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STRICTLY CONVEX SUBMANIFOLDS

AND HYPERSURFACES OF POSITIVE CURVATURE

MOHAMMAD GHOMI

Abstract. We construct smooth closed hypersurfaces of positive curvature with

prescribed submanifolds and tangent planes. Further, we develop some applica-

tions to boundary value problems via Monge-Amp�ere equations, smoothing of

convex polytopes, and an extension of Hadamard's ovaloid theorem to hypersur-

faces with boundary.

1. Introduction

1.1. The main theorem. We say a C2 submanifold M � Rm is strictly convex

if through every point of M there passes a nonsingular support hyperplane, i.e., a

hyperplane with contact of order one with respect to which M lies strictly on one

side. For instance, if M lies on a convex surface with positive curvature, which we

call an ovaloid, then M is strictly convex. In this paper we prove the converse,

which yields the following characterization:

Theorem 1.1.1. Let M � Rm be a smooth (C1) compact embedded submanifold,

possibly with boundary; then, M lies in a smooth ovaloid if, and only if, M is strictly

convex. Furthermore, if M is strictly convex, then

(1) Any �nite number of nonsingular support hyperplanes at distinct points of M

may be extended to a smooth distribution of nonsingular support hyperplanes

along M .

(2) For every smooth distribution of nonsingular support hyperplanes along M

there exists a smooth ovaloid which contains M and is tangent to the given

distribution.

(3) This ovaloid may be constructed within an arbitrary small distance of the

convex hull of M .

(4) If M is symmetric with respect to some rotation or reection in Rm, then

there exists a smooth ovaloid, containing M , which has the same symmetry.

Finally, if M is strictly convex, but is only of class Ck, for some k > 2, then there

exists an ovaloid, containing M , which is also Ck.
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1.2. Applications. In his list of open problems, S.-T. Yau asks for conditions for a

Jordan curve � � R3 to bound a disk with a given metric of positive curvature [32,

Prob. 26]. H. Rosenberg has shown that|in addition to the elementary requirement

that � have no inection points|a necessary condition is that the self linking number

of � be zero [25]; however, these conditions are not suÆcient, as was shown by H.

Gluck and L. Pan [8]. Our main theorem gives a suÆcient condition:

Theorem 1.2.1. Let � � R3 be a smooth simple closed curve without inection

points. Suppose that through every point p of � there passes a plane H such that

H\� = fpg. Then � bounds a smooth convex embedded surface of positive curvature.

Proof. After a small rotation of H about the tangent line of � at p, we may assume

that the principal normal of � at p does not lie in H. Then the order of contact

between H and � is one. Thus � is strictly convex. So, by the main theorem, � lies

on a smooth ovaloid O � R3. Consequently, by Jordan's curve theorem, � bounds

a surface of positive curvature. �

The conditions of the above theorem are quite delicate, as there exists a simple

closed curve without inection points which lies on the boundary of a convex body,

but bounds no surfaces of positive curvature, see Figure 1 and Appendix A.

Figure 1

From the point of view of PDE's, Theorem 1.1.1 gives a \subsolution" for a

Dirichlet problem involving Monge-Amp�ere equations on a spherical domain. These

equations have been studied by B. Guan and J. Spruck [11], and, based on their

work, we can show:

Theorem 1.2.2. Let � � Rm be a smooth strictly convex closed submanifold of

codimension 2. Then there exists an � > 0 such that for every 0 < K 6 �, � bounds

a smooth convex hypersurface of constant curvature K.

Proof. By the main theorem, � lies on an ovaloid O. Thus, by Jordan-Brouwer's

separation theorem, there exists a connected region M � O such that � = @M . So

� bounds a strictly convex hypersurface. By [11, Cor. 0.1], every strictly convex

hypersurface may be deformed to one with constant positive curvature without

perturbing the boundary. �
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Note that a collection of closed curves without inection points in R3, each of

which is embedded in the interior of a di�erent face of a convex polytope, gives

an example of a strictly convex submanifold of codimension 2. Thus every such

con�guration bounds a surface of constant positive curvature by the above theorem.

This generalizes [18, Thm. 1.1] and [11, Cor. 0.3].

The next application is concerned with an optimal regularity result which we

prove using the theory of degenerate Monge-Amp�ere equations, as developed in [5]

and [13].

Theorem 1.2.3. Let � � Rm be a C3;1 strictly convex closed submanifold of codi-

mension 2, and C be the boundary of the convex hull of �. Then the closure of each

component of C � � is C1;1.

Proof. By the main theorem, there exists a C2 ovaloid O containing �. Let M be

the closure of a component of C � �, and choose the origin o of Rm so that

o 2 conv(O)� conv(M);

where \conv" denotes the convex hull. Then M projects radially and injectively

into a domain U contained in an open hemisphere of Sm�1. Choose the direction of

the mth axis in Rm so that U is contained in the upper hemisphere (Sm�1)+. Note
that @U is a C3;1 embedded submanifold of (Sm�1)+, and there exists a function

� 2 C3;1(@U) such that @M = f�(x)x : x 2 @U g. For every � 2 C2(U), let

S� := f �(x)x : x 2 U g. We say � is strictly convex, if S� is strictly convex. Set

A := f � 2 C2(U) : � is strictly convex, and �
��
@U

= � g;

and let � = inf A. Then, by the de�nition of convex hull, it follows that S� = M .

Thus we need to show that � 2 C1;1(U). Let � : (Sm�1)+ ! Tn:p:S
m�1 be the

stereographic projection, where n:p: := (0; 0; : : : ; 1). Let 
 := �(U) and set

~u�(x) :=

p
1 + kxk2

�(��1(x))
:

We claim that ~u� 2 C1;1(
), which would complete the proof.

To establish the claim, note that the mapping � 7! ~u� is monotone, i.e., �1 6 �2 if

and only if ~u�1 > ~u�2 . Further, as is well known (e.g., see [24, p. 827] or [11, p. 617]),

this mapping preserves the positiveness of curvature of the corresponding graphs. It

follows that ~u� is the supremum of all strictly convex functions on 
 which satisfy the

same boundary values. So ~u� will be locally convex, but not strictly locally convex;

in particular, ~u� is a (weak) solution to the degenerate Monge-Amp�ere equation

det(Hess ~u�) = 0

on 
 [5, p. 20]. By our main theorem, the above equation has a C2 \subsolution",

e.g., det(Hess ~u�O) > 0, where �O is the radial function corresponding to O. Hence,

by [13, Thm. 1.2], ~u� 2 C1;1(
), . �
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The above generalizes an earlier result of L. Ca�arelli, L. Nirenberg, and J. Spruck

[5], and also of N. V. Krylov [20], who had studied degenerate Monge-Amp�ere equa-

tions over convex planar domains. The optimality of the above theorem follows from

a pair of examples in [5], one of which is due to J. Urbas.

The next application is concerned with smoothing convex polytopes. It has been

known since H. Minkowski [22], see [2, p. 39], that the boundary of every convex

polytope may be approximated by a smooth convex hypersurface. We show that

this smoothing may be achieved in an optimal way (for a somewhat more general

result see [10]):

Theorem 1.2.4. Let P � Rm be a convex polytope with facets Fi, i = 1; : : : ; k.

Let Xi � intFi be a connected convex subset with smooth and positively curved

boundary. Then, there exists a convex body K � P with smooth boundary such that

K \ Fi = Xi.

Proof. Suppose Fi � Rm�1 � f0g and the positive direction of the mth axis points

into the interior of P . De�ne fi : Fi ! R by

fi(x) :=

(
0; if x 2 Xi;

exp
�

�1
dist2(x;Xi)

�
; otherwise:

Let Platei be the graph of fi over a Æ-neighborhood of Xi, UÆ(Xi). Then Platei
is a smooth convex surface with Platei \ Fi = Xi. Let Ci be the graph of fi over

UÆ(Xi)� UÆ=2(Xi), and set C := [ki=1Ci. Let Hi be the hyperplane spanned by Fi.

