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THE CONVEX HULL PROPERTY AND TOPOLOGY

OF HYPERSURFACES WITH NONNEGATIVE CURVATURE

STEPHANIE ALEXANDER AND MOHAMMAD GHOMI

Abstract. We prove that, in Euclidean space, any nonnegatively curved, com-

pact, smoothly immersed hypersurface lies outside the convex hull of its boundary,

provided the boundary satis�es certain required conditions. This gives a convex

hull property, dual to the classical one for surfaces with nonpositive curvature. A

version of this result in the nonsmooth category is obtained as well. We show that

our boundary conditions determine the topology of the surface up to at most two

choices. The proof is based on uniform estimates for radii of convexity of these

surfaces under a clipping procedure, a noncollapsing convergence theorem, and a

gluing procedure.
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1. Introduction

The main objects of study in this paper are locally convex hypersurfaces with

boundary immersed in Euclidean space, and their in�nitesimal counterparts, smooth

hypersurfaces of nonnegative sectional curvature. In contrast to the complete case

without boundary, which has been well studied [17, 29, 18, 19], the behavior of these

objects is in general quite varied and complex [12]. Thus it is desirable to �nd natural

boundary conditions which induce nice global behavior. Our primary motivation in

this study is the classical convex hull property [26] which states that in Euclidean
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space a compact nonpositively curved hypersurface lies within the convex hull of its

boundary. We show that this phenomenon has a dual, and in the process develop

some basic tools for studying locally convex immersions. Our principal result in the

smooth category is as follows:

Theorem 1.1. Let M be a compact, connected, and smooth n-manifold, n > 2,

f : M ! Rn+1 be a smooth immersion with nonnegative sectional curvature, and

C := conv f(@M) denote the convex hull of the image of the boundary of M (where

we assume @M 6= ;). Suppose that:

(1) f(@M) � @C,
(2) f has positive curvature on @M ,

(3) f is an embedding on each component of @M .

Then the image of the interior of M lies completely outside the convex hull of the

image of its boundary:

f(intM) \ C = ;:

Further, f is an embedding on @M , and M is homeomorphic to the closure of a

component of @C�f(@M) with boundary f(@M). (If C is degenerate, i.e. intC = ;,

then we take @C to be two copies of C glued along their relative boundaries.)

It is obvious that, as far as our convex hull property (CHP) is concerned, condition

(1) in Theorem 1.1 is necessary. Conditions (2) and (3) cannot be omitted, as

demonstrated in Figures 1(a) and 1(b) respectively. Also note that even though

Theorem 1.1 implies that f(@M) is embedded, in general f(M) is not embedded,

see Figure 1(c). Theorem 1.1 implies that the topology ofM is uniquely determined

(a) (b) (c)

Figure 1

by the image of @M if @M has multiple components or is homeomorphic to Sn�1.

But if @M is a torus and f : @M ! @C is a knotted embedding, then the components

of @C � f(@M) are not homeomorphic [13], and so in general the topology of M is

determined only up to two choices. This degree of topological rigidity is signi�cant,

since it fails if condition 1 of Theorem 1.1 is violated: Figure 2 illustrates how to

construct a curve which, for any given k, bounds k topologically distinct embedded

surfaces of positive curvature.

The �rst step of the proof of Theorem 1.1 (Section 3) is to show that f is locally

convex and one-sided, as de�ned below. This involves extending certain aspects of

previous work of Sacksteder [29], and Greene and Wu [14], and is the only place
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Figure 2

where smoothness is used in the proof of the Theorem 1.1. This theorem then

follows from its counterpart in the nonsmooth setting, Theorem 1.2.

We say the immersion f : M ! Rn+1 is locally convex if f has an extension ef to

a manifold without boundary fM , where every point p 2M has a neighborhood Up

in fM that is embedded by ef into the boundary of a convex body Kp � Rn+1. (The

assumption that f extends to a collaring manifold fM is a compatibility condition on

the Kp for boundary points p; see the discussion below.) f is one-sided if Up and Kp

may be chosen so that the side of f(Up) on which Kp lies varies continuously with

p. (Figure 1(a) illustrates an immersion which is locally convex but not one-sided.)

If, for all p 2 @M , Up may be chosen so that f(Up \M) contains no line segments,

we say f is locally strictly convex on a neighborhood of @M .

Theorem 1.2. Let M be a compact connected topological n-manifold, n � 2,

f : M ! Rn+1 be a locally convex immersion, and C := conv f(@M) 6= ;. Sup-

pose that:

(1) f(@M) � @C,
(2) f is locally strictly convex on a neighborhood in M of @M ,

(3) f is an embedding on each component of @M .

Then f satis�es the strong CHP:

f(intM) \ C = ;:

Further, f is an embedding on @M , and M is homeomorphic to the closure of a

component of @C � f(@M) with boundary f(@M). If condition (2) is replaced by

(20) f is one-sided,

then the same conclusions hold, but with the strong CHP replaced by the CHP:

f(M) \ intC = ;:

There is a nonintuitive distinction between our notion of local convexity and what

may be referred to as weak local convexity. By the latter we mean that for each point

p 2M the restriction of f to some neighborhood of p inM extends to an embedding

of a manifold without boundary into the boundary of a convex body Kp. Thus weak

local convexity does not require that the local extensions across the boundary may

be made compatible. The two notions of local convexity are equivalent in the setting

of Theorem 1.1 (see Lemma 3.2). On the other hand, Figure 3 illustrates a weakly
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locally convex immersion (a box with a hole and a folded-down tab that pierces the

box) for which the CHP fails (since the box clearly intersects the convex hull of its

boundary). This example satis�es (1) and (3) of Theorem 1.2, and is one-sided in

the sense that it is one-sided on the interior of M and locally has extensions across

the boundary that are convex on the same side. In short, Theorem 1.2 is false for

one-sided weakly locally convex immersions.

