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GAUSS MAP, TOPOLOGY, AND CONVEXITY

OF HYPERSURFACES WITH NONVANISHING CURVATURE

MOHAMMAD GHOMI

Abstract. It is proved that, for n > 2, every immersion of a compact connected

n-manifold into a sphere of the same dimension is an embedding, if it is one-to-one

on each boundary component of the manifold. Some applications of this result are

discussed for studying geometry and topology of hypersurfaces with non-vanishing

curvature in Euclidean space, via their Gauss map; particularly, in relation to a

conjecture of Meeks on minimal surfaces with convex boundary. It is also proved,

as another application, that a compact hypersurface with nonvanishing curvature

is convex, if its boundary lies in a hyperplane.

1. Introduction

The purpose of this paper is twofold: �rst, to prove a basic fact in topology; and
second, to develop some of its applications in di�erential geometry.

1.1. A Topological Lemma. Let X and Y be topological spaces. We say a map-
ping f : X ! Y is an immersion, if it is continuous and locally one-to-one. f is said
to be an embedding, if it is a homeomorphism onto its image; or, more explicitly, if
it is continuous, one-to-one, and for every open subset U � X there exists an open
subset V � Y such that f(U) = V \ f(X). The main lemma used in this paper is
the following:

Lemma 1.1. Let M be a compact connected n-manifold, n > 2, and f : M ! Sn

be an immersion. Suppose that f is one-to-one on each boundary component of M .

Then f is an embedding.

Neither f nor M are required to be di�erentiable. By an n-manifold M we mean a
Hausdor� topological space with a countable basis and the property that each point
p 2 M has an open neighborhood which is homeomorphic either to the Euclidean
space Rn or the upper half-space Hn. If every neighborhood of p is homeomorphic
to Hn, we say that p is a boundary point, p 2 @M .

Lemma 1.1 is proved in Section 2. The proof is based on Jordan-Brouwer sepa-
ration theorem, and follows from certain gluing techniques which are elaborated in
detail.
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1.2. Applications to Geometry. In Sections 3, we will discuss some applications
of Lemma 1.1 for studying hypersurfaces in Euclidean space via their Gauss map.
The central observation utilized there, see Corollary 3.1, is that when the Gauss-
Kronecker curvature of a surface does not vanish then its Gauss map gives an im-
mersion into the sphere. Further, the requirement that the mapping be one-to-one
on each boundary component is met within certain natural contexts, as discussed
in Notes 3.2, and thus allows us to apply the lemma. The main applications are
Theorems 3.3 and 3.5. The �rst theorem is concerned with the topology of minimal
hypersurfaces, motivated by a well-known conjecture of W. Meeks, and the sec-
ond theorem gives a local characterization for convex caps, inspired by Hadamard's
classical theorem on ovaloids.

2. Proof of the Lemma

To prove Lemma 1.1, it suÆces to show that f is one-to-one everywhere. This is
due to the fact that any one-to-one continuous mapping f : X ! Y is an embedding,
if X is compact and Y is Hausdor�. The simple argument is worth recalling at this
point. Let U � X be an open subset. Then X � U , being a closed subset of a
compact space, is compact. Therefore, f(X � U), being a compact subset of a
Hausdor� space, is closed. Let V := Y � f(X �U). Then V is open. Furthermore,
since f is one-to-one, it follows that V \ f(X) = f(U). Hence f : X ! f(X) is a
homeomorphism.

2.1. Basic Strategy. To show that f is one-to-one recall that, since Sn is simply
connected (assuming n > 2), then every covering map of Sn by a connected space

has to be one-to-one. Thus, all we need is to construct a pair (fM; ef) with the

following properties: (i) fM is connected, and admits an embedding i : M ! fM ; (ii)ef : fM ! Sn is a covering map such that ef Æ i = f . In particular, we need to show
that the following diagram commutes:

M
i

�! fM
& f

??y ef
Sn

This line of approach was �rst suggested to the author by Herman Gluck [1]. We
should point out that this method can be carried out not only in the smooth category,
where f is necessarily well behaved, but also in the topological case, where f may
be some kind of a wild embedding such as the famous Alexander's horned sphere,
or other examples due to Fox and Artin [2]. The proof is organized into two parts:

�rst we construct fM , and then ef .
2.2. Construction of fM . Let �i, 1 6 i 6 N , be a component of @M (since M is
compact, there are only �nitely many components), and let Ui be a collar of �i, i.e.,
suppose there exists an embedding ci : �i � [0; 1)!M such that ci(x; 0) = x for all
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x 2 �i, and ci(�i�[0; 1)) = Ui
1. In 2.2.1 below we will prove that there exists a collar

Ui of �i such that f
��
Ui

is one-to-one2. This shows that f(Ui��i) � Sn�f(�i). Now

note that since �i is a closed manifold of dimension n�1, and Sn is simply connected,
then, by a well-known generalization of the Jordan-Brouwer separation theorem,
Sn� f(�i) has exactly two components, say Di and D

0

i
3; therefore, f(Ui��i) must

lie entirely within either Di or D
0

i, because Ui � �i = ci(�i � (0; 1)) is connected.
Let D0

i be the component which contains f(Ui � �i), see Figure 1.

M
S

Γi

f(Γ )i
n

Ui

Di

Di'
f(U )i  

Figure 1

Next, note that the (topological) boundary of Di (as a subset of Sn), is f(�i).

Denote this boundary by bd(Di), and set Di := Di [ bd(Di). Let @fi := f j�i .

Then @fi : �i ! bd(Di) is a homeomorphism. Thus we can use each @fi to glue Di

to M along the corresponding boundaries, see Figure 2. This means forming the

M
~

D

Γi

i

Figure 2

adjunction space fM := (M [@f1 D1) � � � [@fN DN :

1
The existence of collars for di�erentiable manifolds is well-known; it follows from the tubular

neighborhood theorem. Since we do not make any di�erentiability assumptions, however, we refer

to a result of M. Brown [3] who proved the existence of collars for topological manifolds. See Also

the paper by R. Connelly [4].

2
This does not preclude the possibility for a wild embedding. In order for f to be tame, a

somewhat stronger bicollaring property, as studied by B. Mazur [5], is needed. See also related

papers by M. Brown [6], and M. Morse [7].

3
The proof of this fact in the topological category follows from Alexander duality, see [8, Pg.

353]; for the smooth case, there is a proof [9, Pg. 107] based on intersection theory.
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Some basic facts which we need to know about this construction are as follows.
First, the elements of fM are the equivalence classes [x], where x 2M [i Di. These
are de�ned by

[x] :=

8><>:
fx; f(x)g; if x 2 @M ;

f@f�1i (x); xg; if x 2 bdDi;

fxg; otherwise:

Secondly, the topology of fM is generated by the quotient map p : M [i Di ! fM ,

p(x) := [x]; it consists of all subsets U � fM such that p�1(U) is open. In particular,
note that a mapping f : M ! X is continuous if f Æ p is continuous. Also note
that if U � M [i Di is a saturated subset, i.e., [x] 2 U whenever x 2 U ; then,
p�1(p(U)) = U . Hence p maps saturated open subsets to open subsets.

Next we verify a claim which was made earlier, i.e., that f is one-to-one on a

collar of each boundary component of M ; and then show that fM has the desired

properties, i.e., fM is connected and admits an embedding of M .

2.2.1. The injectivity of f on collars of M . Let ci : �i� [0; 1)!M be a collaring of
M around the boundary component �i. For every n 2 N set Ui;n := ci(�i� [0; 1=n)).

