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Abstract. It is proved that given a convex polytope P in Rn, together with
a collection of compact convex subsets in the interior of each facet of P , there
exists a smooth convex body arbitrarily close to P which coincides with each
facet precisely along the prescribed sets, and has positive curvature elsewhere.

1. Introduction

It has been known since the foundational work of H. Minkowski [9], see [1,
p. 39], that the boundary of every convex polytope P in Euclidean space Rn

may be approximated, in the sense of Hausdorff distance, by an analytic convex
hypersurface. There have been also some refinements of this theorem due to P.
Hammer [7] and W. Firey [3] who extended it to algebraic hypersurfaces. Though
these approximations are as smooth as one could wish, for certain purposes they
may have a drawback: they do not coincide with P along any open subset. Thus
in this paper we are led to develop a smoothing procedure which preserves P
along prescribed regions:

Theorem 1.1. Let P ⊂ Rn be a convex polytope, with interior points, and facets
Fi, i = 1, . . . , k. Let Xi be a compact convex subset in the interior of Fi. Then
for every ε > 0 there exists a convex body K ⊂ P with smooth (C∞) boundary
∂K such that

1. ∂K ∩ Fi = Xi,
2. ∂K −∪iXi has positive curvature,
3. dist(K, P ) ≤ ε.

where dist denotes Hausdorff distance. Furthermore, if ∪iXi is symmetric with
respect to some rigid motion in Rn, then there exists a convex body K, satisfying
the above properties, which has the same symmetry.

The above smoothing may be considered “optimal” in the sense that it pre-
serves the boundary of P precisely as much or as little as desired. In the case
where each Xi is a point, the above has been proved by W. Weil [12], using a
certain convolution first devised by C. Berg, and further studied by R. Schnei-
der [11, 10]. Our proof also employs this convolution together with some recent
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results on strictly convex submanifolds [4]. The above may be of interest in
studying Brownian motion in convex polygons [8], constructing “subsolutions”
for Monge-Ampére equations [4], smoothing of convex functions [5], and approx-
imating general convex bodies [6]. The above theorem improves [4, Thm 1.2.4],
where a similar smoothing had been constructed under the additional requirement
that Xi is smooth and has positively curved boundary.

By a convex body K ⊂ Rn we mean a compact convex set with interior points.
A polytope P ⊂ Rn is a convex body which is the intersection of finitely many
closed half-spaces. A facet Fi of P is the intersection of P with a support hyper-
plane Hi provided that Fi has interior points in Hi. By smooth we always mean
differentiable of class C∞. A point p in the boundary ∂K is a smooth point if an
open neighborhood of p in ∂K admits a C∞ parametrization, e.g., it is the graph
of a C∞ (convex) function over a support hyperplane of K at p. If this function
has positive definite hessian, then we say that K has positive curvature at p.

Note 1.2. It is easy to satisfy property 1 of Theorem 1.1, if we require that
∂K be only differentiable of class C1,1. To see this let νi be the outward unit
normal to the facet Fi, δ > 0, and Xδ

i := Xi − δνi be the translation of Xi into
P . Let P := conv(∪iX

δ
i ) be the convex hull of these translations. An elementary

computation shows that if

δ < inf

{ 〈xj − xi, νj〉
1− 〈νi, νj〉 : xi ∈ Xi, xj ∈ Xj , i 6= j

}
,

then ∪iX
δ
i ⊂ ∂P , where 〈·, ·〉 denotes the standard inner product in Rn. Con-

sequently K := P + δBn, the outer parallel body of P at the distance δ, is the
desired object (Bn denotes the unit ball in Rn).

Note 1.3. Proving Theorem 1.1 is not difficult if we weaken condition 1 to
Xi ⊂ K ∩Fi, and disregard condition 2. To see this suppose that P contains the
origin of Rn in its interior, and let ρ : Rn → R, given by

(1) ρ(x) := inf{ λ > 0 : x ∈ λP },
be the distance function of P . Then ρ is a convex piecewise linear function with
ρ−1([0, 1]) = P . Let ρ̃ be the convolution of ρ with a positive and centrally
symmetric approximate identity function θε : Rn → R with support inside a ball
of radius ε. Choose ε sufficiently small so that an ε-neighborhood of Xi, in the
affine hull of Fi, lies in Fi. Then K := ρ̃−1([0, 1]) is the desired body; because,
the convolution preserves convexity and fixes ρ over any compact subset of an
open region where ρ is linear.