Clearly, if Æ is small, Hi \Cj = ;, for all i 6= j. So, by continuity of tangent planes,

there exists a Æ > 0 such that [ki=1Platei is supported at each point by a tangent

plane. Since by construction C has positive curvature, it follows that, for suÆciently

small Æ, C is strictly convex. So, by the main theorem, C may be extended to a

smooth ovaloid O. Ci divides O into a pair of regions, say O+
i and O�

i . Let O
+
i be

the region neighboring the boundary of Platei. Set

O0 :=

�
k
[
i=1

Platei

�
[

�
k
\
i=1

O+
i

�
;

then O0 is a smooth closed hypersurface with O0 \ Fi = Xi. Further, since O
0 has

everywhere nonnegative curvature, O0 is convex [4]. �

Finally, we mention a result which may be regarded as an extension of Hadamard's

theorem [14, 17], on convexity of closed surfaces of positive curvature, to hypersur-

faces with boundary. This has been generalized in various directions by several

authors [29, 15, 4, 26, 19, 31, 6, 7]; however, in these generalizations, it is necessary

to assume that the given submanifold is complete and without boundary.

Theorem 1.2.5. Let M � Rm, m > 3, be a compact connected immersed Ck

hypersurface with positive curvature; then, M may be extended to a Ck ovaloid if,

and only if, each boundary component of M lies strictly on one side of the tangent

hyperplanes of M at that component.
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Proof. Let �i be a component of @M . By assumption, for every p 2 �i, TpM \�i =
fpg. Thus, since M has positive curvature, and �i is compact, there exists Æ > 0

such that Ci := fx 2 M : dist(x;�i) 6 Æg is strictly convex (see Lemma 3.1.6).

Then, by the main theorem, Ci lies on an ovaloid Oi. �i separates Oi into a pair of

regions, say O+
i and O�

i . Let O
+
i be the region which contains Ci, and set

M :=M [

�
k
[
i=1

O�
i

�
:

Then M is a closed hypersurface with positive curvature; therefore, by Hadamard's

theorem, M is strictly convex. �

In closing this subsection, we should mention a paper of W. Weil [30] who showed

that given a convex polytope P , it is possible to inscribe a smooth ovaloid inside P

which touches the interior of each facet at prescribed points. This is an immediate

implication of our main theorem, when M is discrete.

1.3. Outline of the proof. Given a strictly convex compact Ck>2 submanifold

M � Rm, we give a constructive proof of the existence of a Ck ovaloid O containing

M in four steps.

Step 1. By extending the outward unit normal of a nonsingular support hyper-

plane to a small neighborhood of the point of contact, it is possible to slide each

nonsingular support hyperplane locally. Using a partition of unity, we then con-

struct a Ck�1 nonsingular support, i.e., a unit normal vector �eld given by a Ck�1

mapping � : M ! Sm�1 which generates nonsingular support hyperplanes along M .

Further, it is possible to construct � so that small perturbations of M along � are

Ck. When � has this additional property, we say that � is proper.

Step 2. By perturbing M inward a distance of � along �, and then building a

tubular hypersurface of radius � around the perturbed submanifold, we will show

that there exists a Ck strictly convex patch P , i.e., a compact embedded hypersurface

with boundary, which contains M in its interior and is tangent to every hyperplane

generated by �. We do this by using a variation of the endpoint map, based on �,

to embed a portion of the unit normal bundle of M .

Step 3. We will show that every strictly convex patch can be extended to a C1

ovaloid O, i.e., a closed hypersurface whose radii of curvature are well bounded (see

Section 2.2). We construct O by (i) forming the inner parallel hypersurface of P at

a small distance �, (ii) taking the intersection of all balls of a suÆciently large radius

containing the perturbed hypersurface, and (iii) forming the outer parallel body of

the intersection at the distance �.

Step 4. By applying a certain convolution, due to R. Schneider, to the support

function of O, and then a gluing with the aid of a �xed bump function on the

sphere, we construct a sequence Oi of C
k closed hypersurfaces which containM and

converge to O. We will show that, for every i, Oi has uniformly bounded positive

curvature except in a small neighborhood of M with �xed radius; however, it turns

out that these small neighborhoods converge to P up to the second order; therefore,
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this sequence will eventually have positive curvature nearM as well; thus, producing

the desired ovaloid.

2. Definitions and Background

2.1. Nonsingular support and height functions. We say a C2 submanifold

M � Rm has contact of order one with a hyperplane H at p 2 M if for every C2

curve  : (��; �) ! M with (0) = p, and 0(0) 6= 0 we have h0(0); �i = 0, but

h00(0); �i 6= 0, where � is a unit normal vector to H. H is a nonsingular support

hyperplane of M if M lies on one side of H, H \M = fpg, and H has contact of

order one withM . If through every p 2M passes a nonsingular support hyperplane,

we say M is strictly convex.

For every p 2 M , let �p 2 Sm�1 be a unit vector associated with p; then, the

height function lp : M ! R is given by

lp( � ) := h �; �pi:

We say that �p is a nonsingular support vector of M if p is the unique absolute

maximum and a nondegenerate critical point of lp, i.e.,

(1) lp(x) < lp(p); (grad lp)p = 0; and (Hess lp)p(Xp;Xp) 6= 0;

for all x 2M � fpg, p 2M , and Xp 2 TpM � f0g.
The hyperplane through p with unit normal �p is given by Hp := fx 2 Rm :

lp(x) = lp(p) g; and H�
p := fx 2 Rm : lp(x) 6 lp(p) g is the halfspace which does

not contain p+ �p. Thus by (1) M � H�
p , and M \Hp = fpg. Further,

0 = h(grad lp)p;Xpi = Xp(lp) = (lp Æ )
0(0) = h0(0); �pi = hXp; �pi;

where  : (��; �)!M is a curve with (0) = p, and 0(0) = Xp; and

0 6= (Hess lp)p(Xp;Xp) = Xp(Xlp) = hrXp
X;�pi = h00(0); �pi;

where r is the at connection on Rm. So M is strictly convex, if and only if for

every p 2M , there exists a nonsingular support vector �p 2 S
m�1.

Next we comment on the curvature of M . Recall that

(Hess lp)p(Xp; Yp) = hrXp
Y; �pi = hYp;�rXp

�i = hYp; A�pXpi;

where A�p : TpM ! TpM , A�p(Xp) := �(rXp
�)>, is the shape operator, and � is

a di�erentiable extension of �p. The above shows that, since (Hess lp)p is negative

de�nite, the eigenvalues of A�p , i.e., the principal curvatures of M at p in the

direction �p, are negative:

ki(p; �p) < 0:

2.2. Ovaloids and their support functions. By an ovaloid we mean a closed

convex hypersurface with bounded radii of curvature, i.e., through every point of O

there passes a ball containing O and a ball contained in O. In other words O rolls

freely in a ball and a ball rolls freely in O. Since O is (at least) C1, the outward

unit normal � : O ! Sm�1, a.k.a. the Gauss map, is well de�ned. If O is Ck, then
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� is a Ck�1 di�eomorphism. Let �(p) := p=kpk. The support function h : Rm ! R

of O is de�ned by, h(0) := 0, and

h(p) := h��1 Æ �(p); pi;

when p 6= 0. If p = (x1 : : : ; xm) and �
�1Æ�(p) = (y1; : : : ; ym), then h(p) =

Pm
i=1 xiyi,

and consequently @h=@xi = yi. Thus, for p 6= 0,

(gradh)p = ��1 Æ �(p)

which shows that gradh is Ck�1; therefore, h is Ck on Rm � f0g. Let Ei
p, 1 6 i 6

m � 1, be the principal directions of O at ��1 Æ �(p); i.e., the eigenvectors of the
shape operator A�(p). Then

��(E
i
p) = rEi

p
� = �A�(p)(E

i
p) = �kiE

i
p:

Let Em
p := �(p). Then fE1

p ; : : : ; E
m
p g is an orthonormal basis for Rm. Note that

��(E
i
p) = Ei

p, if i 6= m, and ��(E
m
p ) = 0. Thus, if O is C2,

(Hessh)p(E
i
p; E

j
p) = hrEi

p
(��1 Æ �); Ej

pi = h(��)
�1(��(E

i
p)); E

j
pi

=

(
ri > 0; if 1 6 i = j 6 m� 1;

0; otherwise;

where ri := �1=ki are the principal radii of curvature of O at ��1 Æ �(p). So

we conclude that to every Ck>2 ovaloid O � Rm there is associated a function

h : Rm ! R, which is (i) Ck on Rm � f0g, (ii) positively homogeneous, and (iii)

convex; moreover, (iv) the restriction of h to every hyperplane tangent to the sphere

is strictly convex (because Ei
p, 1 6 i 6 m� 1, is a basis for TpS

m�1).

