OPTIMAL SMOOTHING FOR CONVEX POLYTOPES

MOHAMMAD GHOMI

Abstract

It is proved that given a convex polytope P in \mathbf{R}^{n}, together with a collection of compact convex subsets in the interior of each facet of P, there exists a smooth convex body arbitrarily close to P which coincides with each facet precisely along the prescribed sets, and has positive curvature elsewhere.

1. Introduction

It has been known since the foundational work of H . Minkowski [9], see [1, p. 39], that the boundary of every convex polytope P in Euclidean space \mathbf{R}^{n} may be approximated, in the sense of Hausdorff distance, by an analytic convex hypersurface. There have been also some refinements of this theorem due to P . Hammer [7] and W. Firey [3] who extended it to algebraic hypersurfaces. Though these approximations are as smooth as one could wish, for certain purposes they may have a drawback: they do not coincide with P along any open subset. Thus in this paper we are led to develop a smoothing procedure which preserves P along prescribed regions:
Theorem 1.1. Let $P \subset \mathbf{R}^{n}$ be a convex polytope, with interior points, and facets $F_{i}, i=1, \ldots, k$. Let X_{i} be a compact convex subset in the interior of F_{i}. Then for every $\epsilon>0$ there exists a convex body $K \subset P$ with smooth (C^{∞}) boundary ∂K such that

1. $\partial K \cap F_{i}=X_{i}$,
2. $\partial K-\cup_{i} X_{i}$ has positive curvature,
3. $\operatorname{dist}(K, P) \leq \epsilon$.
where dist denotes Hausdorff distance. Furthermore, if $\cup_{i} X_{i}$ is symmetric with respect to some rigid motion in \mathbf{R}^{n}, then there exists a convex body K, satisfying the above properties, which has the same symmetry.

The above smoothing may be considered "optimal" in the sense that it preserves the boundary of P precisely as much or as little as desired. In the case where each X_{i} is a point, the above has been proved by W. Weil [12], using a certain convolution first devised by C. Berg, and further studied by R. Schneider [11, 10]. Our proof also employs this convolution together with some recent

[^0]results on strictly convex submanifolds [4]. The above may be of interest in studying Brownian motion in convex polygons [8], constructing "subsolutions" for Monge-Ampére equations [4], smoothing of convex functions [5], and approximating general convex bodies [6]. The above theorem improves [4, Thm 1.2.4], where a similar smoothing had been constructed under the additional requirement that X_{i} is smooth and has positively curved boundary.

By a convex body $K \subset \mathbf{R}^{n}$ we mean a compact convex set with interior points. A polytope $P \subset \mathbf{R}^{n}$ is a convex body which is the intersection of finitely many closed half-spaces. A facet F_{i} of P is the intersection of P with a support hyperplane H_{i} provided that F_{i} has interior points in H_{i}. By smooth we always mean differentiable of class C^{∞}. A point p in the boundary ∂K is a smooth point if an open neighborhood of p in ∂K admits a C^{∞} parametrization, e.g., it is the graph of a C^{∞} (convex) function over a support hyperplane of K at p. If this function has positive definite hessian, then we say that K has positive curvature at p.
Note 1.2. It is easy to satisfy property 1 of Theorem 1.1, if we require that ∂K be only differentiable of class $C^{1,1}$. To see this let ν_{i} be the outward unit normal to the facet $F_{i}, \delta>0$, and $X_{i}^{\delta}:=X_{i}-\delta \nu_{i}$ be the translation of X_{i} into P. Let $\bar{P}:=\operatorname{conv}\left(\cup_{i} X_{i}^{\delta}\right)$ be the convex hull of these translations. An elementary computation shows that if

$$
\delta<\inf \left\{\frac{\left\langle x_{j}-x_{i}, \nu_{j}\right\rangle}{1-\left\langle\nu_{i}, \nu_{j}\right\rangle}: x_{i} \in X_{i}, x_{j} \in X_{j}, i \neq j\right\}
$$

then $\cup_{i} X_{i}^{\delta} \subset \partial \bar{P}$, where $\langle\cdot, \cdot\rangle$ denotes the standard inner product in \mathbf{R}^{n}. Consequently $K:=\bar{P}+\delta B^{n}$, the outer parallel body of \bar{P} at the distance δ, is the desired object (B^{n} denotes the unit ball in \mathbf{R}^{n}).
Note 1.3. Proving Theorem 1.1 is not difficult if we weaken condition 1 to $X_{i} \subset K \cap F_{i}$, and disregard condition 2 . To see this suppose that P contains the origin of \mathbf{R}^{n} in its interior, and let $\rho: \mathbf{R}^{n} \rightarrow \mathbf{R}$, given by

$$
\begin{equation*}
\rho(x):=\inf \{\lambda>0: x \in \lambda P\}, \tag{1}
\end{equation*}
$$

be the distance function of P. Then ρ is a convex piecewise linear function with $\rho^{-1}([0,1])=P$. Let $\widetilde{\rho}$ be the convolution of ρ with a positive and centrally symmetric approximate identity function $\theta_{\epsilon}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ with support inside a ball of radius ϵ. Choose ϵ sufficiently small so that an ϵ-neighborhood of X_{i}, in the affine hull of F_{i}, lies in F_{i}. Then $K:=\widetilde{\rho}^{-1}([0,1])$ is the desired body; because, the convolution preserves convexity and fixes ρ over any compact subset of an open region where ρ is linear.

