], which in turn implies ¢ € [—L,2L]. Thus, it is
enough to show that f(¢,%y) < 0 for all (¢,t5) € A := [-L,2L] x [0, L] such that
0< |t —1to] <e.

Since f(to,to) = 0 and f1(to,t0) = (T(7(to)), ne(y(to))) = 0, by Taylor’s theorem
we have

ftto) = (1/2) fur(s, to)(t — to)?,

where s is between t and ¢y. Hence it is enough to show that fi; < 0 forall (¢,y) € A
such that 0 < [t — o] < e.

Let B := {(to,t0) | to € [0, L]}, then fi1]|p < 0, because f11(to,%0) = x(7(t0))cos(8).
Let U := f;;'(—0o0,0), then U is open, B C U and consequently ¢ := dist(A —

U, B) > 0, because A — U and B are disjoint and compact.
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Now if (t,t9) € A and |t — to| < ¢, then dist((¢,%), B) < [(¢,t0) — (£, 1)] < ¢

therefore, (¢,%y) € U and consequently fi1(t,) < 0. |

Now we can prove the sliding lemma. Let Hj be a nonsingular support plane of
I" at vy, i.e., a strictly supporting plane with outer unit normal ny not perpendicular
to the principal normal of T" at 79, N (7o), and making an angle of 8, with N(vp);
then, there exists an open neighborhood of T of radius 6 > 0 centered around 7y
such that for all points v; in this neighborhood the unit normal vector to I" at v,
making an angle of fy with the principal normal of I' at +; generates a strictly

supporting plane for I' at 7;:

B.3.2. Lemma. Let § € (7/2,37/2), and suppose ng(vo) € E, ('), then there

exists a 6 > 0 such that ng(y1) € E, (') for all v, € T's,.

Proof. As before, we let (R, 7) be a parameterization of I' by arclength with period

L, ty € [0, L], and v(ty) = 7. By assumption we have

f(t, o) == (v(t) — v(to), ma((t0))) <O,

for all ¢ € R such that ¢t # to + 2L, z € Z. We have to show that there exists a
6 > 0 such that f(¢,¢;) < 0 for all (t,t;) € R? such that ¢; € (¢, — 6,%o + &) and
t#t+ zL.

Now note that, since f is periodic, it is enough to consider only (¢,¢;) € [0, L] xR.
Also note that t; € [—6, L + 6], since by assumption t, € [0, L]. Hence, if we set
6 < L, it is enough to show that f(¢,¢1) < 0 for all (¢,¢;) € A:=10,L] x [-L,2L]
such that t # t; + zL.

Let € be as in Proposition B.3.1 and define B := {(t,to) | [t — to| > €/2}. By
assumption f(¢,tp) < 0 for all ¢ # to+ 2L, also recall that ¢ < L; therefore, f|p < 0.

Let U := f~!(—00,0), then U is open and B C U. Hence 6 := dist(A — U, B) > 0
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because A — U and B are disjoint and compact. Also note that since (o, ) & U,
dist(A — U, B) < dist((to, %), B) = €¢/2. Thus 6 < €/2.

Let [t; — to] < 6.

If [t —to| < €/2, then |t —t1] < [t —to| + |to — t1] < €/2 + 6 < e. Hence by
Proposition B.3.1 f(¢,t;) < 0 for all ¢ # t; + zL.

If |t — to| > €/2, then, since (t,ty) € B, dist((t,t1), B) < |(¢,t1) — (t,t0)] < 0.
Hence (t,t1) € U, and therefore f(¢,¢;) < 0.

So f(t,t1) <0 for all t # t; + zL. [ |

B.4 Construction of a C*~2 nonsingular support

Now we are going to glue together the local one-parameter family of strictly sup-
porting planes constructed in the previous subsection.

First we need to show that any convex combination of the outer unit normals
to strictly supporting planes through a point v, of I' gives a unit normal vector to

[' at 7o which generates a strictly supporting plane for I' at vq.

B.4.1. Lemma. Suppose ng, € E, (I'), 1 < i < N, then ny € E, ('), where
¢ 1s any convex combination of 01 ...0y, i.e., ¢ = Zfil Aib;, where \; > 0 and

Zévzl Ai =1

Proof. Suppose 6; < 6; < Oy, then ¢ € [#;,0y]. Hence, by Proposition B.2.5,

n¢(’}/0) - E’YO (P) [ |

The above lemma allows us to use a partition of unity in the proof of the following

theorem.