Conversely, for every Ck>2 function h : Rm ! R which satis�es these four prop-

erties, there exists a unique Ck ovaloid with support function h. To see this de�ne

f : Sm�1 ! Rm by

f(p) := (gradh)p:

We claim that O := f(Sm�1) is the desired ovaloid. By our assumptions, for every

p 2 Sm�1 there exists an orthonormal basis Ei
p, with respect to which the Hessian

matrix of h is diagonal with all the main entries, except the last one, positive. Thus,

for 1 6 i; j 6 m� 1,

hf�(E
i
p); E

j
pi = hrEi

p
(gradh); Ej

pi = (Hessh)p(E
i
p; E

j
p)

vanishes if and only if i 6= j, and is positive otherwise. This yields that f� is non-

degenerate. So O is a closed immersed hypersurface. Let � : O ! Sm�1 be de�ned

by �(f(p)) := p: Then h�(f(p)); f�(E
i
p)i = hEm

p ; f�(E
i
p)i = (Hessh)p(E

m
p ; E

i
p) = 0.

Thus � is the Gauss map. So since � is Ck�1, O is Ck. Further, since �� Æ f� = id

and f� is an immersion, it follows that � is also an immersion and therefore O

has nonvanishing curvature, which, since O is closed, must be positive. Then, by

Hadamard's theorem, O is convex. Finally since the curvature of O is positive, O is

an ovaloid by Blaschke's rolling theorem [3].
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2.3. Schneider's transform. A convex body is a compact convex subset with

interior points. We denote the space of convex bodies in Rm by Km. This space is

closed under Minkowski sum K + K 0, and scalar multiplication �K where � > 0.

Further, (Km;distH) is a locally compact metric space where distH denotes the

Hausdor� distance:

distH(K;L) := inff r > 0 : K � L+ rBm and L � K + rBm g:

Bm denotes the unit ball in Rm.

To every K 2 Km, there is associated a support function hK : Rm ! R de�ned

by hK(p) := supfhp; xi : x 2 Kg: Let �� : [0;1)! [0;1) be a smooth function with

supp(��) � [�=2; �], and
R
Rm ��(kxk)dx = 1. Then the Schneider's convolution of h

[27] is given by

fh�K(p) :=
Z
Rm

hK(p+ kpkx)��(kxk)dx:

Since every positively homogeneous convex function on Rm is the support function

of a convex body, the above de�nes an endomorphism T� : K
m ! Km by

hT�(K) := fh�K :
Then distH(K;T�(K)) 6 �. Further T (K) has smooth (C1) support function. This

implies that the boundary of T (K) is smooth provided that the radii of curvature

of T (K) are bounded below (see the last paragraph in Section 2.2). If @K is an

ovaloid, then a ball rolls freely in K, and since T preserves balls and inclusion, it

follows that a ball rolls freely in T (K) as well. Thus we conclude that the Schneider

transform of an ovaloid is a smooth ovaloid.

2.4. Regularity of the distance function. Let Mn � Rm be a Ck>2 compact

embedded submanifold. The normal bundle of M is given by

NM := f (x; v) : x 2M;v 2 TxM
? g;

and has a canonical Ck�1 structure. Let end: NM ! Rm be the end point map,

end(x; v) := x+ v:

Set N�M := f (x; v) 2 NM : kvk < � g and Tube�M := end(N�M); then, by

the tubular neighborhood theorem, there exists an � > 0 such that end: N�M !
Tube�M is a Ck�1 di�eomorphism. For 0 < r < � set

BrM := f (x; v) 2 NM : kvk = r g; and SrM := end(BrM);

SrM is called a tubular hypersurface of M . De�ne d : Rm ! R by

d(p) := distRm(p;M) = inffkx� pk : x 2Mg:

We claim that SrM = d�1(r), and d, restricted to Tube�M�M is a Ck submersion.

This would show that SrM is Ck. To prove this, de�ne

x(p) := �1(end
�1(p)); and v(p) := �2(end

�1(p));

where NM 3 (x; v)
�17�! x 2 M , and NM 3 (x; v)

�27�! v 2 Rm. Clearly, x

and v are Ck�1. Further, since x(p) + v(p) = end(x(p); v(p)) = p, it follows that
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v(p) = p � x(p), i.e., p � x(p) is perpendicular to M . This implies that d(p) =

kp � x(p)k = kv(p)k. So djTube�M�M is Ck�1; therefore, the gradient of d is well-

de�ned for all p 2 Tube�M �M . We claim that

(grad d)p =
v(p)

kv(p)k
;

which, since v is Ck�1, would yield that d is a Ck submersion.

By the generalized Gauss' lemma, for every p 2 SrM , v(p) is perpendicular to

SrM ; therefore, since SrM is a level hypersurface of d, (grad d)p must be parallel

to v(p). Thus (grad d)p = h(grad d)p; v(p)i
v(p)

kv(p)k2
. Let (t) := p + tv(p), then

hgrad dp; v(p)i = (d Æ )0(0). But d Æ (t) = k(t) � x((t))k = k(t) � x(p)k =

kp+t(p�x(p))�x(p)k = (1+t)kp�x(p)k = (1+t)kv(p)k. Thus (dÆ)0(0) = kv(p)k
which yields the above formula.

3. Proof of the Main Theorem

The proof is divided into four propositions, corresponding to the steps outlined

in Section 1.3, which are developed in the next four subsections.

Item 4 of the main theorem follows once we establish the existence of any ovaloid

O containing M : Choose the origin of the coordinate system inside O. Suppose

M is symmetric with respect to some orthogonal transformation g 2 O(m), i.e.,

g(M) =M . We wish to show that there exists an ovaloid O, containingM , such that

g(O) = O. Let � : Sm�1 ! R be the function such that O = f�(x)x : x 2 Sm�1g.
Then the radial graph of � := (�+ � Æ g�1)=2 is the desired ovaloid.

3.1. Construction of a section of the normal bundle.

Proposition 3.1.1. Every compact Ck>2 embedded strictly convex submanifold

M � Rm admits a Ck�1 proper nonsingular support.

Recall that by nonsingular support we mean a mapping � : M ! Sm�1 such that,
for all p 2 M , �(p) is a nonsingular support vector (Section 2.1). Further, � is

proper if a small perturbation of M along � yields a submanifold with the same

degree of regularity as M . To prove the above we need the following lemmas:

Lemma 3.1.2. If �1 : : : �N are nonsingular support vectors of M at a �xed point,

then any normalized convex combination of �1 : : : �N is also a nonsingular support

vector.

Proof. Let li(�) := h�; �ii, 1 6 i 6 N . By assumption, there exists a point p 2 M

such that p is the unique maximum and a nondegenerate critical point of li. Let

� :=
PN

i=1 ci�i, where ci > 0 and
PN

i=1 ci = 1. We have to show that b� := �=k�k
is well-de�ned and p is the unique maximum and a nondegenerate critical point ofbl(�) := h�; b�i. Let l(�) := h�; �i. Then

l(x) =

NX
i=1

cili(x) <

NX
i=1

cili(p) = l(p):
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So we conclude that l 6� 0, which yields that � 6= 0. Consequently b� is well-de�ned.

Next we show that p is the strict absolute maximum of bl. To see this, let x 2M�fpg,
then bl(x) = 1

k�k
l(x) <

1

k�k
l(p) = bl(p):

So it only remains to show that p is a nondegenerate critical point of bl. This follows
because bl = 1

k�k

PN
i=1 cili, ci > 0, and the operators grad and Hess are linear. �

Let BM := f(p; v) : p 2 M;v 2 TpM
?; and kvk = 1g denote the unit normal

bundle of M , and � : BM ! M be given by �(p; v) := p. By a �ber of BM we

mean ��1(p), p 2M .

