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Abstract. A procedure is described for smoothing a convex function which
not only preserves its convexity, but also, under suitable conditions, leaves
the function unchanged over nearly all the regions where it is already smooth.
The method is based on a convolution followed by a gluing. Controlling the
Hessian of the resulting function is the key to this process, and it is shown
that it can be done successfully provided that the original function is strictly
convex over the boundary of the smooth regions.

1. Introduction

The main aim of this note is to call attention to a basic question in convex
analysis: what is the most optimal way to smooth a convex function? We hope
to facilitate a complete solution to this problem, and, to this end, gather here a
number of observations and techniques. First, let us state the problem precisely. A
function f : Rn ! R is said to be convex if

f(�x1 + (1� �)x2) 6 �f(x1) + (1� �)f(x2);

for all x1, x2 2 R
n , and � 2 [0; 1]. It is well-known that the above inequality

forces f to be continuous; it can even be shown that f is Lipschitz continuous over
any compact subset [Sc, 1.5.1]. In general, however, we cannot expect to have any
higher degree of regularity. To remedy this situation one usually takes a convolution

of f with a smooth nonnegative function �. This operation not only smooths f ,
but also preserves its convexity. Further, it can be achieved by an arbitrary small
perturbation of f , provided � is chosen appropriately. But there is one drawback:
such convolutions do not in general �x f over the regions where it is already smooth,
and hence result in what seems to be unnecessary loss of data. Thus we are led to
study the following:

1.1. Problem. Suppose there exists a subset A � R
n such that f 2 Ck(A), 1 6

k 61. Find a convex function F 2 Ck(Rn) such that F = f in A.

By f 2 Ck(A) we mean that the partial derivatives of f , up to order k, exist and
are continuous throughout an open neighborhood of A, the closure of A.

In Section of 2 of this paper we solve the above problem subject to three extra
conditions, and in Section 3 we discuss how these conditions can be removed or
weakened. Our main result is Theorem 2.1 together with the Remarks 3.1 and 3.2.
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One might expect that the above problem would have been mentioned in stan-
dard texts such as [RV] and [Ro]. Curiously, however, it does not seem to have been
well studied, despite the large literature on the approximations of convex functions
and bodies, see [Gr] for a survey. A solution to 1.1 would be useful in removing
singularities of convex surfaces, and as such is related to constructing barriers for
elliptic PDE's of Monge-Amp�ere type, see [Gh]. The above problem can also be
phrased in terms of functions on manifolds; see [GW] for theorems and techniques
in a Riemannian geometric setting.

2. Convolution and Gluing Techniques

Here we o�er a solution to Problem 1.1 subject to the following conditions:
suppose that there exists a subset A0 � R

n such that A � A0, f 2 Ck(A0), and

Condition 1: the boundary of A0, @A0, is compact,
Condition 2: k > 2,
Condition 3: the Hessian of f , D2 f , is nondegenrate over @A0.

By D2 f , we mean the matrix of the second partial derivatives of f , [fij ], 1 6
i; j 6 n. f is convex if and only if the eigenvalues of this matrix are nonnegative
[Sc, 1.5.10]. Hence condition 3 implies that D2 f is positive de�nite, i.e., all the
eigenvalues are greater than 0. In particular, f is strictly convex over @A0. The fact
that positive de�nite matrices form an open subset in the space of square matrices1

together with the compactness of @A0 (Condition 1), allows us to construct F by
means of a convolution followed by a gluing.

First we set up the convolution. Let � = �� 2 C
1(Rn), have support in a ball of

radius � around the origin, supp �� � B�(0). This means that �� = 0 in R
n�B�(0).

Further, assume that
R
Rn
� = 1, and � > 0. In some places in the literature �

is called a molli�er [Ev, App. C.4]; in other places it may also be known as an
approximate identity, or probability density. An explicit construction is as follows:

(2.1) ��(x) :=
 �(x)R
Rn
 �
; where  �(x) :=

(
exp( 1

kxk2��2 ); if kxk < �;

0; otherwise:

In the above kxk denotes the norm of x = (x1; : : : ; xn), kxk :=
p
x21 + : : :+ x2n.