Figure 3

A special case of Theorem 1.2 where stronger conclusions are possible occurs when

each component of @M lies in some hyperplane. We give a comprehensive treatment

of this case in Section 5, where our result complements work of Rodr�iguez [28, Thm

4] and K�uhnel [21] on tight immersions of manifolds with boundary.

The basic strategy for proving Theorem 1.2 is highly intuitive, and roughly may

be described as follows. For simplicity, we suppress the immersion f . We wish to

show that if @M lies on the boundary of its own convex hull C, then all points of M
lie outside intC. If points inM lie outside C, we \clip" them o� with planes in such

a way that C remains intact; replacing the clipped-o� part of M with a topological

disk in the clipping plane, we obtain a new locally convex surface with the same

topology and boundary (Section 4). We continue to clip and modify M until in the

limit, there are no points outside C. We then have a locally convex surface M 0 with

the same boundary asM and all points inside C. We extend this surface to a closed

locally convex surface without boundary by gluing on portions of @C (Section 8).

By a theorem of van Heijenoort (Lemma 4.1), the resulting surface must lie on the

boundary of a convex body. That convex body obviously contains C and, hence,

M 0 lies in @C. Since we didn't clip any points in M that were also in intC, there
must not have been any.

One of the principal challenges in this proof is controlling the limit of the clippings.

To this end, we �nd uniform bounds for radii of convexity (Section 6). These

bounds may be considered as generalized a priori curvature estimates, and lead to

an analogue of Blaschke's selection principle for surfaces with boundary (Section 7).

The remaining key ingredient is the somewhat subtle gluing argument (Section 8).

A version of the convex hull properties proved in this paper was originally con-

jectured in the second author's PhD thesis [9, Conjecture E.0.5]. A proof of a

version of Theorem 1.1, assuming local convexity, was obtained subsequently to
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the present work by Guan and Spruck [16], using their work on Monge-Amp�ere

equations. Labourie has investigated the singularities in the convergence of smooth

locally convex hypersurfaces in Euclidean space under uniform upper bounds on

sectional curvature [22]. For inequalities relating intrinsic and extrinsic invariants

of locally convex hypersurfaces, see [23] and Gromov [15, p. 280]. Ends of complete,

smooth locally convex hypersurfaces with compact boundary were studied by Cur-

rier and the �rst author [1]. For an application of our main results, see [10, Appendix

A], where it is proved that there exists a smooth simple closed curve without in
ec-

tion points which lies on the boundary of a convex body, but bounds no surfaces

of positive curvature. This result, which is related to a question of S.-T. Yau [31,

Problem 26] on characterizing curves which bound surfaces of positive curvature,

was one of the original motivations for developing the convex hull properties proved

in this paper.

2. Basic Definitions and Notation

ByM , we always mean a connected n-dimensional manifold with boundary, where

n � 2. The boundary and interior of M are denoted respectively by @M and

intM :=M�@M . By smooth we mean in�nitely di�erentiable (C1). But with the

exception of Section 3, and unless stated otherwise, the manifolds and mappings in

this paper are not a priori assumed to have any degree of regularity. By an immersion

we mean a locally one-to-one continuous map. An embedding is a mapping which is

a homeomorphism onto its image. We say f : M ! Rn+1 is a smooth immersion if

M and f are smooth, and f has nonvanishing Jacobian.

The standard Euclidean innerproduct is denoted by h�; �i, and k�k := h�; �i1=2 is the
corresponding norm. Sn and Bn+1 denote respectively the unit sphere and closed

unit ball in Rn+1. For any pair of subsets X, Y � Rn+1 we have the Euclidean

distance:

dist(X;Y ) := inff kx� yk j x 2 X; and y 2 Y g;

and the Hausdor� distance:

distH(X;Y ) := inff r � 0 j X � Y + rBn+1; andY � X + rBn+1
g:

By a convex body in Rn+1 we mean a compact convex set with nonempty interior.

For any subset X � Rn+1, intX and convX denote, respectively, the interior and

convex hull of X. An intersection of �nitely many closed halfspaces is called a

convex polyhedron.

Recall that by saying f : M ! Rn+1 is locally convex, we mean f has an extension
ef to a manifold without boundary fM , where every point p 2M has a neighborhood

Up in fM that is embedded by ef into the boundary of a convex body Kp. If, for

all p 2 @M , Up may be chosen so that f(Up \M) contains no line segments, we

say f is locally strictly convex on a neighborhood of @M . (It is not ruled out that
ef(Up) may contain line segments.) If we may choose Up = fM , we say f is a convex

embedding. If the side of f(Up) on which Kp lies, which we call the positive side,

varies continuously with p, we say that f is one-sidedly locally convex, or merely

one-sided.
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If f is locally convex, then each neighborhood Up may be chosen so that ef(Up) is
supported by a hyperplane Hp at f(p), and is the graph of a convex, Lipschitz height
function over an open disk in Hp [5]. Since M is connected, it easily follows that

any two points of fM can be joined by an arc whose image under ef has �nite length.

Therefore ef induces an intrinsic distance on fM , which we denote by dist
ef
(p; q). This

distance is locally bi-Lipschitz equivalent to the Euclidean distance [5, p. 6 and p.

79]. Since each neighborhood Up is bi-Lipschitz equivalent to a Euclidean disk, we

obtain an atlas on fM for which the transition functions are bi-Lipschitz. When we

refer to a Lipschitz structure on fM , this is the one we mean.