To prove Theorem 1.1 we require a pair of propositions which are proved in
the next two sections.

2. Smooth Convex Functions with Prescribed Minima

We say a C2 convex function f : Rn → R is strictly convex on a subset U ⊂ Rn

if the Hessian of f is positive definite on U . Recall that, for every p ∈ U , Hess fp
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is the bilinear form on Rn ×Rn given by

Hess fp(v, w) :=

n∑
i,j=1

Dijf(p)viwj .

Note that if f has positive definite hessian, then the graph of f contains no line
segments. Thus our definition of strict convexity is stronger than the one which
is commonly used in convexity texts.

Proposition 2.1. For every compact convex subset X ⊂ Rn, there exists a
smooth nonnegative convex function f : Rn → R such that f−1({0}) = X, and f
is strictly convex on Rn −X.

Proof. After a translation, we may assume that the origin o of Rn is contained
in X. Let h : Rn → R be the support function of X, that is

(2) h(·) := sup
x∈X
〈x, ·〉.

Note that, for every u in the sphere Sn−1, h(u) is the distance between o and the
support hyperplane

Hu := { p ∈ Rn : 〈p, u〉 = h(u) }.
Let g : R → R be any smooth function which is strictly convex on (0,∞), but
vanishes on (−∞, 0]. For instance, we may set:

g(x) :=

{
x2 exp

(−1
x2

)
, if x > 0

0, otherwise.

Define φ : Sn−1 ×Rn → R by

φ(u, p) :=

{
g
(
〈p, u〉 − h(u)

)
, if 〈p, u〉 > h(u);

0, otherwise.

Thus, for every u ∈ Sn−1, φ(u, · ) is a smooth convex function which vanishes on
X, but is positive in the half space 〈p, u〉 > h(u). Set

(3) f(p) :=

∫
Sn−1

φ(u, p) du.

Since φ is smooth, f is smooth, and one easily verifies that it is convex as well,
using the linearity of integrals. Further, it is clear that f vanishes on X. On the
other hand, if p 6∈ X, then there exists a support hyperplane Hu0 which separates
p and X, because X is convex. Thus, φ(u, p) > 0 for all u in a neighborhood of
u0. Since φ ≥ 0 everywhere, this yields that f(p) > 0. So f vanishes precisely on
X.

It remains to check that the Hessian of f is positive definite on Rn − X. To
this end recall that

(4) Hess fp(v, v) =
d2

dt2
f(p + tv)

∣∣
t=0

.
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Next note that t 7→ φ(u, p + tv) is convex. Thus, d2φ(u, p + tv)/dt2 ≥ 0, which
yields that, for every p, v ∈ Rn and U ⊂ Sn−1,

(5)
d2

dt2
f(p + tv) =

∫
Sn−1

d2

dt2
φ(u, p + tv) du ≥

∫
U

d2

dt2
φ(u, p + tv) du.

For each p ∈ Rn −X there exists a up ∈ Sn−1 such that Hup separates p and X.
Then 〈p, up〉 > h(up). So there exists an open neighborhood Up ⊂ Sn−1 and an
εp > 0 such that for all (u, t) ∈ Up × (−εp, εp), and v ∈ Sn−1, 〈p + tv, u〉 > h(u).
Consequently, for these values, the definition of φ yields that

φ(u, p + tv) = g
(
〈p + tv, u〉 − h(u)

)
.

When 〈p + tv, u〉 − h(u) > 0, the above is strictly convex in t, in which case

d2

dt2
φ(u, p + tv)

∣∣
t=0

> 0.

Thus in (5) if we set U := Up, then d2f(p + tv)/dt2|t=0 > 0, for all p ∈ Rn −X
and v ∈ Sn−1. So by (4) Hess fp is positive definite on Rn −X. �

Note 2.2. For ε > 0, let Xε := f−1([0, ε]), where f is as in (3). This yields a
family of convex bodies with smooth boundary which, as ε→ 0, converges to X
in the sense of Hausdorff distance.

