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SHADOWS AND CONVEXITY OF SURFACES

MOHAMMAD GHOMI

Abstract. We study the geometry and topology of immersed surfaces in Eu-

clidean 3-space whose Gauss map satis�es a certain two-piece-property, and solve

the \shadow problem" formulated by H. Wente.

1. Introduction

Let M be a closed oriented 2-dimensional manifold, f : M ! R3 be a smooth

immersion into Euclidean 3-space, and n : M ! S2 be a unit normal vector�eld, or

the Gauss map, induced by f . Then for every unit vector u 2 S2 (corresponding to

the direction of light) the shadow, Su, is de�ned by

Su := f p 2M : hn(p); ui > 0 g;

where h�; �i is the standard innerproduct. If f is a convex embedding, i.e., f maps

M homeomorphically to the boundary of a convex body, then it is intuitively clear

that Su is a connected subset of M for each u. In 1978, motivated by problems

concerning the stability of constant mean curvature surfaces [17], H. Wente appears

to have been the �rst person to study the converse of this phenomenon, which

has since become known as the \shadow problem" [13]: Does connectedness of the
shadows Su imply that f is a convex embedding? In this paper we prove:

Theorem 1.1. f is a convex embedding if and only if, for every u 2 S2, Su is
simply connected.

Furthermore we show that the additional condition implied by the word \simply"

in the above theorem is necessary:

Theorem 1.2. There exists a smooth embedding of the torus, f : S1 � S1 ! R3,
such that for all u 2 S2, Su is connected.

Thus, connectedness of the shadows in general is not strong enough to ensure

convexity or even determine the topology; however, we can show:

Theorem 1.3. IfM is topologically a sphere, and, for every u 2 S2, Su is connected,
then f must be a convex embedding.
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In short, the answer to the above question is yes, provided that either the shadows

are simply connected, or M is a sphere; otherwise, the answer is no. This settles

Wente's shadow problem in 3-space. See [7] and [5] for motivations behind this

problem and relations to constant mean curvature surfaces.

Note 1.4. The immersion f : M ! S2 has connected shadows if and only if for every

great circle C � S2, n�1(S2 � C) has exactly two components. That is, the Gauss

map satis�es a two-piece-property [3] similar to that formulated by T. Bancho� [2],

and further developed by N. Kuiper [12].

Note 1.5. For a great circle C � S2, the number of components of n�1(S2 � C)

has been called the vision number with respect to a direction perpendicular to C.

This terminology is due to J. Choe, who conjectured [5, p. 210] that there always

exists a direction with respect to which the vision number of f : M ! R3 is greater

than or equal to 4� �(M) where � is the Euler characteristic. Theorem 1.2 gives a

counterexample to this conjecture.

2. Regularity of Horizons and Shadow Boundaries

First we need to establish some basic regularity results regarding the generic

behavior of shadows. For each u 2 S2, de�ne the shadow function �u : M ! R by

�u(p) := hn(p); ui:

Hu := ��1u (0) is called the horizon [5] in the direction u. It is easy to see that in

general @Su 6= Hu 6= @S�u, where @ denotes the boundary; however, using Sard's

theorem, we can show

Proposition 2.1. For almost all u 2 S2 (in the sense of Lebesgue measure) Hu is
a regular curve. Thus for these u, both @Su and @S�u are regular curves as well.
Further, if Hu is connected, then @Su = Hu = @S�u.

We say that � � M is a regular curve if for each p 2 � there is an open neigh-

borhood U of p in M and a homeomorphism ' : U ! R2 such that '(U \ �) = R.

In particular, unless stated otherwise, a regular curve needs not be di�erentiable.

Proof. Let TpM be the tangent plane of M at p which we identify with a subspace

of R3 (by identifying TpM with f�(TpM), and parallel translating the elements of

f�(TpM) to the origin in R3; f� denotes the di�erential of f). Let UTM := f(p; u) :

p 2 M;u 2 TpM; kuk = 1g denote the unit tangent bundle of M , and � be the

mapping given by

UTM 3 (p; u)
�
7�! u 2 S2:

By Sard's Theorem almost every u 2 S2 is a regular value of � ; consequently, for

such u, ��1(u) is a regular curve in UTM .