Note that we have made no regularity assumptions on @M , which might, for

example, exhibit fractal behavior. Thus there may be no arc in M , from a given

boundary point to another point of M , whose image has �nite length. Therefore

the intrinsic distance distf , while always �nite on pairs of points in intM , may take

value 1 on pairs that include a point of @M . In any case, completeness of M under

distf is de�ned as usual, namely, Cauchy sequences in M converge in M .

3. Local Convexity and One-sidedness

In this section we show that if an immersion satis�es the conditions of Theo-

rem 1.1, then it is one-sidedly locally convex. We also examine one-sidedness in

nonsmooth locally convex immersions.

First we give a condition guaranteeing that any component of the set of 
at points

of a smooth nonnegatively curved hypersurface is a convex set. By 
at points

we mean the set where the second fundamental form vanishes. Our Lemma 3.1

generalizes both Theorem 1 of [29], whereM is assumed to be complete and without

boundary, and a proposition in [14], where M is assumed to be homeomorphic to

the 2-sphere with �nitely many points deleted. Both our proof and that of [14] use

the method of [29], to which we refer for certain arguments; however, our proof is

shorter and more direct than the other two.

Below, by the completion of M , we mean its completion in the intrinsic metric

distf . The Cauchy boundary consists of the added points.

Lemma 3.1. Let f : M ! Rn+1 be a smooth immersion with nonnegative curvature,

where M is a manifold without boundary. Suppose f has strictly positive curvature

on M\U where U is a neighborhood of the Cauchy boundary of M in the completion

of M . Then the restriction of f to each component of the set of 
at points of f is

an embedding onto a convex set.

Proof. Let X be a component of the set of 
at points of f . Since the Gauss map

has rank 0 on X, Sard's theorem [8, 3.4.3] implies its image has vanishing one-

dimensional Hausdor� measure, hence is totally disconnected (here we are using

the fact that f is C1). Therefore the Gauss map is constant on X, say n0. Let

h : M ! R be the height function given by h(p) := hf(p); n0i. Then the di�erential

of h vanishes on X. Consequently, by a theorem of Morse [24], f(X) lies in a

hyperplane H orthogonal to n0.
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Choose a point p in X, and let S be the maximal subset of X that is starshaped

about p, that is, S consists of all points that can be joined to p by an arc 
 in X
that is mapped homeomorphically by f onto a line segment 
� in H (we call 
 an

H-segment). It suÆces to show S = X. Indeed, since p is arbitrary, it follows from
this that f(X) is a convex subset of H and the restriction of f to X is an isometry.

By assumption, all Cauchy sequences in X, with respect to the metric distf onM ,

converge in X. Therefore the closed distf -balls in X are compact. It follows then

by an Arzela-Ascoli argument [4, (5.16)] that S is closed in X. Thus to complete

the proof it remains to show that S is open in X.

Suppose S is not open inX. Then there is a point q 2 S and a sequence qi 2 X�S
converging to q. If 
 is an H-segment in X >from p to q, then 
 has a tubular

neighborhood W in M that is homeomorphic to an open disk. Since f is tangent to

H along 
, we may choose W so small that f(W ) is the homeomorphic image of W
and is the graph of a smooth function g : W � ! R, where W � is the homeomorphic

image of f(W ) under orthogonal projection to H. Let 
�i be the segment in W �

from f(p) to f(qi), and 
i be the arc in W whose f -image projects orthogonally to


�i . Since qi =2 S, then 
i 6� X, and so 
i intersects some component A of the set

of non
at points of W . Equivalently, 
�i intersects the orthogonal projection A� of
f(A) to H. Note that A� is the nonvanishing set of the hessian of g.
Now we obtain a contradiction by showing that 
�i cannot intersect the orthogonal

projection A�. In a simply connected manifold, any component of the complement

of an open connected set has connected boundary [29, Corollary 1]. Therefore the

boundary in W of each component U of W �A is connected. The boundary of U in

W , being a connected set of 
at points, lies in a hyperplane (by the argument above),

and the normal to the hyperplane agrees with the normal to f on the boundary of

U . But then there is a unique C1 function gA on W � that agrees with g on A� and
agrees with some linear function on each component of W � �A�. In fact, since the

hessian of g vanishes on the boundary of A� inW �, it follows that g and gA agree up

to third order on the boundary of A�, and hence gA is C2. Since the nonvanishing set

A� of the hessian of gA is connected, we may assume that the hessian of gA is positive

semide�nite, and hence that gA is convex on W �. Since gA, its di�erential and its

hessian all vanish at f(p) and f(qi), the convexity of gA implies that they vanish

at every point of 
�i (this claim is easily veri�ed geometrically, or by calculation as

in [29, Pg. 616] or [14, Pg. 462]). Since gA and g agree on the open set A�, and
the hessian of g does not vanish on A�, it follows that 
�i cannot intersect A�. This
contradiction completes the proof. �

Lemma 3.2. Let f : M ! Rn+1 be a smooth immersion which is locally convex on

intM , and has positive curvature on @M . Then f is locally convex on M .

Proof. Using the notion of a double of a manifold [25] it can be shown that there

exists a manifold without boundary fM �M and a smooth immersion ef : fM ! Rn+1

such that ef = f on M . Since ef has positive curvature on @M , there is a connected

open neighborhood U of @M in fM on which ef has positive curvature. Since the

second fundamental form of ef on U is de�nite, there is a continuous choice of normal
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on U with respect to which it is positive de�nite. Therefore ef is locally convex on

U . �

Proposition 3.3. Let M be compact, and f : M ! Rn+1 be a smooth immersion

whose curvature is nonnegative everywhere and positive on @M . Then f is one-

sidedly locally convex.