3. Completion of Strictly Convex Patches

Recall that the support function of a convex body, as defined by (2), is a
convex and positively homogeneous function h : Rn → R. Conversely, every such
function uniquely determines a convex body

K = { x ∈ Rn : 〈x, p〉 ≤ h(p), for all p ∈ Rn },
[11, Thm. 1.7.1]. We say v ∈ Sn−1 is a support vector for p ∈ ∂K, if K lies
on one side of the support hyperplane H which is orthogonal to v and passes
through p. Further, if p + v lies in the halfspace of H not containing K, then
we say that v is an outward support vector. When p is a smooth point of ∂K,
the (unique) support hyperplane of K at p is denoted by Tp∂K, and is called the
tangent hyperplane of K at p.

Lemma 3.1. Let K ⊂ Rn be a convex body with support function h, and v0 ∈
Sn−1 be an outward support vector for p0 ∈ ∂K. Then the following are equivalent:

1. p0 is a smooth point of ∂K, and ∂K has positive curvature at p0.
2. v0 is a smooth point of h, and h is strictly convex on Tv0S

n−1.

Though the above is essentially known, e.g. see [11, p. 103–109], we include a
concise proof for lack of an explicit reference.

Proof. (1⇒ 2). Let U ⊂ ∂K be an open neighborhood of p0 which is smooth and
positively curved. Then the inverse function theorem implies that the outward
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unit normal, or the Gauss map, ν : U → ν(U) ⊂ Sn−1, is a diffeomorphism.
Consequently, setting V := ν(U), we obtain a one-to-one correspondence

∂K ⊃ U 3 p←→ v ∈ V ⊂ S2.

In particular, using the above convention, we may write

h(v) = 〈p, v〉.
Thus h|V is smooth, which, since h is homogeneous, yields that h is smooth on (an
open neighborhood of) V . Further, the above equation yields that the gradient
of h on V is given by

gradh(v) :=
(
D1h(v), . . . , Dnh(v)

)
= p.

It is a basic fact in differential geometry that, since ∂K has positive curvature on
U , for every p ∈ U there exists a basis ei = ei(p), 1 ≤ i ≤ n− 1, for the tangent
hyperplane Tp∂K such that

dνp(ei) = kiei,

where d is the differential map, and ki = ki(p) > 0 (ei are the “principle direc-
tions” and ki are the corresponding “principal curvatures”).

Note that Tp∂K is parallel to TvS
n−1. Thus {ei} also forms a basis for TvS

n−1,
and using the last two equations above, we have

Hess hv(ei, ej) =
〈
Dei

gradh(v), ej

〉
=

〈
dν−1

v (ei), ej

〉
=

{
1
ki

, if i = j;

0, otherwise.

So we conclude that h is strictly convex on TvS
n−1.

(2⇒ 1) Let V ⊂ Sn−1 be an open neighborhood of v0 where h is smooth and
strictly convex on TvS

n−1 for all v ∈ V . Define f : V → Rn by

f(v) := gradhv.

Since the restriction of Hess hv to TvS
n−1 is positive definite, for every nonzero

vector x ∈ TvS
n−1 we have

(6)
〈
dfv(x), x

〉
=

〈
Dx grad h(v), x

〉
= Hess hv(x, x) > 0.

So dfv is nondegenerate which yields that f : V → f(V ) ⊂ ∂K is a diffeomor-
phism, assuming V is sufficiently small. In particular, U := f(V ) is a smooth
open subset of ∂K. Now define ν : U → Sn−1 by ν(f(v)) = v. For all v ∈ V , and
x ∈ TvS

n−1,

〈dfv(x), v〉 = 〈x, Dv grad h(v)〉 = 0

because, since h is homogenous, Dv gradh(v) = 0. So v is orthogonal to Tf(v)∂K,
which yields that ν is the Gauss map of U . Since ν ◦ f is the identity, and dfv0

is nondegenerate, it follows that dνp0 = (dfv0)
−1. So the eigenvalues of dνp0 are

reciprocal of those of dfv0, which are positive by (6). So ∂K has positive curvature
at p0. �
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Let K ⊂ Rn be a convex body with support function h. For ε > 0, let
θε : [0,∞) → [0,∞) be a smooth function with support supp(θε) ⊂ [ε/2, ε],∫
Rn θε(‖x‖)dx = 1, and set

(7) h̃ε(p) :=

∫
Rn

h(p + ‖p‖x) θε(‖x‖)dx,

where ‖ · ‖ := 〈·, ·〉 12 denotes the standard norm in Rn. It is not difficult to show

that h̃ε is convex and positively homogeneous; thus it determines a convex body

K̃ε which we call the Schneider transform of K [11, p. 158]. We say that the radii
of curvature of K are bounded below if there exists an r > 0 such that through
every point p ∈ ∂K there passes a ball B of radius r contained inside K (one
may also say that B “rolls freely” inside K).