Now let � be the mapping de�ned by

UTM 3 (p; u)
�
7�! p 2M;
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and let u be a regular value of � . Note that � is injective on ��1(u). As ��1(u) is

compact, this implies that � : ��1(u)!M is an embedding. Further note that

�(��1(u)) = fp 2M : u 2 TpMg = fp 2M : hn(p); ui = 0g = Hu:

Thus Hu is a regular curve. But then, it follows that @Su and @S�u are each open

in Hu, which yields that @Su and @S�u are both regular curves as well. Finally,

since these shadow boundaries are also closed in Hu, it follows that whenever Hu is

connected we have @Su = Hu = @S�u. �

Note 2.2. Suppose that there is an open set U � S2, such that, for all u 2 U ,

both Su and S�u are simply connected. Then M is homeomorphic to S2; because,

by the above proposition, there exists a u0 2 U such that Hu0 is a regular curve.

Consequently the closures Su0 and S�u0 are homeomorphic to disks. Further, since

by assumption M �Hu0 is made up of a pair of simply connected components, Hu0

is connected. Thus by the above proposition @S�u0 = @Su0. SoM is homeomorphic

to a pair of disks glued together along their boundaries.

By smooth we mean di�erentiable of class C1, and for convenience we always

assume that the immersion f : M ! R3 is smooth, though in this paper it is enough

that f be C3.

Note 2.3. The embedding � : ��1(u) ! M in the above proposition is smooth,

when u is a regular value of � . In particular, Hu is smooth for almost all u 2 S2.

To see this let (p; u) 2 ��1(u). Then u 2 TpM . Let v 2 TpM with hu; vi = 0.

Then c(t) := (p; cos(t)u+sin(t)v) parameterizes the �ber UTpM of the unit tangent

bundle. Note that

��(p;u)(c
0(0)) =

d

dt
�
�
p; cos(t)u+ sin(t)v

����
t=0

= v 6= 0:

On the other hand,

T(p;u)(�
�1(u)) = fX 2 T(p;u)(UTM) : ��(p;u)(X) = 0 g:

Thus c0(0) 62 T(p;u)(�
�1(u)), which implies that ��1(u) is never tangent to any of

the �bers UTpM of the unit tangent bundle. So �j��1(u) is a smooth immersion.

Next we need a local regularity result for the horizons and shadow boundaries.

The Gaussian curvature K : M ! R is de�ned by K(p) := det(n�(p)).

Proposition 2.4. If K(p) 6= 0 for some p 2M , then there exists a neighborhood U
of p such that for all u 2 TpM , Hu \ U is a smooth regular curve and @Su \ U =

Hu \ U = @S�u \ U .

Proof. Since det(n�p) = K(p) 6= 0, then, by the inverse function theorem, n is a

di�eomorphism between small neighborhoods U of p in M and V of n(p) in S2. Let

S2u := fx 2 S2 : hx; ui > 0g. Then @S2u = @S2�u is a regular curve. Thus, since

Su = n�1(S2u) and S�u = n�1(S2�u), the proof follows. �
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Note 2.5. If K(p) = 0, then Hu may not be regular for all u 2 TpM ; however,

typically Hu will be regular for most u 2 TpM ; because, for u 2 TpM , the di�erential

of �u at p is given by

(d�u)p(�) = h � ; n�p(u)i:

So if n�p(u) 6= 0, e.g., u is not an asymptotic direction, then d�u is nonzero at p.

Consequently, by the implicit function theorem, ��1u (�u(p)) = ��1u (0) = Hu is a

smooth regular curve near p.

3. Critical Points of Height functions

The next set of preliminary results we need involves some basic applications of

Morse theory [14]. For every u 2 S2, let the height function hu : M ! R, associated

to the immersion f : M ! R3, be de�ned by

hu(p) := hf(p); ui:

Recall that p is a critical point of hu if the di�erential map (dhu)p : TpM ! R is

zero. Since (dhu)p(�) = h�; ui, it follows that p is a critical point of hu if and only if

u = �n(p). If all of its critical points are nondegenerate, hu is a Morse function.

Lemma 3.1. (i) hu is a Morse function if and only if K 6= 0 at all critical points
of hu. (ii) hu is a Morse function for almost all u 2 S2. (iii) The set U � S2 such
that for all u 2 U hu is a Morse function is open.

Though the above is fairly well-known (e.g. see [3, pp. 11{12]), we include a brief

proof for completeness.