Lemma 3.1.3. LetM � Rm be a compact embedded Ck>2 submanifold, and suppose

� : M ! Sm�1 is a C` nonsingular support, 1 6 ` 6 k, then � is a C` embedding.

In particular, � : M ! BM , given by �(p) := (p; �(p)), is transverse to the �bers of

BM .

Proof. Since M is compact, it suÆces to show that � is a one-to-one immersion. By

assumption, lp(x) < lp(p) for all p 2M and x 2M �fpg, where lp(�) := h�; �(p)i. If
p 6= q, then

hq � p; �(p)� �(q)i = (lp(q)� lp(p)) + (lq(p)� lq(q)) < 0;

which implies �(p) 6= �(q). So it remains to show that � is an immersion. Let Ei
p

be the principal directions of M at p with respect to �(p), and recall that

h��(E
i
p); E

j
pi = �hA�(p)(E

i
p); E

j
pi =

(
�ki(p; �(p)) if i = j;

0 otherwise.

If Xp 2 TpM , then Xp =
Pn

i=1 ciE
i
p, for some ci 2 R. Consequently,

h��(Xp);Xpi =
nX
i=1

nX
j=1

cicjh��(E
i
p); E

j
pi = �

nX
i=1

c2i ki(p; �(p)):

Thus �� is nondegenerate; because, ki < 0 (Section 2.1). So � : M ! �(M) is a

local di�eomorphism, by the inverse function theorem. Since � Æ�(p) = p, it follows

then that � : �(M) ! M is a local di�eomorphism as well. In particular ��(p;v) is

nondegenerate for all (p; v) 2 �(M). So �(M) may not be tangent to the �bers of

BM . �

Lemma 3.1.4. Let M � Rm be a Ck>1 embedded submanifold, then any unit vector

normal to M may be extended locally to a Ck�1 unit normal vector �eld.

Proof. Let �p 2 TpM
?, and U be a small open neighborhood of p. De�ne � : U !

Sm�1 by �(q) := f(q)=kf(q)k where f(q) := ProjTqM?(�p), the projection of �p into

TqM
?. If � : U ! Rn is a Ck local chart, then Xi(q) := @(��1)=@xij�(q), 1 6 i 6 n,
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gives a Ck�1 moving basis for TqM , and

f(q) = �p �
nX
i=1

� nX
j=1

gij(q)h�p;X
j
q i
�
Xi
q;

where gij are the entries of the inverse of the matrix (gij), and gij(p) := hXi
p;X

j
pi

are the coeÆcients of the metric tensor. Thus f , and consequently �, is Ck�1.

�

Lemma 3.1.5. Let M � Rm be a compact C2 embedded submanifold; then, any

continuous distribution of locally supporting hyperplanes with contact of order one

along M uniformly locally strictly support M .

Proof. By assumption, there exists a continuous unit normal vector �eld � : M !
Sm�1 such that for every p 2M , there exists a Æp > 0 such that

lp(q) < lp(p); for all q 2 UÆp(p);

where lp(�) := h�; �(p)i, and UÆp(p) �M is an open neighborhood of p with radius Æp.

We want to show that there exists a Æ > 0, independent of p, such that lp(q) < lp(p)

for all q 2 UÆ(p). Identify a neighborhood of p in M with Euclidean n-space via

normal coordinates; then, by Taylor's theorem,

lp(q)� lp(p) =
1

2
(Hess lp)p(p� q; p� q) + op(kp� qk2):

Since we are using normal coordinates, kp � qk = distM (p; q), so we may think of

op as a function on M . Note that since p 7! lp is continuous, p 7! op is continuous

as well. Let k := supp2Mfk1; : : : ; kng; where ki := ki(p; �(p)) are the the principal

curvatures, which are all negative because (Hess lp)p is negative de�nite (see Section

2.1). So

lp(q)� lp(p) 6
1

2
kkp� qk2 + op(kp� qk2):

Since p 7! op is continuous, and k < 0, there exists a Æ > 0, such that for all p 2M ,

op(kp � qk2)=kp � qk2 < �k=2; whenever q 2 UÆ(p). So lp(q) � lp(p) < 0 for all

p 2M , and q 2 UÆ(p). �

Lemma 3.1.6. Let �p be a nonsingular support vector of M at p, V � M be a

neighborhood of p, and � : V ! Sm�1 be a continuous extension of �p to a unit

normal vector �eld. Then there exists a neighborhood U of p, such that �(q) is a

nonsingular support vector for all q 2 U .

Proof. Let lq : V ! R be given by lq( � ) := h �; �(q)i: We have to show that there

exists a neighborhood U of p such that (i) lq(x) < lq(q) for all x 2 M � fqg, (ii)
(grad lq)q = 0, and (iii) (Hess lq)q 6= 0. (ii) follows because �(q) 2 TqM

?, and (iii)

follows because (Hess lp)p is negative de�nite. To see (i), let L : V �M ! R be

de�ned by

L(q; x) := lq(x)� lq(q):
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We have to show that LjA < 0, where

A := f (q; x) 2 U �M : q 6= x g:

This is done by partitioning A into:

Br := f (q; x) 2 A : dist(q; x) < r g; and Cr := A�Br;

where `dist' is the intrinsic distance inM . There exists an r > 0 such that LjBr
< 0,

by Lemma 3.1.5. So it remains to show that LjCr < 0. Set

D := f (p; x) : x 2M; and dist(x; p) >
r

2
g:

Since �(p) is a nonsingular support, LjD < 0; therefore, by compactness of D, L

must be negative over some open neighborhood WÆ(D) with radius Æ < r
2 . Set

U := fx 2M : dist(x; p) < Æ g:

Then we claim that Cr � WÆ(D), which is all we need. Let (q0; x0) 2 Cr, then

dist(q0; x0) > r and dist(q0; p) < Æ. Now dist(x0; p) > dist(q0; x0) � dist(p; q0) >

r � Æ > r
2
. Thus, (p; x0) 2 D; and, therefore,

dist((q0; x0);D) 6 dist((q0; x0); (p; x0)) = dist(q0; p) < Æ;

where dist((p; q); (p0; q0)) := (dist2(p; p0) + dist2(q; q0))
1
2 . So (q0; x0) 2WÆ(D). �

Lemma 3.1.7. Let � : M ! Sm�1 be a continuous nonsingular support. Then

there exists an � > 0 such that every unit normal vector �eld e� : M ! Sm�1 with

supp2M k�(p)� e�(p)k 6 � is also a nonsingular support.

Proof. Let lp(�) := h�; �(p)i, and elp(�) := h�; e�(p)i. Since Hess lp is negative de�nite,
there exists an �1(p) > 0 such that, if k�(p) � e�(p)k 6 �1(p), then (Hesselp)p is

negative de�nite as well. So there exists a neighborhood U of p such that elp(q) �elp(p) < 0 for all q 2 U �fpg. Further, since M �U is compact, and lp(q)� lp(p) < 0

on M � U , it follows that there exists an �2(p) > 0 such that, if k�(p) � e�(p)k 6
�2(p), then elp(q) � elp(p) < 0 on M � U . Set �(p) := minf�1(p); �2(p)g. Then if

k�(p) � e�(p)k 6 �(p), it follows that e�(p) is a nonsingular support vector. Let

�(p) be the supremum of all such �(p). Then �(p) > 0. Further, by Lemma 3.1.6,

p 7! �(p) is lower semicontinuous. Thus � := infp2M �(p) > 0, which is the desired

estimate. �

Lemma 3.1.8. Let M � Rm be a compact Ck embedded submanifold, then the

tubular hypersurface of M at a small distance is also Ck.