The following lemma is also known, but again a proof is included because the
author is not aware of an explicit reference.

Lemma 3.2. Let K ⊂ Rn be a convex body whose radii of curvature are bounded
below. Then the Schneider transform of K is smooth, and has positive curvature.

Proof. Suppose that the radii of curvature of K are bounded below by r. Set

L := { p ∈ K : Bn(p, r) ⊂ K },
where Bn(p, r) denotes the ball of radius r centered at p. Then L is a convex
body, and K = L + Bn(o, r), where + denotes Minkowski addition. So, hK =
hL + hBn(o,r), which in turn yields

h̃ε
K(u) = h̃ε

L(u) + h̃ε
Bn(o,r)(u) = h̃ε

L(u) + r‖u‖.
Note that the restriction of ‖ · ‖ to TpS

n−1 is strictly convex, for all p ∈ Sn−1.

Thus h̃ε
K is strictly convex on the tangent hyperplanes of the sphere, which, by

Lemma 3.1, yields that K̃ is smooth and has positive curvature. �

We say a smooth hypersurface M ⊂ Rn is strictly convex if, for all p ∈M , (i)
M lies on one side the tangent hyperplane TpM , (ii) M ∩ TpM = {p}, and (iii)
M has positive curvature at p. Unless stated otherwise, our hypersurfaces may
be disconnected and may have boundary.

Proposition 3.3. Let M̃ ⊂ Rn be a smooth strictly convex hypersurface without

boundary, and M ⊂ M̃ be compact. Then M lies on the boundary of a smooth
convex body with positive curvature.

The above is a special case of the main result of [4]. Since the special case may
be treated much more concisely, however, we include a proof:

Proof. Let U ⊂ M̃ be an open subset with compact closure U , and U ⊃ M . Let

ν : M̃ → Sn−1 be the Gauss map, and, for small r > 0, define the inner parallel
hypersurface of U by

U r := { pr := p− rν(p) : p ∈ U }.



SMOOTHING CONVEX POLYTOPES 7

Since the curvature of U r depends continuously on r, and U is compact, U r has
positive curvature (for r sufficiently small). Thus U r lies locally on one side of
each of its tangent hyperplanes. Equivalently, if we define fr : U × U → R as

fr(p, q) :=
〈
pr − qr, ν(qr)

〉
,

the signed distance between pr and TqrU , then fr ≤ 0 on an open neighborhood
A of the diagonal of U × U . Since by assumption U is strictly convex, f0 < 0
on B := U × U − A. So, since B is compact, it follows that fr < 0 on B as
well. Consequently U r lies globally on each side of its tangent hyperplanes, or,
equivalently, U r ⊂ ∂ conv(U r). Thus setting

K := conv(U r) + Bn(o, r),

we obtain a convex body with U ⊂ ∂K.
Let V ⊂ U be an open set with M ⊂ V and V ⊂ U . Set U ′ := ν(U), and

V ′ := ν(V ). Then U ′ and V ′ are open in Sn−1, because, since the curvature of U
is nonzero, ν is a local diffeomorphism. Let φ : Sn−1 → R be a smooth function
with support supp(φ) ⊂ U ′, and φ|V ′ ≡ 1. Let φ be the extension of φ to Rn

given by φ(o) := 0, and φ(p) := φ(p/‖p‖), when p 6= o. Define h : Rn → R by

h
ε
(p) := h̃ε(p) + φ(p)

(
h(p)− h̃ε(p)

)
,

where h is the support function of K and h̃ε is as in (7). We claim that there

exists an ε > 0, giving an h
ε

such that

K
ε
:= { x ∈ Rn : 〈x, p〉 ≤ h

ε
(p), for all p ∈ Rn }

is the desired body.
To establish the above claim, with an eye towards applying Lemmas 3.1 and