Proof. If p is a critical point of hu, then, as a standard computation shows, the

Hessian of hu is given by

Hesshu(�; �) = �h � ; n�p(�)i:

Thus hu is a Morse function if and only if at each critical point p, K(p) = det(n�p) 6=

0. This is equivalent to requiring that both u and �u be regular values of n, because

p is a critical point of hu if and only if u = �n(p). Let U � S2 be the set of all

such values. Then, by Sard's theorem, S2 � U has measure zero. Further, since M

is compact, and the set of critical points of n is closed, it follows that the set of

critical values of n is closed as well, so U is open. �

The following is implicit in a paper of Chern and Lashof [4].

Lemma 3.2. If f is not a convex embedding, then there exists a Morse height
function hu with at least 3 critical points. �

Proof. Let #C(hu) denote the number of critical points of hu. Since p is a critical

point of hu if and only if n(p) = �u, we have:Z
S2

#C(hu) du =

Z
S2

#n�1(�u) du = 2

Z
M

jdet(n�)j dV = 2

Z
M

jKj dV:
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The second equality above is just an application of the area formula [6, Thm 3.2.3],

where dV denotes the volume element on M . Suppose that f is not a convex

embedding. Then, by a well-known theorem of Chern and Lashof [4],Z
M

jKj dV > 4�:

Combining the above expressions yields a lower bound for the average number of

critical points:
1

4�

Z
S2

#C(hu) du > 2:

So since, by Lemma 3.1, hu is a Morse function for almost every u 2 S2, it follows

that there exists a Morse function such that #C(hu) > 2. �

4. Triplets on the boundaries of simply connected domains

Here we develop some elementary topological methods whose motivation will

become more clear in the next section.

De�nition 4.1. By a domain we mean a connected open subset 
 � M . We say


 is adjacent to a triplet of points fp1; p2; p3g �M if pi 2 @
. 
 is regular near pi
if there are open neighborhoods Ui of pi and homeomorphisms 'i : Ui ! R2 which

map Ui \ 
 into the upper half-plane. A simple closed curve T � 
 is a triangle of


 (with vertices at fp1; p2; p3g) if pi 2 T , and T � fp1; p2; p3g � 
.

The following lemma, though quite elementary, is more subtle than it might at

�rst appear (see Note 4.3).

Lemma 4.2. Every domain 
 adjacent to fp1; p2; p3g admits a triangle. Further if

 is simply connected and regular near pi, then any pair of such triangles may be
homotoped to each other through a family of triangles of 
.

Proof. Since 
 is open and connected, there exists a regular arc A12 � 
 whose end

points are p1 and p2. Since A12 is regular, there exists a component (
 � A12)
+

of 
 � A12 which contains p3 in its closure. Let A23 � (
 � A12)
+ be a regular

arc with end points on p2 and p3. Then, similarly, there exists a component ((
�

A12)
+ � A23)

+ of (
 � A12)
+ � A23 which contains p1 in its closure. Finally, let

A31 � ((
�A12)
+�A23)

+ be a regular arc with end points at p3 and p1. The union

of these three arcs, and their endpoints, gives the desired triangle.

Now suppose that 
 is simply connected and regular near pi. Let T and T 0 be a

pair of triangles of 
, and let A12 and A012 be arcs of T and T 0 respectively which

connect p1 and p2. Since 
 is regular near pi, we may homotope A12 (while keeping

its end points �xed) by a small perturbation near p1 so that A12 and A012 coincide

along a segment near p1. Similarly, we may assume that they coincide near p2 as

well. Then it remains to homotope proper subarcs of A12 and A012 which coincide

at a pair of end points in 
. Since 
 is simply connected, these subarcs may be

homotoped to each other while keeping the end points �xed. Thus A12 and A
0
12 are

homotopic through a family of arcs of 
 with end points at p1 and p2. Other arcs
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of T may be similarly homotoped to their counterparts in T 0, which completes the

proof. �

Note 4.3. Without the regularity assumption near pi, the second claim in the above

lemma is not true in general: Suppose for instance that 
 � R2 is an open disk of

radius 1 centered at the origin, and with segment [0; 1) removed. Set p1 = (0; 0),

p2 = (1=2; 0), and p3 = (1; 0). Then a triangle of 
 which lies above the x-axis may

not be homotoped to one lying below the x-axis.