B.4.2. Theorem. In R?, every weakly strictly conver simple closed C*>? curve

without inflection points admits a C*~2 nonsingular support.
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Proof. We are going to show that there is a C*=2 function ¢ : I' — (7/2,37/2) such
that n(y) := ng () € Ey(T) for all v in T'. Note that if such ¢ exists, then the

corresponding vector field n: I' — S? must be an immersion, because

(n(~(1))', T(1(1))) = —£(¥(t)) cos(p(v(1))) # O,

and, therefore, n(y(t)) # 0.
By assumption E.(I') # 0 for all v € I'; therefore, by Lemma B.2.6, for every

v € I there exists a 0(y) € (7/2,37/2) such that

no(,)(7) € E, ().

By Lemma B.3.2, for every v € T, there exists a §(y) > 0 such that

no) (V) € Ey(T), V9 € Lsiyq-

Let U, := ['sy),- {U,} is an open covering for I'. Let {U,}, 1 < i< N, be a

finite sub-cover and {f;} a partition of unity subordinate to {U,, } and set

81) = 3 K.

Suppose v € T', then v € U; if and only if i = k;, for some 1 < j < m.
Consequently, ng(,,kj)(v) € E,(T'), and therefore, by Lemma B.4.1, ng(v) € E,(I),

because ¢(7) is a convex combination of 8(vx,) . ..0(,,)- |
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C Strips of Positive Curvature

In step 2 of the proof of the main theorem, we showed that given a compact strictly
convex submanifold M C R™, and a nonsingular support o: M — S™ 1, it is
possible to construct a strictly convex patch which contains M and is tangent to all
the hyperplanes generated by o. Here we explicitly carry out that construction for
the case where dim(M) =1 and m = 3. Furthermore, we obtain a formula for the

curvature of the patch in the vicinity of M.

C.1 Basic formulas

Let ' C R?® be C? Jordan curve. Suppose I' is strictly convex. Then, by the
main theorem, we know that there exists a C? nonsingular support o: I' — S2. In
particular, note that I" has non-vanishing curvature; therefore, for all p € I, the
principal normal, N(p) is well-defined. Furthermore, the angle between o(p) and
N(p) is always greater than /2.

We are going to construct a strictly convex patch S along I' by using ¢ to perturb
I" inside its convex hull by a small distance r, building a tube of radius r around the
perturbed curve, and cutting from the tube a narrow strip of width e neighboring

I'. This is done as follows.

C.1.1. Definition. Let (R,7) be a periodic parameterization of I' by arclength,
and {T, N, B} the corresponding Frenet-Serret frame. Define s : R x [—¢,¢] — R3
by

s(t, 0) := [y(t) — ro(t)] + r[cos(0)o(t) + sin(8)5(t)],

where 7.e are small positive constants, o(t) := a(v(t)), and () :=T(t) x o(t). Let

S be the trace of s.
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We claim that S is the desired strip. Before we proceed further note that
s(t,0) :=~(t). Thus " C S.
In order to facilitate the computations, it is desirable to have a formula for S

which involves only T' and its standard frame {7, N, B}. To this end note that we

can write:
o(t) = cos(p(t))N(t) + sin((t)) B(1),
where ¢ : I' — (7/2,37/2) is some C? function. Consequently we have
B(t) = —sin((t))N(t) + cos((t)) B(2).
By substituting the above equations in the first formula and simplifying we get:
s(t,0) = ~(t) +r(C(t,0)N(t) + S(t,0)B(t)),
where

C(t,0) := cos(d + ¢(t)) — cos(¢(t)),
S(t,0) :==sin( + ¢(t)) — sin(p(t)).

The following identities will further help us in simplifying the calculations:

ac o8
== —S¢'(b), i Ce'(t),
% — _sin(0+ 6(1)), % — cos(f + B(t)).

Using these formulas we now can prove:

C.1.2. Proposition. S is an embedded surface.
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Proof. Using the formulas given above we compute

% =1 —7rCk)T +7r(¢' +7)(—SN + CB),
% = 7(—sin(0 + ¢)N + cos(6 + ¢)B),

where k and 7 are the curvature and torsion of I' respectively. From these it follows
that

s 0s

5 %3 = r(rCk — 1)[cos(§ + ¢)N +sin(6 + ¢)B|

—r*(¢' + 7)Sin()T,

and consequently

% X % = 7[(rCk — 1)% + (¢ + 7)*sin® 0] .
Now note that
@ X % =ro and @ X @ =T
ot 90 |, ot 90| ’

therefore, since r > 0, and s is a periodic function of £, by a compactness argument

ds
90

Js
EX

it follows that for e sufficiently small # 0, for all |§] < e. Hence we

(t.0)

conclude that S is an immersed surface. Now since I' C S is embedded and compact,

by Lemma 4.2.3, S has to be embedded as well. [ |
C.1.3. Proposition. S s tangent to the hyperplanes generated by o.