Proof. See Section 2.4. �

Proof of Proposition 3.1.1. By assumption, for every p 2M there exists a non-

singular support vector �p 2 Sm�1. Thus, by Lemmas 3.1.4 and 3.1.6, for every

p 2M , there exists an open neighborhood Up of p and a mapping �p : Up ! Sm�1

which is a Ck�1 nonsingular support with �p(p) = �p. Since M is compact, there

exists a �nite subcover U = fUpig, 1 6 i 6 N . Given any �nite collection of points
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xj 2M , 1 6 j 6 n, we may assume that Uxj 2 U , and Uxj is the only element of U
containing xj . Let f�ig be a C

k partition of unity subordinate to U , and set

�(p) :=

PN
i=1 �i(p) �

pi(p)

k
PN

i=1 �i(p) �
pi(p)k

:

Then � : M ! Sm�1 is well-de�ned and is a Ck�1 nonsingular support by Lemma

3.1.2. Further, by construction �(xj) = �xj .

We claim that after a perturbation, we may assume that � is proper, which would

complete the proof. To see this, let f : M ! Rm be given by f(p) := p+ � �(p): By

the tubular neighborhood theorem and Lemma 3.1.3, f is a Ck�1 embedding, which

yields that M� := f(M) is a Ck�1 submanifold for small �. Recall that the tubular

hypersurface S�(M) is Ck (Section 2.4). So by a perturbation of M� in S�(M),

keeping f(pi) �xed, we may construct a Ck submanifold fM� � S�(M) which is C1-

close to M� [16]. Since, by Lemma 3.1.3 , M� is transversal to the �bers of S�(M),

and M� and fM� are C
1-close, fM� meets the �bers of S�M transversely as well. ThusfM� determines a normal vector �eld e� : M ! Sn�1, which is a nonsingular support

by Lemma 3.1.7, and is proper by construction. �

3.2. Construction of a germ of the solution.

Proposition 3.2.1. Let M � Rm be a compact Ck>2 embedded submanifold, then

for every Ck�1 nonsingular support � : M ! Sm�1 there exists a Ck�1 strictly

convex patch P containing M and tangent to all the hyperplanes generated by �.

Furthermore, if � is proper, then we may construct P so that it is Ck.

Recall that by a patch we mean a compact connected hypersurface with boundary

which contains M in its interior.

Lemma 3.2.2. Let f : M ! N be an immersion, and A �M be a compact subset.

If f restricted to A is one-to-one, then f is one-to-one in an open neighborhood of

A. In particular, there exists an open neighborhood U of A such that f restricted to

U is an embedding.

Proof. Let Ui := fp 2 M : dist(p;A) < 1
i
g, i 2 N . If f jU i

is one-to-one for

some i then we are done; otherwise, there exist ui, vi 2 Ui such that ui 6= vi, but

f(ui) = f(vi). SinceM is compact, after a passing to a subsequence, we may assume

that ui and vi converge respectively to au and av, which, since A is closed, belong to

A. Since f is continuous f(au) = f(av). So, since f jA is one-to-one, au = av. Thus

f is not one-to-one in any neighborhood of au, which is a contradiction, because f

is an immersion. �

Proof of Proposition 3.2.1. Let BM denote the unit normal bundle ofM , r > 0,

and de�ne f : BM ! Rm by

f(p; v) := p+ r(v � �(p));

where � : M ! Sm�1 is a given Ck�1 nonsingular support. Let � : M ! BM be

given by �(p) := (p; �(p)), and let U � BM be an open neighborhood of �(M). We
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claim that there exist U and r such that

P := f(U)

is the desired patch. It is clear that (i) M � P . So it remains to check: (ii) P

is embedded, (iii) P is tangent to all the hyperplanes generated by �, (iv) P has

everywhere positive curvature, (v) P lies strictly on one side of all of its tangent

planes, and (vi) P is at least Ck�1 and, if � is proper, then P is Ck.

(ii) It suÆces to show that f is a one-to-one immersion in a neighborhood of

�(M). Since, by Lemma 3.1.3, � is an embedding, and f(p; �(p)) = p, it follows

that f j�(M) is one-to-one; therefore, by Lemma 3.2.2, it suÆces to show that f is

an immersion on �(M). Let Z 2 T�(p)BM � f0g, and  : (��; �)! BM be a curve

with (0) = �(p), and 0(0) = Z. Then

(t) = �(q(t)) = (q(t); �(q(t))) =: (q(t); v(t))

where q(t) is a curve inM with q(0) = p, and v(t) := �(q(t)) is a curve in Sm�1 with
v(0) = �(q(0)) = �(p). Also note that Z = (q0(0); v0(0)) =: (X;V ), where X 2 TpM

and V 2 T�(p)S
m�1. We have

f�(Z) = (f Æ )0(0) = q0(0) + r (v0(0)� (� Æ q)0(0)) = X + r (V � ��(X)):

Since Z 6= 0, X and V cannot vanish simultaneously; therefore, if X = 0, then

f�(Z) = rV 6= 0. On the other hand, if X 6= 0 we have

hf�(Z);Xi = kXk2 + r(hV;Xi � h��(X);Xi):

Since v(t) = �(q(t)) 2 Tq(t)M
?, hv(t); q0(t)i = 0. So hv0(t); q0(t)i = �hv(t); q00(t)i,

which yields

hV;Xi = �hv(0); q00(0)i = �(Hess lp)p(X;X) = �hA�(p)(X);Xi;

where lp(�) := h�; �(p)i. Also, recall that

h��(X);Xi = h(rX�)
?;Xi = �hA�(p)(X);Xi:

Combining the three previous calculations, we get

hf�(Z);Xi = kXk2:

So f�(Z) 6= 0, for all Z 2 T�(p)BM � f0g.

(iii) We show that �(p) 2 (TpP )
?, for all p 2M . Let  : (��; �)! P be a curve

with (0) = p and 0(0) =W . Since (t) = f(q(t); v(t)) = q(t) + r(v(t)� �(q(t)));

h�(p);W i = h�(p); q0(0)i+ r(h�(p); v0(0)i � h�(p); ��(q
0(0))i)

=: h�(p);Xi+ r(h�(p); V i � h�(p); ��(X)i);

where X 2 TpM and V 2 T�(p)S
m�1. Since �(p) 2 T�(p)M

?, h�(p);Xi = 0.

Also �(p) 2 (T�(p)S
m�1)?, thus h�(p); V i = 0. Finally, ��(X) 2 T�(p)S

m�1, so

h�(p); ��(X)i = 0. Hence h�(p);W i = 0.

(iv) Let p 2M and lp : P ! R be given by lp(�) := h�; �(p)i. It is enough to show

that (Hess lp)p is negative de�nite. For W 2 TpP ,

(Hess lp)p(W;W ) = (l Æ )00(0);
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where  is a curve on P as in step (iii). Note that

(l Æ )00(0) = h�(p); q00(0)i+ rh�(p); v00(0)i � rh�(p); (� Æ q)00(0)i:

We need three calculations for each of the terms in the last sentence. First,

h�(p); q00(0)i = (Hess lp)p(q
0(0); q0(0)) = hA�(p)(X);Xi:

Secondly, since kv(t)k = 1, hv(t); v0(t)i = 0, and thus

h�(p); v00(0)i = hv(0); v00(0)i = �hv0(0); v0(0)i = �kV k2:

Thirdly, since k� Æ q(t)k = 1, h(� Æ q)0(t); � Æ q(t)i = 0, so

h�(p); (� Æ q)00(0)i = �h(� Æ q)0(0); (� Æ q)0(0)i = �k��(X)k2:

Combining the �ve preceding calculations we obtain

(Hess lp)p(W;W ) = hA�(p)(X);Xi � rkV k2 + rk��(X)k2:

Let k := supp2Mfk1(p; �(p)); : : : ; kn(p; �(p))g, then hA�(p)(X);Xi 6 kkXk2. Fur-

ther, let �(p) be the norm of the linear operator ��p , and set � := supp2M�(p), then

k��(X)k 6 �kXk. So, assuming W 6= 0, we have

(Hess lp)p(W;W ) < (k + r�2)kXk2:

Thus if we set r < �k=�2, then (Hess lp)p is negative de�nite.

(v) Now, since P has positive curvature and M is strictly convex, it follows that

P lies on one side of all of its tangent planes at points p 2M , assuming U is small.

Thus, since M is compact, Lemma 3.1.6 yields that P is strictly convex.