Proposition 4.4. For a �xed orientation of M , every simply connected domain 


which is adjacent to and regular near a triple of (distinct) points fp1; p2; p3g � M

uniquely determines a permutation �
 of fp1; p2; p3g such that (i) if 
 and 
0 have
a triangle in common, then �
 = �
0 ; and (ii) if @
 = @
0 is a regular curve, and

 and 
0 are distinct, then �
 6= �
0 .

Proof. By Lemma 4.2 there exists a triangle T of 
. T bounds a simply connected

subdomain U of 
. Since M is oriented, U inherits a preferred sense of orientation,

which in turn induces an orientation, or a sense of direction, on T . This direction

induces a permutation of fp1; p2; p3g in the obvious way: If as we move along T and

pass p1 we reach p2 before reaching p3, then we set the induced permutation �
 to

be the cycle (p1; p2; p3); otherwise, the induced permutation is the cycle (p1; p3; p2).

It is clear that these permutations depend continuously on T . Thus, since by Lemma

4.2, all triangles of 
 are homotopic, it follows that �
 does not depend on the choice

of T and is therefore well de�ned; and furthermore, if 
 and 
0 have a triangle in

common then �
 = �
0 .

Now suppose that @
 = @
0 is a regular curve, and 
 and 
0 are distinct. Then


 and 
0 induce opposite orientations on @
 which in turn gives rise to distinct

permutations of fp1; p2; p3g (since 
 is simply connected, @
 is connected). But

by small perturbations, @
 may be homotoped to a triangle of 
, just as well as

it may be homotoped to a triangle of 
0. Thus the orientations which 
 and 
0

induce on @
 are consistent with the orientations which 
 and 
0 induce on their

own triangles respectively. So �
 6= �
0 . �

5. Proof of Theorem 1.1

First we show that if f is a convex embedding, then Su is simply connected for

all u 2 S2. To see this let � be a plane perpendicular to u and let � : R3 ! �

be the orthogonal projection. Then D := �(f(M)) is a convex subset of � with

interior points. In particular, int(D) is homeomorphic to an open disk. Since f(M)

is convex and by de�nition hn(p); ui > 0 for all p 2 Su, it is not hard to verify that

f(Su) is a graph over int(D). Thus � Æ f : Su ! int(D) is a homeomorphism.

Now we prove the other direction: Assume that for every u 2 S2, Su is sim-

ply connected; we have to show that f is a convex embedding. The proof is by

contradiction:

Lemma 5.1. If f is not a convex embedding, then there exists a pair of orthogonal
vectors u0, v0 2 S2 such that (i) hu0 is a Morse function with at least 3 critical
points, and (ii) @Sv0 = Hv0 = @S�v0 is a regular curve.
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Proof. By Lemma 3.2, there exists a unit vector u 2 S2 such that the corresponding

height function hu is a Morse function and has at least three critical points. Further,

it follows from Lemma 3.1, that this u may be chosen from an open set U � S2.

Let u? := fv 2 S2 : hu; vi = 0g. Then U? := [u2Uu
? is open. Consequently,

by Proposition 2.1, there exits a v0 2 u?0 � U? such that Hv0 is a regular curve.

Further, since the complement ofHv0 consists of a pair of simply connected domains,

Hv0 is connected. Thus, again by Proposition 2.1, @Sv0 = Hv0 = @S�v0 is a regular

curve. �

Let bv0 2 S2 be a vector orthogonal to both u0 and v0, and set

(1) v(�) := cos(�) v0 + sin(�) bv0:
Let pi, i = 1, 2, 3, be a �xed triple of (distinct) critical points of hu0 .

Lemma 5.2. For all � 2 R, Sv(�) is a domain adjacent to and regular near pi.

Proof. If pi is a critical point of hu0 , then n(pi) = �u0. So �v(�)(pi) = hv(�);�u0i =

0, which yields that pi 2 Hv(�). Since hu0 is a Morse function, then, by Lemma 3.1,

K(pi) 6= 0. So by Proposition 2.4, there exists a neighborhood Ui of pi such that

@Sv(�) \ Ui = Hv(�) \ Ui = @S�v(�) \ Ui, which completes the proof. �

It now follows from Proposition 4.4 that each Sv(�) induces a permutation of

fp1; p2; p3g which we denote by �� := �(Sv(�)). Further, by the same proposition and

since @Sv0 = @S�v0 is a regular curve, it follows that �0 6= ��. On the other hand,

letting Sym denote the symmetric group, we claim that the mapping

R 3 � 7�! �� 2 Sym
�
fp1; p2; p3g

�
is locally constant, which, since [0; �] is connected, would imply that �0 = ��. This

contradiction, which would complete the proof, follows from Proposition 4.4 and the

following:

Lemma 5.3. For each �0 2 R there exists an � > 0 such that if j� � �0j < � then
Sv(�) and Sv(�0) have a common triangle (with vertices at fp1; p2; p3g).