3.2, we first show that K
ε
is a convex body with support function h

ε
. To this end,

it suffices to check that h
ε

is positively homogeneous and convex. Homogeneity
of h

ε
is immediate from the definition. Thus to see convexity, it suffices to show

that Hess h
ε

p is nonnegative semidefinite for all p ∈ Sn−1. Since h
ε|Sn−U ′ = h̃ε,

and h̃ε is convex, we need to check this only for p ∈ U ′. To this end, note that,

for each p ∈ U
′
, h|TpSn−1 is strictly convex. Further, by construction,

‖h− h
ε‖

C2(U
′
)
→ 0,

as ε → 0. So, for every p ∈ U
′
, there exists an ε(p) > 0 such that h

ε|TpSn−1

is strictly convex. Since U
′

is compact and ε(p) depends on the size of the

eigenvalues of the Hessian matrix of h
ε|TpSn−1 , which in turn depend continuously

on p, it follows that there is an ε > 0 such that h
ε|TpSn−1 is strictly convex for all

p ∈ U
′
. Next we show that ∂K is smooth and positively curved. To this end, by

Lemma 3.1, we need to check that h
ε|TpSn−1 is strictly convex for all p ∈ Sn−1.

For p ∈ U ′, this was verified above. For p ∈ Sn−1 − U ′, note that h
ε

= h̃ε on

the cone spanned by Sn−1−U ′. So it is enough to check that h̃ε|TpSn−1 is strictly
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convex. By Lemmas 3.2 and 3.1, this follows from the boundedness of the radii
of curvature from below.

Finally, it remains to show that M ⊂ ∂K
ε
. Since M ⊂ U , which is smooth in

∂K, we have h(p) = 〈ν−1(p), p〉, for all p ∈ U ′. Consequently gradh(p) = ν−1(p).
Thus

ν−1(p) = grad h(p) = gradh
ε
(p) = ν−1(p),

where ν is the Gauss map of K
ε
. So M ⊂ ν−1(U ′) ⊂ ∂K

ε
. �

4. Proof of Theorem 1.1

By Proposition 2.1, for every facet Fi of P there exists a smooth convex function
fi : Fi → R with f−1

i ({0}) = Xi. Let νi be the outward unit normal of P at Fi

and set
Platei :=

{
p− fi(p) νi : p ∈ Uδ(Xi)

}
,

where Uδ(Xi) is a δ-neighborhood of Xi in the affine hull aff(Fi), i.e., the hyper-
plane in Rn which contains Fi.. Set

Plates := ∪i Platei .

Since by assumption Xj lies in the relative interior of Fj , we may choose δ > 0
small enough so that

(8) aff(Fi) ∩ Platej = ∅,
for all i 6= j. Now define di : Platei → R by

di(p) := inf
{ |〈x− p, ν(p)〉| : x ∈ (Plates−Platei)

}
,

where ν : Plates → Sn−1 is the outward unit normal. Note that di(p) is the dis-
tance between Tp Platei and Plates−Platei. Further, if p ∈ Xi, then Tp Platei =
aff(Fi). Thus (8) implies di > 0 on Xi. So, since di is continuous and Xi is
compact, there exists δi > 0 such that di > 0 on Uδi

(Xi). Set δ := mini δi. Then
Plates lies on one side of each of its tangent hyperplanes; or, equivalently, it lies
on the boundary of its own convex hull:

(9) Plates ⊂ ∂(conv Plates),

where we also use the fact that each Platei is a convex hypersurface. Next define

Rimi :=
{

p− fi(p) νi : p ∈ Uδ(Xi)− Uδ/2(Xi)
}
,

and set
Rims := ∪i Rimi .

Since fi has positive definite Hessian on Fi − Xi, it follows from (9) that Rims
is a strictly convex hypersurface. Thus, by Proposition 3.3, Rims lies on the
boundary of a smooth convex body L ⊂ Rn with positive curvature.

Let Γ1
i and Γ2

i be the boundary components of Rimi, i.e., the graphs over
∂(Uδ(Xi)) and ∂(Uδ/2(Xi)) respectively. Note that since Uδ(Xi) is a convex body
in Fi, Γ1

i is homeomorphic to Sn−2. Thus, since ∂L is homeomorphic to Sn−1, it
follows from the Jordan-Brouwer separation theorem that ∂L − Γ1

i has precisely
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two (connected) components. Let Ci be the component of ∂L−Γ1
i which contains

Γ2
i . Set

C := ∂L −∪iCi.

Since each Ci is topologically a disk, and Ci ∩ Cj = ∅, whenever i 6= j, it
follows that C is connected. Further note that by construction ∂X = ∂ Plates,
and the interior of X is disjoint from Rims. Thus Plates∪C is a smooth closed
hypersurface with nonnegative curvature. It follows then from a theorem of Chern
and Lashof [2, Thm. 4] that Plates∪C bounds a convex body K. Further, by
construction, K ∩ Fi = Xi, and ∂K −∪iXi has positive curvature.