(vi) Since by assumption � is proper, the perturbationsM� := fp���(p) : p 2Mg
are Ck for small �; therefore, since P is a segment of the tube around the perturbed

submanifold, i.e., P � Tube�M�, P will be Ck as well; because, the distance function

of a Ck submanifold is Ck everywhere except at the focal points (Section 2.4). Since

f is an embedding, P does not contain any of the focal points; therefore, the distance

function of M� is a C
k submersion when restricted to a neighborhood of P . Hence,

P is Ck. �

3.3. Extension of the germ to a weak solution.

Proposition 3.3.1. Every Ck strictly convex patch P may be extended to a C1

ovaloid O. Moreover, we can construct O so that it is Ck in an open neighborhood

of P , and arbitrarily close to the convex hull of P .

Recall that by an ovaloid we mean a closed hypersurface with bounded radii of

curvature (Section 2.2). To prove the above, we need the following lemmas :

Lemma 3.3.2. Let P � Rm be a Ck strictly convex patch, then there exists a Æ > 0

such that, for all r < Æ, the inner parallel hypersurface of P at the distance r is a

Ck strictly convex patch.
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Proof. P , being a strictly convex hypersurface, has a unique Ck�1 nonsingular strict

support � which is just its outward unit normal vector �eld. The inner parallel

hypersurface of P at the distance r is given by

P := fx� r�(x) : x 2 P g:

We have to show that there exists a Æ > 0 such that, for all r < Æ, (i) P is a Ck

embedded hypersurface, (ii) P has everywhere positive curvature, and (iii) P lies

strictly on one side of all of its tangent planes.

(i) De�ne f : P ! Rm by

f(p) := p� r�(p);

we claim that there exists a Æ1 > 0 such that, for every r < Æ1, f is an embedding.

This would show that P is a Ck�1 embedded submanifold. Then we may use the

distance function to show that P is Ck (Section 2.4).

Since P is compact, it is suÆcient to show that f is a one-to-one immersion. Let

Ei
p be the principal directions of P at p, and  : (��; �)! P be a curve with (0) = p

and 0(0) = Ei
p, then

f�(E
i
p) = 0(0)� r(� Æ )0(0) = Ei

p � r��(E
i
p) = (1 + rki(p))E

i(p):

Thus f�(E
i
p) 6= 0 if r 6= �1=ki(p). In particular, if 0 6 r < �, where

� := inf
p2M

fr1(p); : : : ; rn(p)g;

and ri(p) := 1=jki(p)j are the principal curvatures, then it follows that f is an

immersion. It remains to show that f is one-to-one. To see this let F : P �R! Rm

be de�ned by F (p; r) := p � r�(p): By the previous paragraph, F jP�(��;�) is an
immersion. Thus, by Lemma 3.2.2, F jP�(��;�), must be an embedding for some

small � > 0; because, F jP�f0g is one-to-one. In particular, if Æ1 := minf�; �g; then

f is a Ck�1 embedding for every 0 6 r 6 Æ1.

(ii) Assuming that 0 < r < Æ1, we now show that all principal curvatures of P

are nonzero and have the same sign. has positive curvature. Let � : P ! Sm�1 be

de�ned by �(f(p)) := �(p): We claim that � is the Gauss map of P i.e., �(f(p)) 2

Tf(p)P
?
. To see this, let Ei

p be the principal directions of P at p, and note that

ff�(E
i
p)g forms a basis for Tf(p)P ; because, f� is an immersion. Thus all we need is

to check that:

h�(f(p)); f�(E
i
p)i = h�(p); (1 + rki(p))E

i
pi = (1 + rki(p))h�(p); E

i
pi = 0:

Next note that (1 + rki(p))��(E
i
p) = ��(f�(E

i
p)) = ��(E

i
p) = �ki(p)E

i
p: So

��(E
i
p) =

�ki(p)

1 + rki(p)
Ei
p:

Since �(f(p)) = �(p), TpP and Tf(p)P are parallel. Hence the principal directions of

P at f(p) are the Ei
p with corresponding principal curvatures �ki(p)=(1 + rki(p)).

These curvatures are well-de�ned, because r < Æ1; and all have the same sign,

because all ki have the same sign.
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(iii) We show that there exists a 0 < Æ 6 Æ1 such that, if 0 < r < Æ then P is

strictly supported by its tangent hyperplanes. For p 2 P de�ne lp : P ! R by

lp( � ) = h �; �(p)i;

and set L(p; q) := lp(q)� lp(p) We have to show that LjA < 0, where A := P �P �

�(P�P ). Partition A into B� := f(p; q) 2 A : distP (p; q) < �g, and its complement

C�. Since P is compact and has positive curvature, it follows, by Lemma 3.1.5, that

there exists an � > 0 such that LjB�
< 0. So it remains to show that LjC� < 0.

Note that q = f(q) = q � r�(q) for some q 2 P , and �(p) = �(f(p)) = �(p), by

de�nition of �. Thus

lp(q)� lp(p) = lp(q)� lp(p) + r(1� h�(q); �(p)i) 6 lp(q)� lp(p) + 2r;

where lp(�) := h�; �(p)i. So recalling that L(p; q) := lp(q)� lp(p), we have

L(p; q) 6 L(p; q) + 2r:

If (p; q) 2 C�, then (p; q) 2 C�0 := f(p; q) 2 P � P : distP (p; q) > �0g. Let

� := supfL(p; q) : (p; q) 2 C�0g: Since P is strictly convex, � < 0. Further the above

inequality shows that if r < ��=2, then LjC�
< 0. Hence Æ := minfÆ1;��=2g is the

desired estimate. �

Lemma 3.3.3. For every strictly convex patch P there exists a � > 0 such that, if

R > �, through every point of P there passes a sphere of radius R containing P .

Proof. Let � : P ! Sm�1 be the outward unit normal P and Bp;r be a ball of radius

r centered at p � r�(p). Then p 2 @Bp;r. We show that there exists 0 < � < 1
such that P � Bp;r for all p 2 P , if r > �. Let � := supp2P f r1(p); : : : ; rn(p) g;
where ri(p) := 1=jki(p)j are the principal radii of curvature of P . If r > �, then

every p 2 P has an open neighborhood UÆp(p) � P such that UÆp(p) � Bp;r. Since

P is C2 and compact Æ may be chosen independently of p. De�ne f : P ! R by

f(p) := sup

�
kq � pk2

�2hq � p; �(p)i

���� q 2 P � UÆ(p)

�
:

Note that jhq�p; �(p)ij = dist(TpP; q) > 0, for all q 2 P �fpg; because, P is strictly

convex. Hence f is well-de�ned, and continuous. Let � := sup f: If r > �, then, for

all q 2 UÆ(p), kq� (p� r�(p))k2 = kq�pk2+2rhq�p; �(p)i+ r2 6 r2; which implies

P � UÆ(p) � Bp;r: Thus � := maxf�; �g is the desired estimate. �

Lemma 3.3.4. Let K be an arbitrary intersection of balls of �xed radius R, then

through every point in the boundary of K there passes a sphere of radius R containing

K.

Proof. Let fBigi2I be an arbitrary collection of balls of �xed radius R, and set

K := \i2IBi. We have to show that for every x 2 @K, there is a ball B of radius

R such that K � B and x 2 @B. If x 2 @Bi for some i 2 I, then we are done.

So suppose that x 2 intBi for every i 2 I. Then for every n 2 N , there is a ball,

say Bn, such that U1=n(x) \ Bn 6= ;; where U1=n(x) is a neighborhood of radius

1=n about x. If K 6= ; then the sequence fBngn2N is bounded. So by Blaschke's
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selection principal there is a subsequence Bn0 converging to some body B in the

sense of Hausdor� distance. It is easy to verify that B is the desired ball. �

Lemma 3.3.5. Let A � Rm be a compact subset, and KR be the intersection of all

balls of radius R containing A. Then for every � > 0, there exists an R < 1 such

that distH(KR; convA) < �.