To prove Theorem 1.1 we require a pair of propositions which are proved in the next two sections.

2. Smooth Convex Functions with Prescribed Minima

We say a C^{2} convex function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is strictly convex on a subset $U \subset \mathbf{R}^{n}$ if the Hessian of f is positive definite on U. Recall that, for every $p \in U$, Hess f_{p}
is the bilinear form on $\mathbf{R}^{n} \times \mathbf{R}^{n}$ given by

$$
\operatorname{Hess} f_{p}(v, w):=\sum_{i, j=1}^{n} D_{i j} f(p) v_{i} w_{j} .
$$

Note that if f has positive definite hessian, then the graph of f contains no line segments. Thus our definition of strict convexity is stronger than the one which is commonly used in convexity texts.
Proposition 2.1. For every compact convex subset $X \subset \mathbf{R}^{n}$, there exists a smooth nonnegative convex function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ such that $f^{-1}(\{0\})=X$, and f is strictly convex on $\mathbf{R}^{n}-X$.

Proof. After a translation, we may assume that the origin o of \mathbf{R}^{n} is contained in X. Let $h: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be the support function of X, that is

$$
\begin{equation*}
h(\cdot):=\sup _{x \in X}\langle x, \cdot\rangle . \tag{2}
\end{equation*}
$$

Note that, for every u in the sphere $\mathbf{S}^{n-1}, h(u)$ is the distance between o and the support hyperplane

$$
H_{u}:=\left\{p \in \mathbf{R}^{n}:\langle p, u\rangle=h(u)\right\} .
$$

Let $g: \mathbf{R} \rightarrow \mathbf{R}$ be any smooth function which is strictly convex on $(0, \infty)$, but vanishes on $(-\infty, 0]$. For instance, we may set:

$$
g(x):= \begin{cases}x^{2} \exp \left(\frac{-1}{x^{2}}\right), & \text { if } x>0 \\ 0, & \text { otherwise }\end{cases}
$$

Define $\phi: \mathbf{S}^{n-1} \times \mathbf{R}^{n} \rightarrow \mathbf{R}$ by

$$
\phi(u, p):= \begin{cases}g(\langle p, u\rangle-h(u)), & \text { if }\langle p, u\rangle>h(u) ; \\ 0, & \text { otherwise } .\end{cases}
$$

Thus, for every $u \in \mathbf{S}^{n-1}, \phi(u, \cdot)$ is a smooth convex function which vanishes on X, but is positive in the half space $\langle p, u\rangle>h(u)$. Set

$$
\begin{equation*}
f(p):=\int_{\mathbf{S}^{n-1}} \phi(u, p) d u \tag{3}
\end{equation*}
$$

Since ϕ is smooth, f is smooth, and one easily verifies that it is convex as well, using the linearity of integrals. Further, it is clear that f vanishes on X. On the other hand, if $p \notin X$, then there exists a support hyperplane $H_{u_{0}}$ which separates p and X, because X is convex. Thus, $\phi(u, p)>0$ for all u in a neighborhood of u_{0}. Since $\phi \geq 0$ everywhere, this yields that $f(p)>0$. So f vanishes precisely on X.

It remains to check that the Hessian of f is positive definite on $\mathbf{R}^{n}-X$. To this end recall that

$$
\begin{equation*}
\operatorname{Hess} f_{p}(v, v)=\left.\frac{d^{2}}{d t^{2}} f(p+t v)\right|_{t=0} . \tag{4}
\end{equation*}
$$

Next note that $t \mapsto \phi(u, p+t v)$ is convex. Thus, $d^{2} \phi(u, p+t v) / d t^{2} \geq 0$, which yields that, for every $p, v \in \mathbf{R}^{n}$ and $U \subset \mathbf{S}^{n-1}$,

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} f(p+t v)=\int_{\mathbf{S}^{n-1}} \frac{d^{2}}{d t^{2}} \phi(u, p+t v) d u \geq \int_{U} \frac{d^{2}}{d t^{2}} \phi(u, p+t v) d u \tag{5}
\end{equation*}
$$