To push K within an ε distance of P , choose in the interior of each Fi a compact
convex subset Yi such that Xi ⊂ Yi. By the above construction, there exists then
a smooth convex body K with Yi ⊂ ∂K. Choosing Yi sufficiently large, we may
assume that dist(K, P ) ≤ ε/2. Suppose that o ∈ int K and let ρ, ρ be the distance
functions of K and K respectively, as defined by (1). For λ ∈ [0, 1), set

ρλ := λ ρ + (1− λ) ρ.

Then Kλ := ρ−1
λ ([0, 1]) is a smooth convex body, because ρ and ρ are both smooth

convex functions. Further note that since ρ, ρ ≥ 1 on Fi, it follows that ρλ(x) = 1
at x ∈ Fi, if and only if ρ(x) = 1 = ρ(x). Consequently

∂Kλ ∩ Fi =
(
∂K ∩ Fi

) ∩ (
∂K ∩ Fi

)
= Yi ∩Xi = Xi.

Next we check that ∂Kλ has positive curvature in the complement of X := ∪iXi.
Let ν be the Gauss map of Kλ. Since ∂Kλ is a level set of ρλ, for every ei,
ej ∈ Tp∂Kλ we have

〈dνp(ei), ej〉 =
〈
Dei

grad(ρλ)p

‖ grad(ρλ)p‖ , ej

〉
=

1

‖ grad(ρλ)p‖ Hess(ρλ)p(ei, ej).

Thus ∂Kλ is positively curved at p, if and only if ρλ is strictly convex on
Tp∂Kλ. Since ρλ is homogeneous, this is equivalent to ρλ being strictly convex
on Tν(p)S

n−1. If p 6∈ X, then the point on K with outward normal ν(p) is also
disjoint from X, and thus has positive curvature by construction. Consequently,
ρ is strictly convex on Tν(p)S

n−1, which yields that ρλ is also strictly convex. So
∂Kλ has positive curvature on the complement of X. Now note that ρλ → ρ as
λ → 1. Thus there exists a λ0 < 1 such that dist(Kλ0 , K) ≤ ε/2. The triangle
inequality yields

dist(Kλ0 , P ) ≤ dist(Kλ0, K) + dist(K, P ) ≤ ε.

Finally, suppose that X is symmetric with respect to some rigid motion m ∈
O(n), i.e., m(X) = X. To make sure that Kλ0 inherits the same symmetry, we
may repeat the above procedure after replacing ρ and ρ by

1

2
(ρ + ρ ◦m), and

1

2
(ρ + ρ ◦m),

respectively.



10 MOHAMMAD GHOMI

Acknowledgments

The author thanks Ralph Howard for helpful comments, specially with regard
to the proof of Proposition 2.1. Further, he is grateful to the editors and the
referee for a detailed reading of this work, and suggestions for an improved ex-
position.

References

[1] T. Bonnesen, and W. Fenchel, Theory of convex bodies, BCS Associates, Moscow, Idaho,
1987.

[2] S. S. Chern, and R. K. Lashof, On the total curvature of immersed manifolds, Amer. J.
Math. 79 (1957), 306–318.

[3] W. Firey, Approximating convex bodies by algebraic ones. Arch. Math. (Basel) 25 (1974),
424–425.

[4] M. Ghomi, Strictly convex submanifolds and hypersurfaces of positive curvature, J. Differ-
ential Geom, 57 (2001) 239–271.

[5] ——, The problem of optimal smoothing for convex functions, Proc. Amer. Math. Soc., 130
(2002) 2255–2259.

[6] P. Gruber, Aspects of approximation of convex bodies, Handbook of convex geometry, Vol.
A, 319–345, North-Holland, Amsterdam, 1993.

[7] P. Hammer, Approximation of convex surfaces by algebraic surfaces, Mathematika 10 (1963)
64–71.

[8] L. Helms, Brownian motion in a closed convex polygon with normal reflection, Ann. Acad.
Sci. Fenn. Ser. A I Math. 17 (1992), no. 2, 199–209.

[9] H. Minkowski, Volumen und Oberfläche. Math. Ann., 57(1903), 447–495.
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