Proof. Let v(t,0) := v(s(t,8)) be the Gauss map of S. Recall that

s o 0s

X
. ot a0
V(tae) T ds > s |?
ot o0

which is well-defined by the previous proposition. Thus

ro(t)

v(t,0) = = o(t).
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C.2 Curvature calculations
Here we prove:
C.2.1. Proposition. S has positive curvature.

Proof. We begin by calculating the second derivatives:
s
ot*

+[k(1 = 7Ck) + [r(¢' + )] (=S) + (¢ +7)(=S" — C7)|N

=[1—-7Cr) +r(¢' + 7)SK|T

+r[(¢' +7)C+ (¢' +7)(C" — S7)]B,

32289 = r{ksin(d + ¢)T — (¢ + 7)[cos(8 + ¢)N +sin(6 + ¢)B]},
% = —7[cos(d + ¢)N + sin(6 + ¢)B].
By setting ¢ = 0 we get :
% = rN, 32289 = r[rsin(¢)T + (¢’ + 7)al, Fs_ .

Recall that v(t,0) = o(t). Thus at = 0:

0%s %s 0%s
<¥,V> = —kcos(¢), <W,I/> =—r(¢' +71), <w,y> =r.

The above are the coefficients , I;;, of the second fundamental form; therefore,
det(lij) = —rr cos() — r*(¢' +7)".

Also recall that

s 0s|’
det(gi;) = ‘_t X 5

= T2’

where g;; are the coefficients of the first fundamental form.
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Let k£ denote the Gaussian curvature of S and set k(¢,0) := k(s(¢,6)). Recalling

that & := det(l;;)/det(gi;), we have

k(t,0) = —g cos(¢) — (¢ + 7).

We know that s and therefore k are periodic in first variable. Suppose the period

is L and set

IR CIOR A0l
M= t€[0,L)] { —k(t) cos(p(t)) } '

Note that M is well-defined and positive because x(t) # 0, and ¢(t) € (7/2,37/2),
both by assumption.

Now if we let
0<r<1/M

then k(¢,0) > 0 for all ¢ € [0, L] and consequently k(t,6) > 0 for |0| < e, if € is

sufficiently small. [ |
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D Curvature Bounds

Let M C R™ be a smooth compact strictly convex submanifold, o: M — S™ ! a
smooth nonsingular support, and O a corresponding integral ovaloid. Let p € M,
and X, € T,M. Then the normal curvature of O at p in the direction X, is the
same as the normal (Lipschitz-Killing) curvature of M at p in the direction X,,, and
with respect to the normal vector o(p). Thus the best possible bounds for the radii
of curvature of O are given by the bounds for the radii of curvature of M in the
direction of o. In general, it is not possible to achieve these bounds; however, it
might be possible to do so when M is closed, i.e. compact, connected, and complete.
This would follow from a suitable generalization of Blaschke’s rolling theorem to
higher codimensions. Towards that end, we have already taken some steps in the
constructions which we used to prove the main theorem of this dissertation. Since
we were primarily motivated to prove the existence, however, not all the additional
information with regard to the curvature of the solution have been explored. The

following are some preliminary investigations.

D.1 Interpolating C! ovaloids

Suppose dim(M) = 0, i.e., M is a finite discrete subset. Denote the elements of M

by x;, 1 <i < N. Let 0; := o(x;). Then
<31‘i - Zj, 0'j> <0, (Dll)

for all 1 < 4,7 < N, @ # j. Note also that, conversely, given a set of points
z; € R™, and unit vectors o; € S™~ 1, if the above inequality is satisfied, then {z;}

is strictly convex and {o;} generates a corresponding family of strictly supporting
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hyperplanes. More explicitly, let
H :={zeR"|{(x—ux;0;) =0}, (D.1.2)

and set H; :={z € R™ | (x — 2;,0;) < 0}, then M — {x;} C H;, if and only if
(D.1.1) is satisfied.