For each $p \in \mathbf{R}^{n}-X$ there exists a $u_{p} \in \mathbf{S}^{n-1}$ such that $H_{u_{p}}$ separates p and X. Then $\left\langle p, u_{p}\right\rangle>h\left(u_{p}\right)$. So there exists an open neighborhood $U_{p} \subset \mathbf{S}^{n-1}$ and an $\epsilon_{p}>0$ such that for all $(u, t) \in U_{p} \times\left(-\epsilon_{p}, \epsilon_{p}\right)$, and $v \in \mathbf{S}^{n-1},\langle p+t v, u\rangle>h(u)$. Consequently, for these values, the definition of ϕ yields that

$$
\phi(u, p+t v)=g(\langle p+t v, u\rangle-h(u)) .
$$

When $\langle p+t v, u\rangle-h(u)>0$, the above is strictly convex in t, in which case

$$
\left.\frac{d^{2}}{d t^{2}} \phi(u, p+t v)\right|_{t=0}>0
$$

Thus in (5) if we set $U:=U_{p}$, then $d^{2} f(p+t v) /\left.d t^{2}\right|_{t=0}>0$, for all $p \in \mathbf{R}^{n}-X$ and $v \in \mathbf{S}^{n-1}$. So by (4) Hess f_{p} is positive definite on $\mathbf{R}^{n}-X$.

Note 2.2. For $\epsilon>0$, let $X_{\epsilon}:=f^{-1}([0, \epsilon])$, where f is as in (3). This yields a family of convex bodies with smooth boundary which, as $\epsilon \rightarrow 0$, converges to X in the sense of Hausdorff distance.

3. Completion of Strictly Convex Patches

Recall that the support function of a convex body, as defined by (2), is a convex and positively homogeneous function $h: \mathbf{R}^{n} \rightarrow \mathbf{R}$. Conversely, every such function uniquely determines a convex body

$$
K=\left\{x \in \mathbf{R}^{n}:\langle x, p\rangle \leq h(p), \text { for all } p \in \mathbf{R}^{n}\right\},
$$

[11, Thm. 1.7.1]. We say $v \in \mathbf{S}^{n-1}$ is a support vector for $p \in \partial K$, if K lies on one side of the support hyperplane H which is orthogonal to v and passes through p. Further, if $p+v$ lies in the halfspace of H not containing K, then we say that v is an outward support vector. When p is a smooth point of ∂K, the (unique) support hyperplane of K at p is denoted by $T_{p} \partial K$, and is called the tangent hyperplane of K at p.
Lemma 3.1. Let $K \subset \mathbf{R}^{n}$ be a convex body with support function h, and $v_{0} \in$ \mathbf{S}^{n-1} be an outward support vector for $p_{0} \in \partial K$. Then the following are equivalent:

1. p_{0} is a smooth point of ∂K, and ∂K has positive curvature at p_{0}.
2. v_{0} is a smooth point of h, and h is strictly convex on $T_{v_{0}} \mathbf{S}^{n-1}$.

Though the above is essentially known, e.g. see [11, p. 103-109], we include a concise proof for lack of an explicit reference.

Proof. $(\mathbf{1} \Rightarrow \mathbf{2})$. Let $U \subset \partial K$ be an open neighborhood of p_{0} which is smooth and positively curved. Then the inverse function theorem implies that the outward
unit normal, or the Gauss map, $\nu: U \rightarrow \nu(U) \subset \mathbf{S}^{n-1}$, is a diffeomorphism. Consequently, setting $V:=\nu(U)$, we obtain a one-to-one correspondence

$$
\partial K \supset U \ni p \longleftrightarrow v \in V \subset \mathbf{S}^{2} .
$$

In particular, using the above convention, we may write

$$
h(v)=\langle p, v\rangle .
$$

Thus $\left.h\right|_{V}$ is smooth, which, since h is homogeneous, yields that h is smooth on (an open neighborhood of) V. Further, the above equation yields that the gradient of h on V is given by

$$
\operatorname{grad} h(v):=\left(D_{1} h(v), \ldots, D_{n} h(v)\right)=p .
$$

It is a basic fact in differential geometry that, since ∂K has positive curvature on U, for every $p \in U$ there exists a basis $e_{i}=e_{i}(p), 1 \leq i \leq n-1$, for the tangent hyperplane $T_{p} \partial K$ such that

$$
d \nu_{p}\left(e_{i}\right)=k_{i} e_{i},
$$

where d is the differential map, and $k_{i}=k_{i}(p)>0$ (e_{i} are the "principle directions" and k_{i} are the corresponding "principal curvatures").