Proof. Fix an � > 0, and suppose dist(p; convA) > � for some p 2 Rm. It is enough

to show that for every such point p, there exists a ball B of radius R, depending

only on �, such that convA � B, but p 62 B; we derive the following estimate:

R >
�

4
+
Æ2

�
;

where Æ := diam(A), the largest distance between pairs of points in A. To see this

let p0 be the (unique) point of convA which is closest to p, and let l be the line deter-

mined by p, and p0. Let H be the hyperplane which contains p0 and is perpendicular

to l, and H+ be the half space which does not contain p. Then convA � H+. Let

B+ := B(p0; Æ) \H+. Then convA � B+, because diam(convA) = diam(A) = Æ.

Choose a point o on l which lies in H+, and suppose dist(o; p0) + �=2 = R. Then

p 62 B(o;R). Furthermore, for convA to be contained in B(o;R), we must have

supx2convA dist(x; o) 6 R. Since convA � B+, we have

sup
x2convA

dist(x; o) 6 sup
x2B+

dist(x; o) = ((R�
�

2
)2 + Æ2)

1
2 :

The last equality follows because the farthest point of B+ with respect to p lies on

the great circle which bounds the intersection of B+ with H. Setting the right hand

side of the above less than or equal to R, we obtain the desired estimate. �

Lemma 3.3.6. Every Ck strictly convex patch P may be extended to a Ck strictly

convex hypersurface without boundary. In particular, P is contained in the interior

of a Ck strictly convex patch.

Proof. Using the notion of the double of a manifold, see [23], it can be shown that

every compact embedded hypersurface with boundary may be extended along its

boundaries. Thus there exists an embedded hypersurface S without boundary such

that P � S. Since P is compact and has positive curvature, there exists an open

neighborhood U � S, P � U , such that U has positive curvature. We claim that if

U is suÆciently small, then U is strictly convex. Since U has positive curvature, it

suÆces to show that U lies on one side of all its tangent hyperplanes. To see this,

suppose U is small enough so that it has compact closure U . Then U is uniformly

locally strictly convex by Lemma 3.1.5, i.e., every q 2 U has a neighborhood of

radius Æ > 0 which lies on one side of the tangent hyperplane at q. It can be shown

that there exists an 0 < � < Æ such that if the radius of U with respect to P is less

than �, then U is strictly convex; the proof is similar to that of Lemma 3.3.4. �

Proof of Proposition 3.3.1. Let P be the inner parallel hypersurface of P at

the distance r. By Lemma 3.3.2, P is strictly convex when r is suÆciently small;
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therefore, by Lemma 3.3.3, through every point p 2 P there passes a ball Bp, of

some �xed radius R, such that p 2 @Bp and P � Bp. Let

K := \
p2P

Bp; K := K + rBm;

where Bm denotes the unit ball, and set

O := @K:

Then O is a closed convex hypersurface. We claim that O is the desired ovaloid. It is

clear that P � O. Further, by construction, the radii of curvature of O are bounded

above and below by R+r and r respectively. Since K is convex, distH(O; convP ) =

distH(K; convP ). Since P � convP , distH(K; convP ) 6 distH(K;P ). Further,

distH(K;P ) 6 distH(K;K) + distH(K;P ) + distH(P;P ) = distH(K;P ) + 2r:

By Lemma 3.3.5, distH(K;P ) can be made arbitrarily small by choosing R suÆ-

ciently large. So we conclude that if R is large and r is small then distH(O; convP )

is small. Finally, in order for O to be Ck in a neighborhood of P , we can extend P

along its boundary to a slightly larger strictly convex patch P 0 which contains P in

its interior; and, carry out the above construction for P 0 instead of P . P 0 exists by

Lemma 3.3.6. �

3.4. Smoothing of the weak solution.

Proposition 3.4.1. Let O � Rm be a C1 ovaloid, and let U � O be a Ck>2 open

subset; then, for every closed subset A � U there exists a Ck ovaloid eO containing

A. Furthermore, eO may be constructed arbitrarily close to O.

We need the following lemmas:

Lemma 3.4.2. Let O � Rm be a C1 ovaloid, and let U � O be an open set which

is Ck>2 up to its boundary, then U has positive curvature. In particular, �jU is a

Ck�1 embedding, and hjU is Ck�1 as well, where � is the Gauss map of O and h is

its support function.

Proof. The �rst statement is an elementary consequence of our de�nition of ovaloid,

and the next two statements, as we showed in Section 2.2, are immediate corollaries

of the �rst. �

Recall that by a support function f : Rm ! R we mean a convex positively

homogeneous function. For any subset A � Rm, and f : A ! R, we de�ne the

Ck norm, denoted by k � kCk(A), as the supremum over A of f together with all its

partial derivatives up to order k.

Lemma 3.4.3. Let h : Rm ! R be a support function and suppose hjA is Ck, where

A � Rm is a compact subset; then, kh � ~h�kC2(A) ! 0 as � ! 0 where ~h� denotes

the Schneider's convolution of h.

Proof. This is an immediate consequence of the convolution properties of ~h�, see

Section 2.3; the details are similar to the corresponding proof of this fact for the

ordinary convolution. �
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Lemma 3.4.4. Let O � Rm be a C1 ovaloid, and let eO be the surface obtained

by applying Schneider's convolution to the support function of O; then, eO is a C1

ovaloid. In particular the restriction of the support function of eO to any tangent

hyperplane to the sphere is strictly convex.

Proof. See Sections 2.2 and 2.3. �

Proof of Proposition 3.4.1. Since A � U is closed, we can replace U by a slightly

smaller neighborhood containing A. Thus we can assume, without loss of generality

that U is Ck up to its boundary. Let V � U be an open set with V � U , and A � V .

Set V 0 := �(V ), and U 0 := �(U), where � : O ! Sm�1 is the outward unit normal

of O. Then U 0 and V 0 are open in Sm�1, see Lemma 3.4.2. Let � : Sm�1 ! R be a

smooth function with supp(�) � U 0, and �j
V
0 � 1. Let � be the extension of � to

Rm given by �(0) := 0, and �(x) := �(x=kxk), when x 6= 0. Let h be the support

function of O, eh� be the Schneider's convolution of h, and de�ne g : Rm ! R by

g(x) := eh�(x) + �(x)(h(x)� eh�(x)):
We claim that there exists an � > 0 such that g is a support function, and the

boundary of the convex body determined by g is the desired ovaloid. To prove this

we have to check: (i) g(rx) = rg(x), for all r > 0, (ii) g is Ck on Rm � f0g, (iii)
(Hess g)p is positive semide�nite, for all p 2 Rm � f0g, (iv) gjV 0 = hjV 0 , and (v)

(Hess gp)p is positive de�nite for all p 2 Sm�1, where gp is the restriction of g to

TpS
m�1. (i), (ii), and (iii) show that g is a Ck support function. Thus g determines

a convex body with some boundary eO. (iv) shows that V � eO; and, consequently,
implies that A � eO. Finally, (v) implies that eO is a Ck ovaloid. (i) and (iv) are

immediate from the de�nition of g and (ii) follows from the fact that hjU 0 is Ck, see

Lemma 3.4.2. Thus it remains to check (iii) and (v).

(iii) By homogeneity of g, it is enough to check this only for p 2 Sm�1. Further,

since gjSm�U 0 = eh�, and eh� is convex, we need to check (iii) only for p 2 U 0. For

every p 2 U 0, let fEi
pg, 1 6 i 6 m, be an orthonormal basis for Rm with Em

p = p,

and set gij := (Hess g)p(E
i
p; E

j
p). We have to show that the principal minors of the

matrix (gij) are nonnegative for small �. Since g is homogeneous,

gim = 0 = gmi;

i.e., the last row and column of (gij) are zero. Thus all the principal minors con-

taining the last row and column of (gij) are zero. It remains, therefore, to check the

principal minors of (gij) not containing the last row and column.

Let hij := (Hessh)p(E
i
p; E

j
p), and recall that if Ei

p, 1 6 i 6 m � 1, are chosen so

that they coincide with the principal directions of U at ��1(p), then

hij :=

(
ri; 1 6 i = j 6 m� 1;

0; otherwise;

where ri are the principal radii of curvature of U at ��1(p), which are positive.