Using � as the kernel, we de�ne a convolution for f :

(2.2) ~f(x) = ~f�(x) :=

Z
Rn

f(x� y)��(y) dy:

The above may be regarded as a moving local average for f . Since � 2 C1(R n),

it follows that ~f 2 C1(R n). Further, since supp(��) � B�(0), and
R
Rn
� = 1, it

follows that, in any compact set K where f 2 Ck(K), ~f converges uniformly to f
together with all its derivatives up to order k,

(2.3) k ~f � fkCk(K) ! 0;

as � ! 0 (These properties of ~f are basic facts of convolution; see [Hi, 2.2.3]. A
detailed description of the norm k�kCk may be found in [GT, Pg. 53]). Furthermore,

1By this we mean that if [aij ], 1 6 i; j 6 n, is a positive de�nite matrix, then there exists an

� > 0, depending on A, such that any matrix [bij ] satisfying jaij � bij j < � is also positive de�nite.
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the assumption that � > 0, together with the convexity of f , easily yields that ~f is
convex:

~f(�x1 + (1� �)x2) =

Z
Rn

f(�x1 + (1� �)x2 � y)��(y) dy

=

Z
Rn

f(�(x1 � y) + (1� �)(x2 � y))��(y) dy

6

Z
Rn

[�f(x1 � y) + (1� �)f(x2 � y)]��(y) dy

= � ~f(x1) + (1� �) ~f(x2)

Next, we glue ~f to f . Since ~f 2 Ck(A0), there exists an open neighborhood 
 of

@A0 such that ~f 2 Ck(
). Further, we can choose 
 so that D2 f is nondegenerate
in 
. This is possible by the compactness of @A0, and the fact that the eigenvalues
of [fij(x)] depend continuously on x. Now let U := A0 [ 
. Then U is an open

neighborhood of A0; therefore, we can set up a (bump) function � 2 C1(Rn), with
supp� 2 U , and � = 1 in A0 (the existence of � follows from well-known theorems
on partitions of unity; see, for instance, [Hi, 2.2.2]). Finally, set

(2.4) F := (1� �) ~f + �f:

It is clear that F 2 Ck(R n), and F = f in A0. We claim that there exists an
� > 0 such that F is convex, which would show that F is a solution to Problem
1.1. To this end, it is enough to show that D2 F is nonnegative semide�nite (a.k.a.,
positive semide�nite) i.e., the eigenvalues are greater than or equal to zero. Since

F = f in A0, and F = ~f in R
n�U , we need to check this only in U � A0 � 
. By

rewriting (2.4) as F := ~f + �(f � ~f) and di�erentiating it twice we get:

(2.5) Fij = ~fij + �ij(f � ~f) + �i(f � ~f)j + �j(f � ~f)i + �(f � ~f)ij :

Note that � and consequently all of its derivatives are independent of �. Further
note that 
 is compact; therefore, by property (2.3), k ~f � fkC2(
) ! 0. Thus it

follows from (2.5) that, in 
, jFij� ~fij j ! 0, uniformly as �! 0. But j ~fij�fij j ! 0,

by (2.3). Hence, in 
,

(2.6) jFij � fij j ! 0;

uniformly as �! 0. Now recall that [fij ] is positive de�nite in 
. Thus, we conclude

that there exists an � > 0 such that [Fij ] is positive de�nite in 
 as well. So F
eventually becomes convex as � gets smaller. We have proved the following:

2.1. Theorem. If Conditions 1, 2, and 3 are satis�ed, then there exists an � > 0
such that F , as de�ned in (2.4), is convex. In particular, this gives a solution to

Problem 1.1.