Proof. First we apply Lemma 3.1 to the interior of M : since each component X of

the set of 
at points of f is compact, then X is embedded by f onto a compact

convex set.

Next let �: M� ! M be the universal cover of M , de�ne F : M� ! Rn+1 by

F : = f Æ �, and note that the restriction of F to the interior of M� also satis�es

the hypotheses of Lemma 3.1. Therefore F embeds each component Y of the set

of 
at points of F onto a convex set. In particular, Y is embedded onto �(Y ).
Further, since �(Y ) lies in a component X of the set of 
at points of f , and X is

path-connected, it easily follows that �(Y ) = X. So Y is isometric to a compact

convex set.

But then the set of non
at points of F is connected. Indeed, a simply connected

manifold is separated by a closed subset only if it is separated by a component

of that subset [29, Corollary 2]. And a component Y of the 
at set of F , being
isometric to a compact convex set and lying in the interior ofM�, does not separate

M�.

Since simply connected manifolds are orientable, we may choose a continuous unit

normal vector �eld n : M� ! Sn corresponding to the immersion F . Since the set
of non
at points of F is connected, we may assume that n points in the positive

direction at every non
at point. That is, the second fundamental form of F with

respect to n is positive semide�nite in a neighborhood of each point. Consequently,

the restriction of F to the interior of M� is one-sidedly locally convex. Hence so is

the restriction of f to the interior of M .

Finally, since f is smooth and is one-sidedly locally convex in the interior of M ,

then by Lemma 3.2, f is locally convex on M . Clearly f is one-sidedly locally

convex. �

Now we turn to nonsmooth locally convex immersions. The following lemma

is related to Lemma 3.1. Note, however, that Lemma 3.1 did not assume local

convexity (but rather was used to prove local convexity). Hence the proof of the

following is not as subtle.

Lemma 3.4. Let f : M ! Rn+1 be a locally convex immersion, where M is com-

plete. Let H be a local support hyperplane for f at p 2 intM , and X be the compo-

nent of f�1(H) containing p. Suppose that X � intM . Then the restriction of f
to X is an embedding onto a closed convex subset of H.

Proof. By the de�nition of local convexity, each q 2 M has a neighborhood Uq in
fM such that ef embeds Uq into the boundary of a convex body Kq � Rn+1. Let

A � f�1(H) be the set of points in M at which H locally supports ef . By the

continuity of local support planes to a convex body [5, (1.6)], A is open and closed
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in f�1(H). Therefore H locally supports f at every point of X. Thus we may

choose Uq and Kq so that f(Uq \X) = Kq \H, for all q 2 X. Therefore every point

q of X has a neighborhood in X which is mapped homeomorphically by f onto a

convex subset of H.

But then f maps all of X homeomorphically onto a convex subset of H. This

claim, which completes our proof, is closely related to a classical theorem of Tietze

[20, 6] on local characterization of convex sets. The proof, which is quite similar to

that of Tietze's theorem, is outlined in essentially the form we need in [29, Lemma

1], also see [19, Proposition 1]. Speci�cally, one shows that the set of points that

can be joined by a �nitely broken H-segment to a given point p 2 X is open and

closed. Secondly, if p and q, and q and r, respectively, lie on H-segments, then it

can be shown that so do p and r. (By an H-segment, we again mean a path in M
which is mapped homeomorphically by f onto a line segment in H.) Completeness

of M under distf is used to show that if an H- segment varies with one endpoint

�xed and the image of the other endpoint moving along a half-open line segment in

H, then a limit H-segment exists. �

The following may be considered as the analogue of Proposition 3.3 in the non-

smooth category.

Proposition 3.5. IfM is compact and f : M ! Rn+1 is a locally convex immersion

that is locally strictly convex on a neighborhood in M of @M , then f is one-sidedly

locally convex.

Proof. Let Y be the subset of M each of whose points has an open neighborhood

that is mapped by f into a hyperplane. Then the restriction of f to M � Y has a

uniquely determined and continuously varying positive side.

Let Y1 be a component of Y . Then Y1 lies in a component X of f�1(H) for some

hyperplane H. By the strict convexity assumption at the boundary, and since X
has nonempty interior, we may conclude that X � intM . So, by Lemma 3.4, the

restriction of f to X is a homeomorphism onto a compact convex set.

Then int f(X) = f(intX) is open and convex in H. It follows from the de�nition

of Y1 that Y1 = intX. In particular @Y1 = @X. Since f(X) is a compact convex set,

@Y1 is connected. Since in addition, @Y1 �M � Y , it follows that the positive side
of f at each point of @Y1 corresponds to a �xed side of H. Thus we may extend the

choice of positive side of f continuously to Y1, and hence to all of M . Therefore f
is one-sidedly locally convex. �

Note 3.6. In Proposition 3.5, if \locally strictly convex" is replaced by \one-sided",

then the proposition is no longer true; see Figure 4. Indeed, Figure 4 is locally convex

(the required extension across the boundary may be obtained by collaring, in each

of the three planes of the �gure, the portion of the boundary in that plane) and

one-sided on a neighborhood of the boundary, but not one-sided.

Recall that in Lemma 3.4 we assumed that X \@M = ;, as was indeed necessary

for the desired conclusion. We shall also require the following lemma, which allows

us to address the case in which X intersects @M .
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Figure 4

Lemma 3.7. Let f : M ! Rn+1 be a one-sidedly locally convex immersion, where

M is complete and the restriction of f to each component of @M is an embedding.