Note that $T_{p} \partial K$ is parallel to $T_{v} \mathbf{S}^{n-1}$. Thus $\left\{e_{i}\right\}$ also forms a basis for $T_{v} \mathbf{S}^{n-1}$, and using the last two equations above, we have

$$
\text { Hess } h_{v}\left(e_{i}, e_{j}\right)=\left\langle D_{e_{i}} \operatorname{grad} h(v), e_{j}\right\rangle=\left\langle d \nu_{v}^{-1}\left(e_{i}\right), e_{j}\right\rangle= \begin{cases}\frac{1}{k_{i}}, & \text { if } i=j \\ 0, & \text { otherwise }\end{cases}
$$

So we conclude that h is strictly convex on $T_{v} \mathbf{S}^{n-1}$.
$(\mathbf{2} \Rightarrow \mathbf{1})$ Let $V \subset \mathbf{S}^{n-1}$ be an open neighborhood of v_{0} where h is smooth and strictly convex on $T_{v} \mathbf{S}^{n-1}$ for all $v \in V$. Define $f: V \rightarrow \mathbf{R}^{n}$ by

$$
f(v):=\operatorname{grad} h_{v} .
$$

Since the restriction of Hess h_{v} to $T_{v} \mathbf{S}^{n-1}$ is positive definite, for every nonzero vector $x \in T_{v} \mathbf{S}^{n-1}$ we have

$$
\begin{equation*}
\left\langle d f_{v}(x), x\right\rangle=\left\langle D_{x} \operatorname{grad} h(v), x\right\rangle=\operatorname{Hess} h_{v}(x, x)>0 \tag{6}
\end{equation*}
$$

So $d f_{v}$ is nondegenerate which yields that $f: V \rightarrow f(V) \subset \partial K$ is a diffeomorphism, assuming V is sufficiently small. In particular, $U:=f(V)$ is a smooth open subset of ∂K. Now define $\nu: U \rightarrow \mathbf{S}^{n-1}$ by $\nu(f(v))=v$. For all $v \in V$, and $x \in T_{v} \mathbf{S}^{n-1}$,

$$
\left\langle d f_{v}(x), v\right\rangle=\left\langle x, D_{v} \operatorname{grad} h(v)\right\rangle=0
$$

because, since h is homogenous, $D_{v} \operatorname{grad} h(v)=0$. So v is orthogonal to $T_{f(v)} \partial K$, which yields that ν is the Gauss map of U. Since $\nu \circ f$ is the identity, and $d f_{v_{0}}$ is nondegenerate, it follows that $d \nu_{p_{0}}=\left(d f_{v_{0}}\right)^{-1}$. So the eigenvalues of $d \nu_{p_{0}}$ are reciprocal of those of $d f_{v_{0}}$, which are positive by (6). So ∂K has positive curvature at p_{0}.

Let $K \subset \mathbf{R}^{n}$ be a convex body with support function h. For $\epsilon>0$, let $\theta_{\epsilon}:[0, \infty) \rightarrow[0, \infty)$ be a smooth function with support $\operatorname{supp}\left(\theta_{\epsilon}\right) \subset[\epsilon / 2, \epsilon]$, $\int_{\mathbf{R}^{n}} \theta_{\epsilon}(\|x\|) d x=1$, and set

$$
\begin{equation*}
\widetilde{h^{\epsilon}}(p):=\int_{\mathbf{R}^{n}} h(p+\|p\| x) \theta_{\epsilon}(\|x\|) d x \tag{7}
\end{equation*}
$$

where $\|\cdot\|:=\langle\cdot, \cdot\rangle^{\frac{1}{2}}$ denotes the standard norm in \mathbf{R}^{n}. It is not difficult to show that $\widetilde{h^{\epsilon}}$ is convex and positively homogeneous; thus it determines a convex body $\widetilde{K^{\epsilon}}$ which we call the Schneider transform of K [11, p. 158]. We say that the radii of curvature of K are bounded below if there exists an $r>0$ such that through every point $p \in \partial K$ there passes a ball B of radius r contained inside K (one may also say that B "rolls freely" inside K).

The following lemma is also known, but again a proof is included because the author is not aware of an explicit reference.
Lemma 3.2. Let $K \subset \mathbf{R}^{n}$ be a convex body whose radii of curvature are bounded below. Then the Schneider transform of K is smooth, and has positive curvature.