Now suppose that (x;, 0;) € R™ xS™ ! satisfy (D.1.1). We are going to explicitly
construct a C! ovaloid O such that O N H; := {x;}. We shall prove this in three
steps (see Figure 16):

Step 1. Let € > O, and set
T; = T; — €05. (D13)

If € is sufficiently small, then the set M = {Z;} will again be strictly convex, with
o; as support vectors. To obtain an estimate for €, set (#; — ;) < 0, for ¢ # j.
After substituting (D.1.3) in this formula and performing some easy manipulations
we get
c<igt{SETDal (D.1.4)
It is easy to show that the right hand side of the above is well-defined and positive.
The numerator is positive by (D.1.1). Furthermore, (0;,0;) < 1, because o; are
unit vectors. So all we need to check is that o; # o; when 7 # j. This follows
from (D.1.1). To see this, suppose i # j and observe that (z; — x;,0; — 0;) =
(x;i—xj,04)+(xj—x;,0;). Since both quantities on the right hand side are negative,
it follows that the left hand side is negative as well. In particular, o; # 0;. So we
conclude that there exists an ¢(> 0) which satisfies (D.1.4).
Step 2. Now for each (%;,0;) we are going to construct a ball B; such that (i)

Z; € bd(B;), (ii) o; is an outer normal to bd(B;), and (iii) B; contains all points Z;,
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ie., McC B;. Let A > 0, and set

i.e., a ball of radius A centered at the point Z; — Ao;. It is clear that B; satisfies
properties (i) and (ii) mentioned above. Furthermore, if A is sufficiently large, (iii)
is satisfied as well. To get an estimate for A note that we need to have x; € B;. This
happens when dist(%;, #; — Ao;) < A. Using the formula dist(p, q) = (p — ¢, p — ¢)*/?

we obtain

& — &y }
A > sup{ - ) (D.1.6)
iz | —2(T — 75, 05)

This concludes step 2.
Step 3. Let

0 :=bd( {1 B; + ¢B™), (D.1.7)

where B™ denotes the unit ball. We claim that O is the desired ovaloid. To see this

note that
A< raditof curvatureof O < A+, (D.1.8)

because a ball of radius € rolls freely inside O and O rolls freely inside a ball of radius

A+ €. Thus O is an ovaloid. Furthermore, it is easy to see that O N H; = {z;}.

D.2 General estimates

Here we extend the results in the previous subsection to the general case, i.e.,
where dim(M) is arbitrary. Suppose M C R™ is a compact strictly convex smooth

submanifold and o: M — S™ ! is a smooth nonsingular support. Set

0<€<€::inf{ —({p—4q,0(q)) }

r#a | 1= (o(p),o(q))
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and let M := {p|p:=p—ce€o(p),p € M}, be an inward perturbation of M by a

distance of € along ¢. Define 6: M — S™ ' by &(p) = o(p). Set

5 —ql*
> )\ =
oo>A> A SuP{—Q(ﬁ—(j,&(d)) )

and

O :=bd( N B(A\,p— Ad(p)) +eB™).

pEM
If € and A exist, then, much like the previous subsection, it can be shown that O
is an ovaloid which contains M and is tangent to the hyperplanes generated by o.
Furthermore,

e < raditof curvatureof O < A +e.

In the remainder of this subsection, we are going to show that € and A exist, i.e, € > 0
and A < oco. It turns out that € and A are geometrically significant quantities. They
can be expressed in terms of the Lipschitz-Killing curvature of M in the direction
of 0.

First, we are going to examine €. Let us see what happens to € as p and ¢
approach each other. Let v: (—6,6) — M be a unit speed curve with v(0) = ¢ and

v(t) = p. Then we compute:

=) = 9(0),0(0(0) _ (7(0), 0(+(0)))
=0 1—(a(7(t)),a((0)))  ((007)"(0),0(7(0)))
_ {7(0),(027)(0))
(0 07)(0)?
— _Z? 1 ZQk
YR

where k; = k;(p, o(p)) are the principal curvatures of M at p with respect to o(p),

and ¢; are the components of the vector 4'(0) with respect to the basis of principal
directions of M at p with respect to o(p).

The first equality follows by twice applying L’Hopital’s rule.
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To see the second, observe that since (7v'(¢),c(v(¢))) = 0, (v'(t),c(~(t))) =
—{7'(t), (o0 o 7)'(t)); similarly, since {(o(y(t)),o(y(t))) = 1, it follows that {(o o
7)'(t),a(7(t))) = 0, which yields {(¢ 07)"(0),5(+(0))) = —(( ©7)'(0), (¢ ©7)"(0)).

To see the final equality, recall that (c07)'(0) = 0.(7'(0)). Let X, < n, be
the principal directions of M at ¢ with respect to o(g). These form a basis for T, M.
Since 7/(0) € T,(M), we have 7/(0) = 7", ¢; X}, for some constants ¢;. Using
these formulas we get (7/(0), (o o 7)'(0)) = _ZZ]':1 cicj(X;,Xg> = -, ck
Furthermore, (o 0 ) (0) = 0.(7/(0)) = >, cia*(X;) =>", cikiX;. Thus [(c o
7' (0)]* = iy k]

Note that €|y v-a(m) > 0. The above computation shows that € is positive
when restricted to an open neighborhood of the diagonal, A(M). Hence we conclude
that € > 0.