Let H be a local support hyperplane for ef at p 2 M , and X be the component

of f�1(H) containing p. Suppose X contains every component @M� of @M that

intersects X (it is possible that there are none). Then the restriction of f to X is

an embedding onto a closed convex subset KH of H with open subsets D� of intKH

removed, where D� is a component of H � f(@M�).

Proof. Recall that, by de�nition, there is a neighborhood Up of p in fM such that
ef(Up) � @Kp where Kp is a convex body lying on the positive side of ef at p. By the

continuity of local support planes to a convex body, the points of f�1(H) at which

H supports such a convex body Kp form an open and closed subset of f�1(H).

Therefore H locally supports the positive side of ef on a �xed side of H, at every

point of X.

Let @M� denote a component of @M that lies in X, so f(@M�) lies in H. By

the generalized Jordan-Brouwer separation theorem [2, p. 353{355], H � f(@M�)

has exactly two components and f(@M�) is the boundary of each. We may cover

@M� by open sets Ui := Upi chosen as above, for which @M� \Ui is connected. Set
Ki := Kpi . Choose x 2 intKi, and consider the projection map �ix to H through x.

Speci�cally, let �ixÆ ef be a homeomorphism of a neighborhood Uix of @M�\Ui in Ui
onto its image in H, where intM \Uix is connected. De�ne D� to be the component

of H � f(@M�) that does not contain the image of intM \ Uix. This choice of D�

is independent of x 2 intKi \ intC. Moreover, if Ui \ Uj 6= ;, then one-sidedness

implies as above that intKi \ intKj 6= ;. For x 2 intKi \ intKj , the choices of D�

respectively determined by �ix and �jx agree. Since @M� is connected, it follows

that the choice of D� is independent of both x and i.
Let M be the result of gluing the closure of D�, for each �, to M along @M�.

Further, let f : M ! Rn+1 be the natural extension of f to M . Our projection

maps and the choice of D� make clear that M is a manifold and f is an immersion.

Let X be the component containing X of f
�1
(H). Then X is the result of gluing

the D� to X. By construction, f has one-sided local supports at every point, and

so f is a locally convex immersion of M .
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Now X � intM by construction. Clearly M is complete. Therefore by Lemma

3.4, the restriction of f to X is an embedding onto a closed convex subset of H. �

4. Convex Caps and Clippings

Here we describe the clipping procedure we mentioned in the introduction. We

begin with two lemmas that are basic tools in this paper.

Lemma 4.1 (van Heijenoort's Theorem [18]). Let M be a manifold without bound-

ary, and f : M ! Rn+1 be a complete locally convex immersion. Suppose that f has

a strict local support hyperplane at some point of M . Then f is an embedding and

f(M) bounds a convex body in Rn+1.

Let K � Rn+1 be a convex body, and H � Rn+1 be a hyperplane. Suppose

that K \H has interior points in H, and let intH� be one of the open half-spaces

determined by H such that K \ intH� 6= ;. By a convex cap, cut from @K by H,

we mean the closure of @K \ intH�. The following lemma is due to Labourie.

Lemma 4.2 ([22]). Let M be compact and f : M ! Rn+1 be a locally convex

immersion. Let H � Rn+1 be a hyperplane which determines closed half-spaces H+

and H�, and set M� := f�1(intH�). Suppose that f(@M) � intH+. Then f maps

the closure of each component of M� homeomorphically onto a convex cap.

Lemmas 4.1 and 4.2 are proved by hyperplane slicing arguments. The second

may be deduced from the �rst by a projective transformation that sends H to the

hyperplane at in�nity. We also need an addendum to Lemma 4.2:

Lemma 4.3. Under the hypotheses of the preceding lemma, f�1(H+) is connected.

Proof. Let H� be a hyperplane obtained by moving H a small distance parallel to

itself inside H+. Let H+
� denote the half-space containing f(@M), and Y� be the

closure of the component of f�1(intH�
� ) containing Y . By Lemma 4.2, the closures

of the components of M� and M�
� map homeomorphically to convex caps that are

pairwise nested. It follows that the closures of the components of M� lie in intM ,

are pairwise disjoint, and are �nite in number. Moreover, each is homeomorphic to

a closed n-disk. Therefore M �M� is connected. �

Lemma 4.2 allows us to \clip"convex hypersurfaces by convex polyhedra, as in

the following proposition:

Proposition 4.4. Let f : M ! Rn+1 be a locally convex immersion of a compact

manifold M , and P � Rn+1 be a convex polyhedron. Suppose that f(@M) � intP .
Then there exists a locally convex immersion fP : M ! Rn+1 such that fP (M) � P
and fP = f on f�1(P ). If f is one-sidedly locally convex, then so is fP . Moreover,

there is a distance-nonincreasing map from M in its f -induced metric onto M in

its fP -induced metric. We say that fP is a clipping of f by P .

Proof. We shall assume P is a closed half-space H+ determined by some hyperplane

H; then �nitely many iterations will yield the claim. Let H� be a hyperplane

parallel to H in H+, and suÆciently close to H as to satisfy f(@M) � H+
� . By
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Lemma 4.2, the closures Y� of the components of M� := f�1(intH�) are mapped

homeomorphically by f onto convex caps B� with boundary in H. Moreover, each

Y� lies in the closure of a component of M�
� := f�1(intH�

� ) which is mapped

homeomorphically by f onto a larger convex cap B�� with boundary in H�. By the

base of B�, we mean the convex body D� in H that is bounded by @B�. Then there

is a 1-1 correspondence from the collection of boundary components of f�1(H+)

that intersect H onto the collection of @D�, where f maps each of these boundary

components of f�1(H+) homeomorphically onto the corresponding @D�. Let MH

be the result of gluing the D� to f�1(H+) via these homeomorphisms. De�ne

gH : MH ! Rn+1 by setting gH = f on f�1(H+) and gH equal to the inclusion

map on each D�.