Proof. Suppose that the radii of curvature of K are bounded below by r. Set

$$
L:=\left\{p \in K: B^{n}(p, r) \subset K\right\}
$$

where $B^{n}(p, r)$ denotes the ball of radius r centered at p. Then L is a convex body, and $K=L+B^{n}(o, r)$, where + denotes Minkowski addition. So, $h_{K}=$ $h_{L}+h_{B^{n}(o, r)}$, which in turn yields

$$
\widetilde{h}^{\epsilon}(u)=\widetilde{h}_{L}(u)+\widetilde{h}^{B^{n}(o, r)}(u)=\widetilde{h}_{L}(u)+r\|u\| .
$$

Note that the restriction of $\|\cdot\|$ to $T_{p} \mathbf{S}^{n-1}$ is strictly convex, for all $p \in \mathbf{S}^{n-1}$. Thus $\widetilde{h^{\epsilon}}{ }_{K}$ is strictly convex on the tangent hyperplanes of the sphere, which, by Lemma 3.1, yields that \widetilde{K} is smooth and has positive curvature.

We say a smooth hypersurface $M \subset \mathbf{R}^{n}$ is strictly convex if, for all $p \in M$, (i) M lies on one side the tangent hyperplane $T_{p} M$, (ii) $M \cap T_{p} M=\{p\}$, and (iii) M has positive curvature at p. Unless stated otherwise, our hypersurfaces may be disconnected and may have boundary.
Proposition 3.3. Let $\widetilde{M} \subset \mathbf{R}^{n}$ be a smooth strictly convex hypersurface without boundary, and $M \subset \widetilde{M}$ be compact. Then M lies on the boundary of a smooth convex body with positive curvature.

The above is a special case of the main result of [4]. Since the special case may be treated much more concisely, however, we include a proof:
Proof. Let $U \subset \widetilde{M}$ be an open subset with compact closure \bar{U}, and $U \supset M$. Let $\nu: \widetilde{M} \rightarrow \mathbf{S}^{n-1}$ be the Gauss map, and, for small $r>0$, define the inner parallel hypersurface of \bar{U} by

$$
\bar{U}_{r}:=\left\{p_{r}:=p-r \nu(p): p \in \bar{U}\right\} .
$$

Since the curvature of \bar{U}_{r} depends continuously on r, and \bar{U} is compact, \bar{U}_{r} has positive curvature (for r sufficiently small). Thus \bar{U}_{r} lies locally on one side of each of its tangent hyperplanes. Equivalently, if we define $f_{r}: \bar{U} \times \bar{U} \rightarrow \mathbf{R}$ as

$$
f_{r}(p, q):=\left\langle p_{r}-q_{r}, \nu\left(q_{r}\right)\right\rangle,
$$

the signed distance between p_{r} and $T_{q_{r}} \bar{U}$, then $f_{r} \leq 0$ on an open neighborhood A of the diagonal of $\bar{U} \times \bar{U}$. Since by assumption \bar{U} is strictly convex, $f_{0}<0$ on $B:=\bar{U} \times \bar{U}-A$. So, since B is compact, it follows that $f_{r}<0$ on B as well. Consequently \bar{U}_{r} lies globally on each side of its tangent hyperplanes, or, equivalently, $\bar{U}_{r} \subset \partial \operatorname{conv}\left(\bar{U}_{r}\right)$. Thus setting

$$
K:=\operatorname{conv}\left(\bar{U}_{r}\right)+B^{n}(o, r),
$$

we obtain a convex body with $\bar{U} \subset \partial K$.
Let $V \subset U$ be an open set with $M \subset V$ and $\bar{V} \subset U$. Set $U^{\prime}:=\nu(U)$, and $V^{\prime}:=\nu(V)$. Then U^{\prime} and V^{\prime} are open in \mathbf{S}^{n-1}, because, since the curvature of U is nonzero, ν is a local diffeomorphism. Let $\bar{\phi}: \mathbf{S}^{n-1} \rightarrow \mathbf{R}$ be a smooth function with support $\operatorname{supp}(\bar{\phi}) \subset U^{\prime}$, and $\left.\bar{\phi}\right|_{\bar{V}^{\prime}} \equiv 1$. Let ϕ be the extension of $\bar{\phi}$ to \mathbf{R}^{n} given by $\phi(o):=0$, and $\phi(p):=\bar{\phi}(p /\|p\|)$, when $p \neq o$. Define $\bar{h}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ by

$$
\bar{h}^{\epsilon}(p):=\widetilde{h^{\epsilon}}(p)+\phi(p)(h(p)-\widetilde{h} \epsilon(p)),
$$

where h is the support function of K and $\widetilde{h^{\epsilon}}$ is as in (7). We claim that there exists an $\epsilon>0$, giving an \bar{h}^{ϵ} such that

$$
\bar{K}^{\epsilon}:=\left\{x \in \mathbf{R}^{n}:\langle x, p\rangle \leq \bar{h}^{\epsilon}(p), \text { for all } p \in \mathbf{R}^{n}\right\}
$$