Now, if 0 < ¢ < €, then the inner parallel submanifold M will be a strictly
convex submanifold, strictly supported by &(p) := o(p).

Next we are going to show that A\ < co. Let 4: (—8,8) — M be a unit speed
curve with 4(0) = ¢ and 4(¢) = p. Then, much as before, we can compute the

corresponding limit as p approaches §:

10 = 70)F (70),50)
=0 =2(3(t) — %(0),5(%(0))) ~ —(¥"(0),5(%(0)))
(0,70
(7(0), (6 0%)'(0))
~1
- > i1 ik

So we conclude that )\ is well bounded as well.
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E Problems

We begin with the question [Yaul, problem #26] which provided the prime stimulus

for the work in this dissertation.

E.0.1. Question (S.-T. Yau). Given a metric of positive curvature on the disk

what is the condition on a space curve to form the boundary of an isometric embed-

ding of the disk?

We know a necessary condition, discovered by H. Rosenberg [Ros], involving the
self-linking number, and the main result of this dissertation provides a sufficient

criterion. Perhaps studying the following question would help us narrow the gap.

E.0.2. Question (H. Rosenberg). Does every curve bounding a surface of posi-

tive curvature in 3-space have four vertices, i.e., points where the torsion vanishes?

There exists an interesting literature on four vertex theorems, including the
recent solution to a long standing conjecture of P. Scherk., by V. D. Sedykh [Sed2].

Next I mention a number of conjectures, starting with the one which may be
the most accessible.

In Section 5.5, we proved that in 3-space the self-linking number of strictly

convex Jordan curves is zero. It should be possible to weaken the hypothesis:

E.0.3. Conjecture. Let I' C R? be a simple closed curve with non-vanishing cur-
vature. Suppose I' is convex, i.e., lies on the boundary of its convex hull. Then the

self-linking number of I' is zero.

Note that if I" is convex then it may not bound any surfaces of positive curvature
(see Figure 7); therefore, we cannot apply Rosenberg’s result to prove the above

conjecture.
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We cannot hope to learn a great deal about the boundaries, if we do not prop-
erly understand the geometry of the surfaces themselves. To this end, an important
problem is deciding when a hypersurface of positive curvature with boundary is
strictly convex, i.e., lies strictly one side of all of its tangent hyperplanes. Although
positiveness of curvature ensures that this is always locally true, generically a hy-
persurface of positive curvature with nonempty boundary is far from being globally

strictly convex. Still, I claim that there exists the following global property:

E.0.4. Conjecture. Every compact connected hypersurface of positive curvature

lies entirely on one side of at least one of its tangent hyperplanes.

Furthermore, if we impose conditions on the boundary, we can obtain stronger
results. Let us say a submanifold of Euclidean space is convex if it lies on the

boundary of its convex hull. With this terminology in mind, I claim:

E.0.5. Conjecture. FEvery compact connected hypersurface of positive curvature
with connected convex boundary is embedded and its interior lies outside the convex

hull of its boundary.

With somewhat less conviction I also conjecture that the boundary does not
have to be connected. Perhaps, all we need to assume is that each boundary com-
ponent be convex. The above phenomenon would be the opposite to the well known
convex hull property of surfaces of negative curvature, see the paper by R. Osser-
man [Osm1]. Also, as we mentioned in the introduction, it is a well known that the
convexity of the boundary implies embeddedness of the surface when the surface is
minimal. See the papers of W. Meeks & S.-T. Yau [MY], F. Almgren & L. Simon
[AS], F. Tomi & A. J. Tromba [TT], and R. Gulliver & J. Spruck [GulS].

The following would extend the works of several authors, including L. Caffarelli,
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L. Nirenberg, J. Spruck, N. Krylov, and B. Guan, on the Dirichlet problem for

Monge-Ampére equations:

E.0.6. Conjecture. If a closed embedded submanifold of codimension two bounds a
hypersurface of positive curvature, then it bounds a hypersurface of constant positive

curvature.

As was mentioned in the introduction the above is known [GS] in the case where
M projects injectively into a sphere. For completeness, we should also include the

following (see Section 5.6 for references):

E.0.7. Conjecture (Carathéodory). FEvery ovaloid in 3-space has at least two

umbilic points, i.e., points where all the principal curvatures are equal.
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