Then each Ui;n is a collar ofM around �i. Furthermore, note that (i) U i;n+1 � Ui;n,
and (ii) \nUi;n = �i. We are going to show that there exists an n 2 N such that
f jUi;n is one-to-one. The proof is by contradiction; suppose that for every n 2 N

there exists a pair of points xn, yn 2 Ui;n such that f(xn) = f(yn), but xn 6= yn.
Since M is compact, each of these sequences must have a limit point, say x and y

respectively. From (i) and (ii) it follows that x and y 2 �i. Also note that, since f is
continuous, f(x) = limn!1 f(xn) = limn!1 f(yn) = f(y). This implies that x = y,
because f j�i is one-to-one by assumption. Now we have a contradiction, because f
has to be locally one-to-one in a neighborhood of the point x = y, but every such
neighborhood contains a pair of points xn and yn for some n 2 N .

2.2.2. Connectedness of fM . Let U � fM be open, closed, and nonempty. We are

going to show that U = fM . To see this note that, since p is continuous, p�1(U) is

open and closed in M [i Di. Thus, if p�1(U) contains a point of M or a point of

Di, then it must contain all of M or all of Di respectively. Furthermore, note that
p�1(U), being a saturated subset, contains a point of �i, if, and only if, it contains

a point of bd(Di); therefore, p
�1(U), being nonempty, must contain all of M [iDi.

Hence U = p(p�1(U)) = p(M [i Di) = fM .

2.2.3. The natural embedding of M in fM . Let i : M ! fM be given by i(x) := [x]. i
is continuous, because it is the restriction of p. Furthermore, i is one-to-one; because
if i(x) = i(y), then [x] = [y] which implies y 2 [x]. Since x 2 M , either [x] = fxg

or [x] = fx; f(x)g. Therefore, we must have y = x, because y is a point of M and
f(x) is not.
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2.3. Construction of ef . De�ne ef : fM ! Sn by

ef([x]) := (f(x); if x 2M ;

x; otherwise:

It is not diÆcult to see that ef is well de�ned. Also, it is immediate from the

de�nitions that ef Æ i = f . Hence, all is left is proving that ef is a covering map.

To this end, since fM is compact and Sn is connected, it suÆces to show that ef is
a local homeomorphism. We prove this, via Brouwer's theorem on invariance, by

showing that ef is continuous, locally one-to-one, and fM is an n-manifold without
boundary.

2.3.1. The continuity of ef . By the de�nition of the quotient topology, it suÆces to

show that ef Æ p is continuous. Let f : M [i Di ! Sn be given by f(x) := f(x), if

x 2M ; and, f(x) := x, otherwise. Then ef Æp = f . Furthermore, f , being the union
of continuous functions on disjoint spaces is continuous.

2.3.2. The local injectivity of ef . Let [x] 2 fM . We are going to show that that there

exists an open subset U � fM such that [x] 2 U , and ef jU is one-to-one. There are
three cases to consider: (a) x 2 Di, (b) x 2 int(M), and (c) x 2 �i or x 2 bd(Di).

(a)Let U = p(Di), then U is open, becauseDi is a saturated open subset. Supposeef([x]) = ef([y]) for some [x], [y] 2 U , then x, y 2 Di. Hence ef([x]) = x, andef([y]) = y. Therefore x = y.
(b)Let U = p(V ), where V is an open subset of int(M) such that x 2 V , and

f jV is one-to-one. Recall that f is locally one-to-one by assumption, so V exists.

Moreover V is saturated; therefore, U is open. Now suppose ef([x]) = ef([y]) for
some [x], [y] 2 U , then x, y 2 V . Hence ef([x]) = f(x), and ef([y]) = f(y). Therefore
f(x) = f(y), which yields x = y.

(c)Let U = p(Di [Ui) where Ui is a collar of �i such that f jUi is one-to-one, and
f(Ui � �i) � D0

i. Then U , being the image of an open saturated subset, is open.

Suppose ef([x]) = ef([y]) for some [x], [y] 2 U , then either (1) x 2 Di, (2) x 2 bd(Di),
(3) x 2 int(M), or (4) x 2 �i. Similarly y can belong to any of these four locations.
So we have 16 combinations. Of these we need to consider only 8, due to symmetry.
Furthermore, we have already considered two of these cases in parts (a) and (b).
Verifying the rest is also straight forward, so we omit further details.