is the desired body.
To establish the above claim, with an eye towards applying Lemmas 3.1 and 3.2 , we first show that \bar{K}^{ϵ} is a convex body with support function \bar{h}^{ϵ}. To this end, it suffices to check that \bar{h}^{ϵ} is positively homogeneous and convex. Homogeneity of \bar{h}^{ϵ} is immediate from the definition. Thus to see convexity, it suffices to show that Hess \bar{h}_{p}^{ϵ} is nonnegative semidefinite for all $p \in \mathbf{S}^{n-1}$. Since $\left.\bar{h}^{\epsilon}\right|_{\mathbf{S}^{n}-U^{\prime}}=\widetilde{h^{\epsilon}}$, and $\widetilde{h^{\epsilon}}$ is convex, we need to check this only for $p \in U^{\prime}$. To this end, note that, for each $p \in \bar{U}^{\prime},\left.h\right|_{T_{p} \mathbf{S}^{n-1}}$ is strictly convex. Further, by construction,

$$
\left\|h-\bar{h}^{\epsilon}\right\|_{C^{2}\left(\bar{U}^{\prime}\right)} \rightarrow 0
$$

as $\epsilon \rightarrow 0$. So, for every $p \in \bar{U}^{\prime}$, there exists an $\epsilon(p)>0$ such that $\left.\bar{h}^{\epsilon}\right|_{T_{p} \mathbf{S}^{n-1}}$ is strictly convex. Since \bar{U}^{\prime} is compact and $\epsilon(p)$ depends on the size of the eigenvalues of the Hessian matrix of $\left.\bar{h}^{\epsilon}\right|_{T_{p} \mathbf{S}^{n-1}}$, which in turn depend continuously on p, it follows that there is an $\epsilon>0$ such that $\left.\bar{h}^{\epsilon}\right|_{T_{p} \mathbf{S}^{n-1}}$ is strictly convex for all $p \in \bar{U}^{\prime}$. Next we show that ∂K is smooth and positively curved. To this end, by Lemma 3.1, we need to check that $\left.\bar{h}^{\epsilon}\right|_{T_{p} \mathbf{S}^{n-1}}$ is strictly convex for all $p \in \mathbf{S}^{n-1}$. For $p \in U^{\prime}$, this was verified above. For $p \in \mathbf{S}^{n-1}-U^{\prime}$, note that $\bar{h}^{\epsilon}=\widetilde{h}^{\epsilon}$ on the cone spanned by $\mathbf{S}^{n-1}-U^{\prime}$. So it is enough to check that $\left.\widetilde{h}^{\epsilon}\right|_{T_{p} \mathbf{S}^{n-1}}$ is strictly
convex. By Lemmas 3.2 and 3.1, this follows from the boundedness of the radii of curvature from below.

Finally, it remains to show that $M \subset \partial \bar{K}^{\epsilon}$. Since $M \subset U$, which is smooth in ∂K, we have $h(p)=\left\langle\nu^{-1}(p), p\right\rangle$, for all $p \in U^{\prime}$. Consequently $\operatorname{grad} h(p)=\nu^{-1}(p)$. Thus

$$
\nu^{-1}(p)=\operatorname{grad} h(p)=\operatorname{grad} \bar{h}^{\epsilon}(p)=\bar{\nu}^{-1}(p),
$$

where $\bar{\nu}$ is the Gauss map of \bar{K}^{ϵ}. So $M \subset \bar{\nu}^{-1}\left(U^{\prime}\right) \subset \partial \bar{K}^{\epsilon}$.

4. Proof of Theorem 1.1

By Proposition 2.1, for every facet F_{i} of P there exists a smooth convex function $f_{i}: F_{i} \rightarrow \mathbf{R}$ with $f_{i}^{-1}(\{0\})=X_{i}$. Let ν_{i} be the outward unit normal of P at F_{i} and set

$$
\text { Plate }_{i}:=\left\{p-f_{i}(p) \nu_{i}: p \in U_{\delta}\left(X_{i}\right)\right\},
$$

where $U_{\delta}\left(X_{i}\right)$ is a δ-neighborhood of X_{i} in the affine hull aff $\left(F_{i}\right)$, i.e., the hyperplane in \mathbf{R}^{n} which contains F_{i}.. Set

$$
\text { Plates }:=\cup_{i} \text { Plate }_{i} .
$$

Since by assumption X_{j} lies in the relative interior of F_{j}, we may choose $\delta>0$ small enough so that

$$
\begin{equation*}
\operatorname{aff}\left(F_{i}\right) \cap \operatorname{Plate}_{j}=\emptyset, \tag{8}
\end{equation*}
$$

for all $i \neq j$. Now define d_{i} : Plate $_{i} \rightarrow \mathbf{R}$ by

$$
d_{i}(p):=\inf \left\{|\langle x-p, \nu(p)\rangle|: x \in\left(\text { Plates }- \text { Plate }_{i}\right)\right\},
$$