Proof. Recall that, since hu0 is a Morse function, then, by Lemma 3.1, K(pi) 6= 0

which yields that n is a local di�eomorphism at pi. Therefore, by Proposition 2.4, in

a neighborhood W of fp1; p2; p3g, @Sv(�) = Hv(�) = n�1(v?(�)) where v?(�) denotes

the great circle in S2 orthogonal to v(�). So, since v?(�) depends continuously on

�, it follows that, in W , @Sv(�) depends continuously on � as well.

Let T be a triangle of Sv(�0). Since Sv(�0) is open, after a perturbation of T we

may assume that the arcs of T are smooth and meet @Sv(�0) transversely (recall

that, by Proposition 2.4, @Sv(�0) is smooth near pi). Thus, by the above paragraph,

it follows that if j���0j < �1, for some suÆciently small �1 > 0, then T meets @Sv(�)
transversely as well. Then it follows that for some neighborhood W of fp1; p2; p3g,

(T � fp1; p2; p3g) \W � Sv(�) for all � such that j� � �0j < �1.

Next note that T � W is compact, and the mapping � 7! �v(�) is continuous;

therefore, since by assumption �v(�0) > 0 on T �W , it follows that there exists an
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�2 > 0 such that �v(�) > 0 on T �W for all � such that j� � �0j < �2. This yields

that T �W � Sv(�) for all � such that j� � �0j < �2.

From the previous two paragraphs it follows that, setting � := minf�1; �2g, we

have (T � fp1; p2; p3g) � Sv(�) for all � such that j� � �0j < �, which completes the

proof. �

Note 5.4. Theorem 1.1 does not remain valid if the shadows are de�ned as the

sets where hn(p); ui � 0. For instance, the standard torus of revolution would be a

counterexample.

Note 5.5. Theorem 1.1 does not remain valid without the compactness assumption;

the hyperbolic paraboloid given by the graph of z = xy would be a counterexample.

This follows because here the unit normal vector�eld n is a homeomorphism into a

hemisphere. Thus the preimage of any open hemisphere under n is simply connected.

6. Proof of Theorem 1.2

De�nition 6.1. We say an immersion 
 : S1 ' R=2� ! R3 is a skew loop if it has

no pair of distinct parallel tangent lines, i.e,


0(t)� 
0(s) 6= 0

for all t; s 2 [0; 2�), t 6= s.

A speci�c example of a skew loop, formulated by Ralph Howard, is as follows:

Example 6.2. Let 
(t) := (x(t); y(t); z(t)), where

x(t) := � cos(t)�
1

20
cos(4t) +

1

10
cos(2t);

y(t) := + sin(t) +
1

10
sin(2t) +

1

20
sin(4t);

z(t) := �
46

75
sin(3t)�

2

15
cos(3t) sin(3t);

and t 2 [0; 2�]. A computation of the tangential indicatrix T (t) := 
0(t)=k
0(t)k

shows that T (t) 6= �T (s) for all t, s 2 [0; 2�), t 6= s. Thus 
 is a skew loop. Figure

1 shows the pictures of a tube built around 
(S1).

If 
 : S1 ! R3 is an immersion, then the unit normal bundle of 
 consists of all

pairs (p; �) 2 S1 � S2 such that h
0(p); �i = 0. Since this bundle is homeomorphic

to a torus, the following proposition yields Theorem 1.2.