3. Degenerate Hessians

Here we show that when n = 1, i.e., f is a function of a single variable, we
can solve Problem 1.1 without requiring condition 3 used in the previous section.
Further, in all other dimensions, this Condition may be be replaced by a weaker
assumption . A key observations utilized here is that the convolution (2.2) �xes f
over almost all the regions where f is linear2.

2A similar technique has been studied in [He] in connection with smoothing convex polygons.
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Let F be de�ned as before, i.e., by (2.4). Recall that all we need is to show that
F 00 > 0 in a neighborhood 
 of @A0. To this end, note that when n = 1, we can
assume that @A0 is a discrete subset. Further, it follows from condition 1 that A0

is �nite, say @A0 = fx1; : : : xmg. By replacing A0 with a slightly larger subset, if
necessary, we can assume that, no xi is an isolated degenerate point of the Hessian
of f , i.e., for every 1 6 i 6 m, there exists an ri > 0 such that throughout Bri(xi)
either f 00 > 0 or else f 00 = 0. Let r := 1

2 minfr1; : : : ; rmg, 
i := Br(xi), and

 := [

i

i. Then throughout each 
i, either f

00 > 0 or else f 00 = 0.

If f 00 = 0 in some 
i, then integrating twice yields constants a and b such that

f(x) = ax+ b;

for every x 2 
i, because 
i is connected. Choose � suÆciently small so that
f 00 = 0 in an �-neighborhood of 
i. Then, for every x 2 
i and y 2 B�(0),
f(x� y) = a(x� y) + b. Consequently it follows from (2.2) that:

~f(x) =

Z
Rn

[a(x� y) + b]��(y) dy

= ax

Z
Rn

��(y) dy �

Z
Rn

y��(y) dy + b

Z
Rn

��(y) dy

= ax(1)� 0 + b(1)

= f(x);

for every x 2 
i (here we have used the requirement that
R
Rn
� = 1, and the fact

that �, as constructed in (2.1), is even, i.e., �(y) = �(�y)). Thus, for � suÆciently

small, ~f = f , and consequently F = f in 
i. In particular, F 00 = f 00 > 0, in every
component 
i of 
 where f 00 = 0. Furthermore, if throughout any component 
i of

 f 00 > 0, then, by (2.6), there exists an � > 0 such that F 00 > 0 in that component
as well. Hence, since 
 has only �nitely many components, we conclude that:

3.1. Remark. If n = 1, then Condition 3 in Theorem 2.1 may be removed.

In higher dimensions degeneracy of the Hessian does not in general imply lin-
earity of the function. Thus the solution presented in this section is guaranteed to
work only in dimension 1. On the other hand, if the Hessian vanishes, i.e., all the
eigenvalues are zero, throughout some open neighborhood of @A0, then again we
have linearity, and by arguing along the same lines as before it can be shown that:

3.2. Remark. In all dimensions, Condition 3 in Theorem 2.1 may be weakened as
follows:

Condition 30: on each component of @A0, either the Hessian is nondegener-
ate, or else vanishes in an open neighborhood of that component.

To see the above let 
i be a neighborhood of a component Ci of @A
0 where the

Hessian vanishes. We can choose 
i so that for every x 2 
i, the Hessian vanishes
in Br(x), for some �xed r. Since Ci is compact, we can assume that r > 0. Now
if � 6 r, then F = f in 
i; because, by Taylor's theorem, f is linear in Br(x) for

every x 2 
i, and consequently ~f(x) = f(x).

4. End Note

We do not know whether Problem 1.1 is always solvable. Of the three extra
conditions imposed in Section 2, we consider the �rst to be a mild restriction,
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perhaps it is even necessary. Condition 2 is also quite reasonable, and should cover
many, if not all, of the interesting cases. The third condition, however, appears to
be too restrictive, and may not be necessary even in its weakened form. If possible,
it would be desirable to remove Condition 3 altogether.
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