Since the convex caps B� lie in the larger convex caps B��, it follows that gH is a

locally convex immersion of MH . Moreover, if f is one-sidedly locally convex, then

the insides of the convex cap correspond to the positive side of f , and so gH is also

one-sidedly locally convex. Since there is a homeomorphism from each convex cap

B� onto its base D� that �xes @B� = @D�, there is a homeomorphism h of M onto

MH . Thus, for P = H+, the locally convex immersion fP = gH Æ h : M ! Rn+1

satis�es all the claims of the proposition except possibly the last, which remains to

be veri�ed.

The nearest-point projection from a Euclidean space to a convex subset is distance-

nonincreasing [30, Thm. 1.2.2]. Therefore there is a distance nonincreasing map

from each convex cap B� (in its Euclidean metric, and hence in its f -induced met-

ric) to its base D�. It is easily checked that this procedure, successively applied to

the �nitely many convex caps B�, yields a distance nonincreasing map from M in

its f -induced metric onto MH in its gH-induced metric. Since the latter is isometric

to M in its fP -induced metric, the proposition follows. �

Note 4.5. Lemma 4.2 and Proposition 4.4 remain valid under the weaker hypotheses

that f(@M) � H+ and f(@M) � P , respectively (as opposed to f(@M) � intH+

and f(@M) � intP ). However, these require more proof, and we do not need these

stronger statements in this paper.

5. Flat Boundary Components

In this section we analyze the case in which the boundary components of a locally

convex hypersurface lie in hyperplanes. The conclusion of the following theorem is

stronger than the CHP, since in this case f is shown to be a convex embedding.

Theorem 5.1 is related to a result of Rodr�iguez [28, Thm 4], where f is assumed

to be smooth and its restriction to each boundary component a convex embedding;

but, instead of being locally convex, the surface is only required to have nonnegative

curvature; see also the paper by K�uhnel [21]. Both of these papers are based on

the theory of tight immersions and the two-piece-property of Bancho�. Our proof,

however, uses van Heijenoort's Theorem (Lemma 4.1), and assumes no smoothness.

There is also a version of the following theorem for smooth surfaces with nonvan-

ishing curvature [11].
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Theorem 5.1. Let Mn be compact, and f : M ! Rn+1 be a locally convex im-

mersion that is locally strictly convex on a neighborhood in M of @M . Let @M�,

i = 1; : : : k, be the components of @M , and suppose that each f(@M�) lies in a

hyperplane H�. Furthermore, suppose that either n > 2, or else all nonembedded

boundary components of M lie in the same hyperplane. Then f is a convex embed-

ding. In particular, f(M � @M�) \H� = ;, and M is homeomorphic to Sn with k
convex open subsets removed.

The requirement that the nonembedded boundary components lie in the same

hyperplane when n = 2 is not super
uous, see Figure 5(a). Also note that the above

does not remain valid if the surface is not locally strictly convex on a neighborhood

of the boundary, see Figure 5(b).

(b)(a)

Figure 5

Proof(Theorem 5.1). Let ef : fM ! Rn+1 be a locally convex extension of f .
(Part 1) We show that the restriction of f to each boundary component is a

locally strictly convex immersion into the corresponding hyperplane. Note that it is

only necessary to prove local convexity, since by hypothesis, the restriction of f to

@M contains no line segments.

For a given p 2 @M�, there exists an open neighborhood U in fM and a convex

body K � Rn+1 such that ef embeds U into @K. Furthermore, ef(U \M) contains

no line segments. Set K0 := K \ H�, and U0 := U \ @M�. Then K0 is a convex

body in H�. Indeed, since K0 is clearly compact and convex, we need only show

that K0 has interior points in H�. Suppose not. Then K
0 lies in an aÆne subspace

L of H�, where the dimension of L is less than n. Since f(U0) � K0 � L and f is

an embedding on U0, then by invariance of domain, the dimension of L is n� 1 and

f(U0) is open in L. In particular, a segment of any line in L passing through f(p)
must be contained in f(U0), contradicting the strict convexity assumption.

(1.1) Suppose that K is not supported by H�. Then @K \H� = @K0. Therefore

f(U0) lies in the n � 1 dimensional manifold @K0, and f jU0 is an imbedding onto

an open subset of @K0. Therefore f jU0 is a locally convex immersion into H�, as

required.

(1.2) Suppose K is supported by H�. Then f(U0) � K0 = @K \ H�. We

again claim f(U0) � @K0, from which it follows that f jU0 is a locally convex

immersion into H�. Suppose, to the contrary, that f(q) lies in the interior of K0
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for some q 2 U0. Since a neighborhood in @K of f(q) lies in H�, then f embeds a

neighborhood of q in M into H�, in violation of the strict convexity assumption.

(Part 2) We construct an extension of M and a locally convex extension of f :
(2.1) First we show that @M� has a neighborhood V� inM such that f(V��@M�)

lies in an open halfspace determined by H�, say intH�
� . Indeed, in both cases (1.1)

and (1.2) above, ef maps a neighborhood of p in fM onto an open subset of @K, and

maps a neighborhood of p in U0 to @K0. It follows, directly in case (1.1) and >from

the strict convexity assumption in case (1.2), that p has a neighborhood V in M
such that f(V � @M�) lies in an open halfspace determined by H�. Covering @M�

by �nitely many such V yields the claim.