Thus the principal minors of (hij) not containing the last row and column are
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positive; therefore, to show that the corresponding principal minors of (gij) are also

nonnegative, it would be suÆcient, by continuity of the determinant, to show that

jhij � gij j ! 0 as � ! 0, i.e., we have to check that kh� gkC2(U 0) ! 0. To see this

note that

kg � hkC2(U 0) 6 kg � eh�kC2(U 0) + k eh� � hkC2(U 0) and k eh� � hkC2(U 0) ! 0;

by Lemma 3.4.3. Thus, it is enough to show that kg � eh�kC2(U 0) ! 0. This follows

from the following calculations:

jg(p)� eh�(p)j 6 j�(p)j kh(p)� eh�(p)k;
kDgp �D eh�pk 6 jh(p)� eh�(p)j kD�(p)k+ j�(p)j kDhp �D eh�pk;

and

kD2gp �D2 eh�pk 6
jh(p)� eh�(p)j kD2�pk+ j�(p)j kD2hp �D2 eh�pk+ 2kD�pk kDhp �D eh�pk:

Thus, since kh� eh�kC2(U 0) ! 0, we conclude that kg � eh�kC2(U 0) ! 0.

(v) (Hess g)p(E
i
p; E

j
p) = (Hess gp)p(E

i
p; E

j
p), for all 1 6 i; j 6 m�1. As we showed

in (iii), if p 2 U 0, then the matrix obtained from (gij) by eliminating the last row

and column is positive de�nite; therefore, Hess gp is positive de�nite for all p 2 U 0.

If p 2 Sm�1 � U 0, then (Hess g)p(E
i
p; E

j
p) = (Hess gp)p(E

i
p; E

j
p) which is positive

de�nite by Lemma 3.4.4. �

Appendix A. A Special Convex Curve

A unit speed parameterization for the curve in Figure 1 is given by

(t) :=

 
p
�FS

�r5

2
sin(t)

�
;
p
�FC

�r5

2
sin(t)

�
;

r
5

2

cos(t)

4

!
;

where

FC(x) :=

Z x

0

cos(�t2=2)dt ; and FS(x) :=

Z x

0

sin(�t2=2)dt

are the Fresnel integrals studied in optics, and t 2 [0; 2�]. Let � be the trace of .

A computation shows that � has nonvanishing curvature. Further, since � lies on

the boundary of a convex body, it is not diÆcult to see that its self-linking number

must be zero. Thus there are no known obstructions for � to bound a positively

curved surface; however, no such surface exists:

Theorem A.0.1. There exists a smooth simple closed curve in R3 (e.g., as given

by the above equation) which (i) does not have any inection points, and (ii) lies on

the boundary of a convex body, but (iii) bounds no surfaces of positive curvatures.

To prove the above we need the following three lemmas. The �rst is elementary,

so we omit its proof.
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Lemma A.0.2. Let S � R3 be a positively curved surface and � � S be a C2 curve.

Then � has no inection points; thus, for every p 2 �, the principal normal N(p)

is well-de�ned. Furthermore hn(p); N(p)i > 0, where n(p) denotes the inward unit

normal of S at p.

By an \inward" normal of S at a point p we mean the following. If the Gaussian

curvature of S at a point p is positive then there exists an open neighborhood of

p in S which lies on the boundary of a convex body K � R3. We say n(p) points

inward, if it points into the half space of TpS which contains K.

Lemma A.0.3. Let M be a 2-manifold (with boundary), f : M ! R3 be an immer-

sion with positive curvature, H � R3 be a plane, and X be a component of f�1(H)

which is not a point. Then X is a smoothly embedded one-dimensional submanifold

of M .

Proof. It suÆces to show that every p 2 X has an open neighborhood U such

that f(U) intersects H transversely. Suppose, towards a contradiction, that f(U)

is tangent to H at f(p). If X contains more than one point, there exists a point

p0 2 U , p 6= p0, such that f(p0) 2 H. Since f is a local embedding, we may assume

that f(p) 6= f(p0). Let l be the line segment joining f(p) and f(p0). Since f has

positive curvature, f(U) lies on the boundary of a convex body K � R3, which has

to lie on one side of H. Hence l lies in the boundary of K. By the theorem on

the invariance of domain, f(U) is open in @K, assuming U is small. Consequently

f(U) has to contain an open subset of l, which contradicts the assumption that f

has positive curvature. �

Lemma A.0.4. Let M be a compact connected 2-manifold and f : M ! R3 be an

immersion with positive curvature. Suppose that f is an embedding on @M , and

f(@M) lies on the boundary of a convex body, then f(M �@M)\ conv(f(@M)) = ;.

Proof. See [1]. �

Proof of Theorem A.0.1. Let � be the image of the curve given by the above

equation. Suppose that there exists a compact 2-manifoldM and a positively curved

immersion f : M ! R3 such that f(@M) = �, and set S := f(M). Let H denote

the xy-plane. H meets � at exactly two points, say p and q, see Figure 2.

Let X be the component of f�1(H) which contains f�1(p). Since H meets � (and

consequently S) transversely, X contains more than one point. Hence, by Lemma

A.0.3, X is a smoothly embedded one-dimensional submanifold of M . Thus either

X is homeomorphic to S1 or else is an open curve segment which meets @M at

distinct points. If X is closed, then it has to be tangent to @M , which contradicts

the fact that H is transversal to � at p. Thus X is an open curve segment. So there

exist a connected curve C := f(X) in H with end points at p and q.

Parameterize C by arc length starting at p. Let t(p) be the unit tangent of C,

N(p) be the principal normal of �, and n(p) be the inward unit normal of S. Since

H meets � orthogonally, all three vectors lie in H, see Figure 3. Further, Since S has

positive curvature, hn(p); N(p)i 6= 0, by Lemma A.0.3. Thus t(p) and N(p) cannot

be parallel; therefore, the lines TpS\H and Tp�\H are distinct, where TpS denotes
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Conv(Γ) ⊃ Η
Γ
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II
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p n(p)
Conv(    Γ    H)⊃

Proj   (   )Γ  H

III

C:= ⊃   S    H

Figure 3

the tangent plane to S and Tp� denotes the tangent plane to � which contains N(p).

� has been constructed so that Tp� supports �. Thus conv(�) \H lies one side of

Tp� \ H. Further, t(p) points into the half-space, determined by Tp� \ H, which

does not contain conv(�) \ H; because, by Lemma A.0.4, (S � �) \ conv(�) = ;,
and Tp� is the unique supporting plane of conv(�) passing through p.

Let TpS\H and Tp�\H be oriented by tp and N(p) respectively, then these two

lines determine four quadrants in H, which may be numbered in the standard way.

n(p) has to lie in quadrant I or II, because, by Lemma A.0.2, N(p) and n(p) have to

lie on the same side of TpS \H. Further, n(p) is the principal normal vector to C.

Hence, near p, C lies in the �rst quadrant. Thus t rotates counter-clockwise as it

moves away from p. Similarly, we can show that t rotates clockwise as it approaches

q, because � is invariant under reection through the origin. So C must have an

inection point, which is a contradiction by Lemma A.0.2. �

Appendix B. Open Problems

Here we restate the question [32, Prob. 26] which provided the prime stimulus

for this work, and also mention a related problem (this is a truncated version of a

list of problems which had appeared in the author's Ph.D. thesis [9]. Since then,

one of those problems [9, Conj. E.0.5] has been solved by Stephanie Alexander and
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the author [1]; another [9, Conj. E.0.4] has been solved by John McCuan [21]; and

still another [9, Conj. E.0.6] has been solved by Bo Guan and Joel Spruck [12]).

Question B.0.1 (S.-T. Yau). Given a metric of positive curvature on the disk what

is the condition on a space curve to form the boundary of an isometric embedding

of the disk?

As was mentioned in the introduction, a nontrivial necessary condition, has been

discovered by H. Rosenberg [25], involving the self-linking number, and the main

result of this paper provides a suÆcient criterion; however, a complete characteri-

zation is not yet known.

Question B.0.2 (H. Rosenberg). Does every curve bounding a surface of positive

curvature in 3-space have four vertices, i.e., points where the torsion vanishes?

V. D. Sedykh [28] has shown that the answer to the above problem is positive

provided that the curve lies on a convex body, thus solving a long standing conjecture

of P. Scherk.
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