Proposition 6.3. Let 
 : S1 ! R3 be a skew loop and M be the unit normal bundle
of 
. For � > 0, de�ne f� : M ! R3 by

f�(p; �) := 
(p) + � �:

Then, for � suÆciently small , f� is a smooth immersion, and for all u 2 S2, Su is
connected. If 
 is an embedding, then f� is an embedding as well.
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Figure 1

Proof. That f� is a smooth immersion and is an embedding when 
 is embedded

follows from the tubular neighborhood theorem. Let n : M ! S2 be the unit normal

vector �eld given by n(p; �) = �, and � : M ! S1 be given by �(p; �) = p. For every

p 2 S1, let Fp := ��1(p) be the corresponding �ber. Note that n embeds Fp into the

great circle in S2 which lies in the plane perpendicular to T (p). Further recall that

Su = n�1(S2u) where S
2
u is the open hemisphere determined by u. Thus there are

only two possibilities for each p 2 S1: either Fp intersects Su in an open half-circle,

or Fp is disjoint from Su. The latter occurs if and only if T (p) is parallel to u,

which, since 
 is skew, can occur at most once. Hence, it follows that Su is either

homeomorphic to a disk or an annulus. In particular, Su is connected for every

u 2 S2. �

Question 6.4. LetM be a closed oriented 2-dimensional manifold with topological

genus g(M) � 2. Does there exist an embedding, or an immersion, f : M ! R3

such that Su is connected for all u 2 S2?

Note 6.5. Skew loops were �rst discovered by B. Segre [16] to disprove a conjecture

of H. Steinhaus (see also [15]). More recently, it has been shown that there exists a

skew loop in each knot class [18], and every pair of knots may be realized with the

same tangential indicatrix [1].

Note 6.6. A general procedure for constructing skew loops is as follows. Let T � S2

be a smooth simple closed curve such that (i) the origin is contained in the interior

of the convex hull of T , (0; 0; 0) 2 int conv T , and (ii) T does not contain any pair of

antipodal points, T \�T = ;. Figure 2 shows an example. Let T (s), s 2 R, denote

a periodic parameterization of T by arclength. So, assuming T has total length L,

we have T (s + L) = T (s). Since (0; 0; 0) 2 int conv T , there exists a function �(s)

with period L such that
R L

0 �(s)T (s) ds = 0 [10, p. 168]. Set


(t) :=

Z t

0

�(s)T (s) ds:
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Figure 2

Then 
(t+L) = 
(t). Further, 
0(t)=k
0(t)k = T (t). Thus 
 is a closed curve whose

tangential spherical image coincides with T . Hence 
 is a skew loop.

Note 6.7. With the sole exception of ellipsoids, every closed surface immersed in

R3 admits a skew loop [8].

7. Proof of Theorem 1.3

We follow a modi�ed outline of the proof of Theorem 1.1, which again proceeds

by contradiction. Suppose that M is homeomorphic to S2 and Su is connected for

all u 2 S2. If f is not a convex embedding, let u0 and v0 be as in Lemma 5.1, and

v(�) be as de�ned by (1).

De�nition 7.1. The augmented shadow eSv(�) is the union of Sv(�) with all compo-

nents X of Hv(�) such that U �X � Sv(�) for an open neighborhood U of X.

Then eSv(�) satis�es the conditions of the following lemma:

Lemma 7.2. If U � S2 is a connected open set, and S2 � U is also connected and
has an interior point, then U is simply connected.

Proof. Let p be an interior point of S2�U . Then the stereographic projection maps

U into a connected open set with connected complement. Thus, by [9, Thm. 11.4.1],

U is simply connected. �

So eSv(�) is simply connected. Further:

Lemma 7.3. For all � 2 R, eSv(�) is a domain adjacent to and regular near pi.

Proof. This follows just as in the proof of Lemma 5.2, once we observe that whenever

@Sv(�) = Hv(�) = @S�v(�) is regular in some open neighborhood, then @ eSv(�), and
@Sv(�) coincide within that neighborhood. �

Thus each � induces a permutation e�� := �
(
�

Sv(�))
of fp1; p2; p3g which satis�es

the enumerated properties in Proposition 4.4. In particular e�0 6= e��, because since
@Sv(0) = @S�v(0) is by Lemma 5.1 a regular curve, it follows that @ eSv(0) = @ eS�v(0)
is a regular curve as well. So it remains to verify the following lemma which shows
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that � 7! e�� is locally constant. This would yield that e�0 = e�� which is the desired

contradiction.

Lemma 7.4. For each �0 2 R there exists an � > 0 such that if j� � �0j < � theneSv(�) and eSv(�0) have a common triangle (with vertices at fp1; p2; p3g).

Proof. This is an immediate consequence of Lemma 5.3 where it was proved that

Sv(�) and Sv(�0) have a triangle in common (the proof of Lemma 5.3 makes no use

of the simply connectedness assumption on Sv(�)). �
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