2.3.3. fM is an n-manifold without boundary. If f is di�erentiable, or satis�es some
weaker \niceness" condition such as locally 
at, then Di is a manifold with boundary

@Di = f(�i). In this case, it is well known that fM would be a manifold without
boundary. For the general case, however, we need to do more work. Suppose

[x] 2 fM . If x 2 int(M) or x 2 Di, then it is clear that [x] has an open neighborhood
U which is homeomorphic to Rn. So suppose that x 2 �i or x 2 bd(Di). In this

case, as in part (c) of 2.3.2, let U := p(Di [ Ui). We claim that ef(U) is open

and ef jU : U ! f(U) is a homeomorphism. We have already established that ef jU
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is continuous and one-to-one (in 2.3.1 and 2.3.2 respectively). Furthermore, it is

clear that ef(U) = f(Ui) [ Di is open. Finally, it is also easy to see that ef�1j
ef(U)

is continuous, because ef�1jDi
and ef�1jf(Ui) are continuous, and we can use the

gluing lemma for continuous functions. This completes the proof that fM is locally

homeomorphic to Rn. It can be shown also that fM is Hausdor� and has a countable

basis; however, we do not need these properties to prove that ef is a covering map.

Remark 2.1. Since the essential property of the target space, Sn, used in this
section was its separation property in the sense of Jordan-Brouwer theorem, the
proof given here for Lemma 1.1 works just as well if we replace Sn by any compact,
connected, and simply connected n-manifold without boundary.

3. Applications

3.1. Preliminaries. IfM is a smoothly immersed hypersurface in Euclidean Space
Rn+1, then throughout an open neighborhood U of each point p 2 M , we can
continuously assign a unit vector �(q) 2 Sn which is normal to M at every q 2 U .
Further, since M is smooth, � is smooth as well. In particular, the di�erential map,
��, is well de�ned. The determinant of this map is the Gauss-Kronecker curvature
of M :

K(p) := det(��p):

If M is orientable, then the mapping � : M ! Sn is well de�ned globally and known
as the Gauss map of M . An immediate consequence of Lemma 1.1 is the following:

Corollary 3.1. Let M � Rn be a compact connected orientable hypersurface with

non-vanishing Gauss-Kronecker curvature. Suppose the Gauss map of M is one-to-

one on each boundary component of M . Then M is di�eomorphic to its spherical

image.

Proof. If K 6= 0, then, by the inverse function theorem, � has to be a local di�eo-
morphism. In particular, � is locally one-to-one. This, via Lemma 1.1, implies that
� is a di�eomorphism. �

Notes 3.2. The condition that the Gauss map be one-to-one on a boundary com-
ponent � of a hypersurfaceM is not an unnatural one. It occurs, for instance, when
M has positive curvature, and � lies embedded in a hyperplane, see [10]. More
generally, whenever (i) � lies in a hyperplane H, (ii) � is strictly convex, i.e., �
contains no line segments and lies on the boundary of a convex body K � H, and
(iii) M meets H transversely, then the Gauss map is one-to-one on �. To see this,
let p 2 �, then �(p) cannot be orthogonal to H. In particular, the projection of �(p)
into H, �(p), does not vanish, see Figure 3. Further, note that �(p) is normal to �
in H; therefore, � has to one-to-one on �, because � is strictly convex. Hence � has
to be one-to-one on � as well.
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H
Γ

ν(p)

ν(p)

p

ν(p)

Sn

Figure 3

3.2. Meeks's Conjecture. Here we mention an application of Lemma 1.1 moti-
vated by a well-known conjecture of W. Meeks [11, Conjecture 16]: \a compact
connected minimal surface in R3 with boundary curves being two convex Jordan
curves on parallel planes is topologically an annulus". A hypersurface M � Rn+1

is said to be minimal, if its mean curvature vanishes. The mean curvature is deter-
mined by the trace of the di�erential of the Gauss map:

H(p) :=
1

n
trace(v�p):

Theorem 3.3. Let M � Rn+1 be an immersed compact connected orientable mini-

mal hypersurface. Suppose that each boundary component of M lies in a hyperplane

and is convex. Then M is di�eomorphic to its spherical image via the Gauss map,

provided its Gauss-Kronecker curvature does not vanish. In particular, M is topolog-

ically an annulus if it has exactly two boundary components, and is two dimensional

(n = 2).