where ν : Plates $\rightarrow \mathbf{S}^{n-1}$ is the outward unit normal. Note that $d_{i}(p)$ is the distance between T_{p} Plate $_{i}$ and Plates - Plate ${ }_{i}$. Further, if $p \in X_{i}$, then T_{p} Plate $_{i}=$ $\operatorname{aff}\left(F_{i}\right)$. Thus (8) implies $d_{i}>0$ on X_{i}. So, since d_{i} is continuous and X_{i} is compact, there exists $\delta_{i}>0$ such that $d_{i}>0$ on $U_{\delta_{i}}\left(X_{i}\right)$. Set $\delta:=\min _{i} \delta_{i}$. Then Plates lies on one side of each of its tangent hyperplanes; or, equivalently, it lies on the boundary of its own convex hull:

$$
\begin{equation*}
\text { Plates } \subset \partial \text { (conv Plates) } \tag{9}
\end{equation*}
$$

where we also use the fact that each Plate_{i} is a convex hypersurface. Next define

$$
\operatorname{Rim}_{i}:=\left\{p-f_{i}(p) \nu_{i}: p \in U_{\delta}\left(X_{i}\right)-U_{\delta / 2}\left(X_{i}\right)\right\}
$$

and set

$$
\text { Rims }:=\cup_{i} \operatorname{Rim}_{i} .
$$

Since f_{i} has positive definite Hessian on $F_{i}-X_{i}$, it follows from (9) that Rims is a strictly convex hypersurface. Thus, by Proposition 3.3, Rims lies on the boundary of a smooth convex body $L \subset \mathbf{R}^{n}$ with positive curvature.

Let Γ_{i}^{1} and Γ_{i}^{2} be the boundary components of Rim_{i}, i.e., the graphs over $\partial\left(U_{\delta}\left(X_{i}\right)\right)$ and $\partial\left(U_{\delta / 2}\left(X_{i}\right)\right)$ respectively. Note that since $U_{\delta}\left(X_{i}\right)$ is a convex body in F_{i}, Γ_{i}^{1} is homeomorphic to \mathbf{S}^{n-2}. Thus, since ∂L is homeomorphic to \mathbf{S}^{n-1}, it follows from the Jordan-Brouwer separation theorem that $\partial L-\Gamma_{i}^{1}$ has precisely
two (connected) components. Let C_{i} be the component of $\partial L-\Gamma_{i}^{1}$ which contains Γ_{i}^{2}. Set

$$
C:=\partial L-\cup_{i} C_{i} .
$$

Since each C_{i} is topologically a disk, and $C_{i} \cap C_{j}=\emptyset$, whenever $i \neq j$, it follows that C is connected. Further note that by construction $\partial X=\partial$ Plates, and the interior of X is disjoint from Rims. Thus Plates $\cup C$ is a smooth closed hypersurface with nonnegative curvature. It follows then from a theorem of Chern and Lashof [2, Thm. 4] that Plates $\cup C$ bounds a convex body K. Further, by construction, $K \cap F_{i}=X_{i}$, and $\partial K-\cup_{i} X_{i}$ has positive curvature.

To push K within an ϵ distance of P, choose in the interior of each F_{i} a compact convex subset Y_{i} such that $X_{i} \subset Y_{i}$. By the above construction, there exists then a smooth convex body \bar{K} with $Y_{i} \subset \partial \bar{K}$. Choosing Y_{i} sufficiently large, we may assume that $\operatorname{dist}(\bar{K}, P) \leq \epsilon / 2$. Suppose that $o \in \operatorname{int} \bar{K}$ and let $\bar{\rho}, \rho$ be the distance functions of \bar{K} and K respectively, as defined by (1). For $\lambda \in[0,1)$, set

$$
\rho_{\lambda}:=\lambda \bar{\rho}+(1-\lambda) \rho .
$$

Then $K_{\lambda}:=\rho_{\lambda}^{-1}([0,1])$ is a smooth convex body, because $\bar{\rho}$ and ρ are both smooth convex functions. Further note that since $\rho, \bar{\rho} \geq 1$ on F_{i}, it follows that $\rho_{\lambda}(x)=1$ at $x \in F_{i}$, if and only if $\rho(x)=1=\bar{\rho}(x)$. Consequently

$$
\partial K_{\lambda} \cap F_{i}=\left(\partial \bar{K} \cap F_{i}\right) \cap\left(\partial K \cap F_{i}\right)=Y_{i} \cap X_{i}=X_{i} .
$$