(2.2) Let @M�, � = 1 : : : k0, denote those components of @M such that restriction

of f to @M�, say @f�, is an embedding. Then @f� is a convex embedding by Part 1.

LetD� be the convex body in H� bounded by @f�(@M�). Since @f� : @M� ! @D� is

a homeomorphism, we may glue D� to M along @M� via @f�, to obtain a compact,

connected manifold M . Let f : M ! Rn+1 be the natural extension of f .
(2.3) We claim that f is a locally convex immersion. Indeed, by (2.1), @M� has a

neighborhood V� in M such that f(V� � @M�) lies in an open halfspace intH�

� . It

follows that f is locally one-to-one. Since f is continuous, it is an immersion. Local

convexity needs to be checked only at the points where the gluing occurs. Consider

p 2 @M�, and let K be a convex body such that ef embeds a neighborhood of p in
fM into @K. Then we are in either case (1.1) or (1.2). In the latter case, f embeds

a neighborhood of p in M into @K. In the former, f embeds a neighborhood of p in
M into the boundary of K \H�

� . Thus in both cases, we have local convexity at p.

(Part 3) Now we prove that M is a closed manifold (i.e., @M = ;). Suppose

not. Then, by de�nition of M , @M must have some nonembedded boundary com-

ponents. Consequently n = 2, because if n > 2, then by Part 2 and van Heijenoort's

theorem (4.1), each boundary component ofM is embedded. By assumption, all the

nonembedded boundary components of M lie in the same hyperplane H. Since the

nonembedded boundary components of M coincide with the boundary components

of M under the inclusion map, all boundary components of M lie in H.

Let @M1 be such a component. By (2.1), @M1 has a neighborhood V1 in M such

that f(V1�@M1) lies in an open halfspace intH
�. We may take V1�@M1 connected.

Let X be the closure of the component of f
�1
(intH�) containing V1 � @M1.

By combining van Heijenoort's theorem with a projective transformation that

sendsH to the hyperplane at in�nity, we �nd that f embeds intX into the boundary

in intH� of an open convex set in intH�. Let K be the closure in Rn+1 of this

convex body. Then f(@X) lies in the convex set K \ H. Since f(@M1) � @X by

de�nition of X, and the restriction of f to @M1 is strictly locally convex by Part 1,

then K\H is a convex body in H. Thus the restriction of f to @X embeds @X onto

the boundary in H of K \H. Now @M1 is a compact connected (n � 1)-manifold

immersed in the connected (n � 1)-manifold @X. Therefore f(@M1) = @X, and

@M1 is embedded, contrary to assumption.
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(Part 4) SinceM is a closed manifold and f is a locally convex immersion, then by

van Heijenoort's theorem it follows that f is a homeomorphism onto the boundary

of a convex body K � Rn+1. Therefore f is a homeomorphism onto the complement

in @K of intD�, � = 1 : : : k, where D� is a convex body in H�.

By (2.1), a given D� has a neighborhood W in M such that f(W �D�) lies in

an open halfspace intH�
� . By global convexity, it follows that f(M � D�) lies in

intH�
� . Therefore f(M � @M�) \H� = ;. �

6. Radii of Convexity: Uniform Estimates

In this section we start by establishing some basic tools for studying locally convex

hypersurfaces, namely radius of convexity and inradius of convexity. They will be

used in this section to show that the clipping procedure developed in Section 4

satis�es certain uniform bounds, and in the next section to formulate a convergence

and �niteness theorem.

Throughout this section, we let f : M ! Rn+1 be a one-sidedly locally convex

immersion, with locally convex extension ef : fM ! Rn+1. For p 2 M and R > 0,

we denote by Up;R = Up;R(f), the component containing p of ef�1(intBR(f(p)). For
R suÆciently small, f embeds Up;R into the boundary of a convex body which,

by intersection, we may take to lie in BR(f(p)). Indeed, for R suÆciently small,

there is a convex body Kp;R, lying in BR(f(p)) and on the positive side of f , such

that ef embeds Up;R homeomorphically onto @Kp;R\ intBR(f(p)). These conditions

uniquely determine Kp;R = Kp;R(f), which we call the convex piece for ef centered

at p of (Euclidean) radius R. Note that we do not assume Up;R is simply connected.

f(p)f(M)

K'p, R

R

K p, R

p, R+εK

Figure 6

The radii of convex pieces centered at p form an interval, as follows >from Lemma

6.1.1 below, by taking p = q. We denote the supremum of radii of convex pieces at

p by Rp(f), the radius of convexity of f at p. Furthermore,we set

R(f) := inf
p2M

Rp(f);

the radius of convexity of f .
Corresponding to each R < R(f), we de�ne the inradius of convexity rp;R(f) of

f at p to be the inradius of the convex piece Kp;R. It follows by homothety that
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rp;R(f)=R is nonincreasing in R for R 2 (0; R(f)). (See Lemma 6.1.3 for a more

general inequality, which yields this one when p = q.) The inradius of convexity

rR(f) of f is de�ned by

rR(f) := inf
p2M

rp;R(f):

Note that these notions depend on the choice of extension ef , which we �x in our

arguments.

Lemma 6.1. Let R2 be the radius of a convex piece centered at q. Suppose BR1
(f(p)) �

BR2
(f(q)), and p 2 Uq;R2

. Then

(1) R1 is the radius of a convex piece centered at p,
(2) Kq;R2

\BR1
(f(p)) � Kp;R1

,

(3) rp;R1
(f) > R1

R2+d(f(p);f(q))
rq;R2

(f):

Proof. Let K be the convex body Kq;R2
\BR1

(f(p)). Then ef(Up;R1
) is a component

of ef(Uq;R2
) \ intBR1

(f(p)). Let x be an interior point of K, and �x : @K !