Proof. From Hopf's (boundary) maximum principle [12] it follows that M meets
each hyperplane transversely along the corresponding boundary component, see
[13, Lemma 1]. Further, since @M is compact it cannot contain any line segments
(we are assuming that our minimal hypersurfaces are analytic up to the boundary).
These considerations yield that the Gauss map is one-to-one on each component,
see Remark 3.2. Hence, by Corollary 3.1, the Gauss map, �, is a di�eomorphism
because, by assumption, the Gauss-Kronecker curvature does not vanish (the Gauss
map is globally well-de�ned due to the orientability assumption). If n = 2, then
each component of @M is topologically a circle. Thus �(@M) consists of a number
of disjoint simple closed curves. If @M has only two components, then Sn � @M

will have exactly three components: two disks and one annulus. But the annulus is
the only component bounded by both components of @M . Thus �(M) must be this
annulus. �

For a nice introduction to Meeks's conjecture and further references see [14]. Some
related results may be found in [13], [15], [16], and [17].

Remark 3.4. From Corollary 3.3 it follows that a counterexample to Meeks's con-
jecture, if it exists, must have points where the Gauss-Kronecker curvature vanishes.
Further, note that when n = 2, then at each point p 2 M where K(p) = 0, both
eigenvalues of v�p (the principal curvatures) have to vanish. In this case, p is called
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a 
at point. It follows from the maximum principle that 
at points of a nontrivial
minimal surface have to be isolated. Thus there are only a �nite number of such
points if the surface is compact. It seems that a counterexample to Meeks's con-
jecture must have at least four 
at points, See Figure 4. Since each 
at point of

Figure 4

M corresponds to a branch point of �, the Riemann-Hurwitz formula [18, Pg. 216]
can be used to count the minimum number of 
at points needed for constructing a
counterexample with a given genus.

3.3. Convex Caps. We say a hypersurface M � Rn+1 is convex, if it lies on the
boundary of a convex body K � Rn+1. Here we show:

Theorem 3.5. LetM � Rn+1 be an immersed compact connected hypersurface with

non-vanishing Gauss-Kronecker curvature. Suppose that @M lies in a hyperplane

H, and, furthermore, either n > 2 or each component of @M is embedded. Then M

is convex. In particular, M is embedded and homeomorphic to a disk.

Proof. It suÆces to show that for every p 2M the tangent plane TpM supports M ,
i.e., M lies entirely in one of the closed half-spaces determined by TpM .

First note that the Gauss map of M is globally well de�ned, for at the farthest
point of M from H, the surface has to lie on one side of its tangent plane. This
implies that the curvature has to be nonnegative at one point, which in turn implies
that it has to be positive everywhere. In particular, the surface is locally strictly
convex, i.e., each point p 2M has a neighborhood U which lies strictly on one side of
the tangent plane TpM . De�ne the outward unit normal �(p) to be the unit normal
to M at p which points into the half-space, determined by TpM , not containing U .
Then it is easy to see that � : M ! Sn is continuous.

Next, note that @M is a positively curved hypersurface in its own hyperplane H.
Thus, by a well-known theorem of Hadamard [19, Pg. 119], each component of M
is strictly convex, provided that n > 2. Furthermore, if n = 2, then each boundary
component is embedded by assumption. Therefore, by a well-known classical result
in di�erential geometry [20, Pg. 21], each boundary component is again strictly
convex. From this it follows that the restriction of � to each boundary component
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of M is always one-to-one (see Remark 3.2). Hence � is one-to-one everywhere, by
Corollary 3.1.