Next we check that ∂K_{λ} has positive curvature in the complement of $X:=\cup_{i} X_{i}$. Let ν be the Gauss map of K_{λ}. Since ∂K_{λ} is a level set of ρ_{λ}, for every e_{i}, $e_{j} \in T_{p} \partial K_{\lambda}$ we have

$$
\left\langle d \nu_{p}\left(e_{i}\right), e_{j}\right\rangle=\left\langle D_{e_{i}} \frac{\operatorname{grad}\left(\rho_{\lambda}\right)_{p}}{\left\|\operatorname{grad}\left(\rho_{\lambda}\right)_{p}\right\|}, e_{j}\right\rangle=\frac{1}{\left\|\operatorname{grad}\left(\rho_{\lambda}\right)_{p}\right\|} \operatorname{Hess}\left(\rho_{\lambda}\right)_{p}\left(e_{i}, e_{j}\right)
$$

Thus ∂K_{λ} is positively curved at p, if and only if ρ_{λ} is strictly convex on $T_{p} \partial K_{\lambda}$. Since ρ_{λ} is homogeneous, this is equivalent to ρ_{λ} being strictly convex on $T_{\nu(p)} \mathbf{S}^{n-1}$. If $p \notin X$, then the point on K with outward normal $\nu(p)$ is also disjoint from X, and thus has positive curvature by construction. Consequently, ρ is strictly convex on $T_{\nu(p)} \mathbf{S}^{n-1}$, which yields that ρ_{λ} is also strictly convex. So ∂K_{λ} has positive curvature on the complement of X. Now note that $\rho_{\lambda} \rightarrow \bar{\rho}$ as $\lambda \rightarrow 1$. Thus there exists a $\lambda_{0}<1$ such that $\operatorname{dist}\left(K_{\lambda_{0}}, \bar{K}\right) \leq \epsilon / 2$. The triangle inequality yields

$$
\operatorname{dist}\left(K_{\lambda_{0}}, P\right) \leq \operatorname{dist}\left(K_{\lambda_{0}}, \bar{K}\right)+\operatorname{dist}(\bar{K}, P) \leq \epsilon .
$$

Finally, suppose that X is symmetric with respect to some rigid motion $m \in$ $O(n)$, i.e., $m(X)=X$. To make sure that $K_{\lambda_{0}}$ inherits the same symmetry, we may repeat the above procedure after replacing ρ and $\bar{\rho}$ by

$$
\frac{1}{2}(\rho+\rho \circ m), \quad \text { and } \quad \frac{1}{2}(\bar{\rho}+\bar{\rho} \circ m),
$$

respectively.

Acknowledgments

The author thanks Ralph Howard for helpful comments, specially with regard to the proof of Proposition 2.1. Further, he is grateful to the editors and the referee for a detailed reading of this work, and suggestions for an improved exposition.

References

[1] T. Bonnesen, and W. Fenchel, Theory of convex bodies, BCS Associates, Moscow, Idaho, 1987.
[2] S. S. Chern, and R. K. Lashof, On the total curvature of immersed manifolds, Amer. J. Math. 79 (1957), 306-318.
[3] W. Firey, Approximating convex bodies by algebraic ones. Arch. Math. (Basel) 25 (1974), 424-425.
[4] M. Ghomi, Strictly convex submanifolds and hypersurfaces of positive curvature, J. Differential Geom, 57 (2001) 239-271.
[5] _-, The problem of optimal smoothing for convex functions, Proc. Amer. Math. Soc., 130 (2002) 2255-2259.
[6] P. Gruber, Aspects of approximation of convex bodies, Handbook of convex geometry, Vol. A, 319-345, North-Holland, Amsterdam, 1993.
[7] P. Hammer, Approximation of convex surfaces by algebraic surfaces, Mathematika 10 (1963) 64-71.
[8] L. Helms, Brownian motion in a closed convex polygon with normal reflection, Ann. Acad. Sci. Fenn. Ser. A I Math. 17 (1992), no. 2, 199-209.
[9] H. Minkowski, Volumen und Oberfläche. Math. Ann., 57(1903), 447-495.
[10] R. Schneider, Smooth approximation of convex bodies, Rend. Circ. Mat. Palermo (2) 33 (1984), no. 3, 436-440.
[11] ——, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of mathematics and its applications, v. 44, Cambridge University Press, Cambridge, UK, 1993.
[12] W. Weil, Einschachtelung konvexer Körper, Arch. Math., 26(1975), 666-9.
School of Mathematics, Georgia Institute of Technologies, Atlanta, GA 30332

E-mail address: ghomi@math.gatech.edu
$U R L$: www.math.gatech.edu/~ghomi

[^0]: 1991 Mathematics Subject Classification. 53A07, 52B11, 53C45.
 Key words and phrases. Smooth approximation, convex polytopes, support function, convolution, Gaussian curvature.

 The author was partially supported by the NSF grant DMS-0204190, and CAREER award DMS-0332333.