Now observe that TpM supports M if and only if TpM supports @M . To see this
let TpM

+, and TpM
� denote the closed half spaces determined by TpM . Suppose

that @M � TpM
+. Further, suppose, towards a contradiction, that there exists

a point of M in the interior of TpM
�. Then there must be one such point, say q,

which is farthest away from TpM . Consequently, TpM and TqM will be parallel, and,
since �(p) 6= �(q), it follows that �(p) = ��(q). We claim that this is impossible.
To see this, suppose that H (the hyperplane containing @M) is given by the set

of points in Rn whose nth coordinate is zero. Then �(@M) will lie in Sn with the
North and South poles deleted, because M , having positive curvature, meets H
transversely. Further, note that since each component of @M is strictly convex,
then it is homeomorphic to Sn�1. Furthermore, it is easy to see that the image of
each component is homotopic to the equator in the complement of the poles: let �
be a component of @M , let � denote the projection of � into H (see Figure 3), and
de�ne h : �� [0; 1]! Sn by

h(p; t) :=
(1� t)�(p) + t�(p)

k(1� t)�(p) + t�(p)k
:

h is the desired homotopy. Hence, the image of each component of @M separates
the North and South poles. Consequently, �(M) cannot contain both poles, and we
have our contradiction.

So it remains to show that @M � TpM
+ for every p 2 M (by convention, we

assume that TpM
+ is the half space which contains a neighborhood of p, so that

v(p) points into TpM
�). Let

X := fp 2M j @M � TpM
+g:

Then X 6= ;, for it has to contain a point ofM which is at the farthest distance from
H. Further, it is clear that X is closed, because the limit of supporting hyperplanes
is a supporting hyperplane. Thus, since M is connected, it remains to show that X
is open.

Let p 2 X. If TpM \ @M = ;, then it is clear that X contains an open neighbor-
hood of p. So suppose that TpM contains a point x of @M . Note that TpM cannot
coincide with H. To see this, let H+ and H� denote the half-spaces determined by
H. If M is tangent to H at a point p, then �(p) has to point either into H+ or H�.
Suppose that � points into H�. Then a neighborhood U of p has to lie in H+. In
particular, there will be interior points ofM in the interior of H�. At a farthest such
point, say q, we have to have �(q) = ��(p), which is impossible as was explained
before. Consequently, TpM and H will have to meet along an n � 1-dimensional
subspace l, see Figure 5.

We claim that TpM is tangent to M at x. Let U be a small neighborhood of M
at x. Then U has to lie on one side of H, say H+. Further, since TpM supports
M , U � TpM

+. Thus U lies inside a wedge-shaped region W := H+ \ TpM
+.

This shows that TxM cannot meet W only along l. Further, TxM cannot coincide
with H because U meets H transversely. Furthermore, TxM cannot pass through
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lP

x
H

T  Mp

Figure 5

the interior of W , for any such plane would separate p and @M (recall that any
supporting plane for @M has to support M). So the only possibility is that TxM
coincides with TpM . This implies that �(x) = �(p), which in turn yields x = p.

So TpM meets @M at exactly one point: p. Further, note that TpM cannot
meet any interior point of M , for that would violate the injectivity of �. Thus
TpM \M = fpg. This, together with the fact that M is locally strictly convex at
p, easily yields that TqM \M = fqg for all points q in a suÆciently small open
neighborhood of p. Hence X is open. �

Note 3.6. Theorem 3.5, or at least some similar versions of it, may be proved
using a number of other methods. One, see [21, Main Lemma], is based purely on
local convexity and uses no smoothness assumptions. Another, [22, Thm. 4], uses
Bancho�'s two-piece-property, and assumes only that the sectional curvatures be
nonnegative. Still another general proof follows from [23, Thm 1.2.4], see also [24],
where the boundary is not restricted to lie in a hyperplane. However, the proof of
Theorem 3.5 presented here is shorter and more direct. Finally, we should point
out that the theorem remains true without the embeddedness assumption on the
boundary components, but the proof requires more work. See [25] for a number of
more related results and generalizations.

Acknowledgments. The author is indebted to Herman Gluck for a very helpful
conversation with regard to the proof of Lemma 1.1, and to Bill Meeks for bringing
his conjecture to the author's attention.
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