@BR1
(f(p)) be the homeomorphism given by projection from x. Then if a sequence

in ef(Up;R1
) converges to a boundary point of ef(Up;R1

) in @K, its image sequence

under �x converges to the same point. It follows that @BR1
(f(p)) is homeomorphic

to the union of ef(Up;R1
) and the complement of its �x-image in @BR1

(f(p)). The

body bounded by this union is locally supported everywhere, hence convex, and

satis�es the de�ning conditions of the convex piece Kp;R1
. Therefore 1 holds. By

construction, Kp;R1
satis�es 2.

For any ball of radius Æ and center x contained in the convex body Kq;R2
, the

cone from f(p) over this ball also lies in Kq;R2
. The extreme distance d� from f(p)

in this cone satis�es

d� = d(f(p); x) + Æ � d(f(p); f(q)) + d(f(q); x) + Æ � d(f(p); f(q)) +R2:

It follows by homothety with center f(p) that a ball of radius ÆR1=(d(f(p); f(q)) +
R2) lies in Kq;R2

\BR1
(f(p)). Therefore 2 implies 3. �

Next we introduce convex bodies K 0
p;R that vary lower semicontinuously in p. The

Kp;R lack this property, as may be seen in Figure 6.

Proposition 6.2. For R < Rp(f), there is a convex body K 0
p;R � Kp;R de�ned by

K 0
p;R = lim

�!0
Kp;R+�:

If R(f) > 0, then for any R < R(f), the convex bodies K 0
p;R vary lower semicon-

tinuously with p. That is, for any convergent sequence K 0
pi;R

where pi ! q, we

have

K 0
q;R � lim

i!1
K 0
pi;R

:

Proof. By Lemma 6.1.2, the convex bodiesKp;R+�\BR(f(p)) increase monotonically

as � decreases, which proves the �rst claim of our proposition.

For the second claim, �x a sequence �i ! 0. Since K 0
pi;R

= lim�!0Kpi;R+�,

then we may choose a sequence Æi ! 0 such that limi!1K 0
pi;R

= limi!1Kpi;R+Æi .
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By passing to a subsequence of the pi, we may also assume that BR+Æi(f(pi)) �
BR+�i(f(q)). Then

K 0
q;R = lim

i!1
Kq;R+�i = lim

i!1
Kq;R+�i \BR+Æi(f(pi))

� lim
i!1

Kpi;R+Æi = lim
i!1

K 0
pi;R

:

Here, the inclusion is by Lemma 6.1.2. The second equality is by the following

property of compact convex bodies: if Ci ! C � B and Bi ! B, then Ci \ Bi !

C. �

Proposition 6.3. Suppose that M is compact. Let P � Rn+1 be a convex polyhe-

dron such that f(@M) � intP . Let fP be the corresponding clipping of f , as de�ned
in Proposition 4.4. Then R(fP ) > R(f)=2:

Proof. Let p 2 M , and U = Up;R=2 be the component of f�1P (BR=2(fP (p))) which

contains p. Further, let M+ := f�1(P ). There are two cases to consider: either (i)

U \M+ = ;, or (ii) U \M+ 6= ;:
(Case i) Suppose U \M+ = ;. The convex embedding of P in Rn+1 has in�nite

radius of convexity, hence has a convex piece of radius R=2 at every point by Lemma

6.1.1. By assumption, fP has the same convex piece of radius R=2 centered at p.
(Case ii) Suppose U \M+ 6= ;. Let q 2 U \M+. Then clipping by P does not

reduce the radius of convexity at q: Rq(fP ) > Rq(f) = R. Thus R is the radius of

a convex piece for fP centered at q. We have BR=2(f(p)) � BR(f(q)). Since q lies

in Up;R=2, then p lies in Uq;R (where Uq;R and Up;R=2 are both de�ned relative to the

map fP ). Now the claim follows from Lemma 6.1.1, applied to fP . �

Proposition 6.4. Let P � Rn+1 be a convex polyhedron such that f(@M) � intP .
SupposeM is compact, f is one-sided, and intC 6= ;, where C := conv f(@M). Then

there exist R > 0; � > 0 and Æ > 0, all independent of P , such that if distH(P;C) 6
�, then rR(fP ) > Æ.

To prove this we use the following lemma.

Lemma 6.5. Let M be compact and f : M ! Rn+1 be a one-sidedly locally convex

immersion whose restriction to each component of @M is an embedding. Suppose

that intC 6= ;, where C := conv f(@M). Let f(p) 2 @C, and Up be a neighborhood

of p in fM such that ef(Up) � @Kp, for some convex body Kp � Rn+1 lying on the

positive side of f(Up). Then Kp \ intC 6= ;.

Proof. First note that, for p 2 f�1(@C), the condition Kp \ intC = ; is meaningful

in the sense that it holds for every choice of Up and Kp if it holds for any choice.

This is because f(p) 2 Kp \C, Kp \C is convex, and the side of f on which Kp lies

is determined.

Let X 0 be a component of the set

f p 2 f�1(@C) j Kp \ intC = ; g:

Since the conditionKp\intC = ; is both open and closed on the points p 2 f�1(@C),

it follows that X 0 is also a component of f�1(@C). Since @M � f�1(@C), then X 0

contains every component of @M that it intersects.
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We must show X 0 = ;. For any p 2 X 0, we denote by Hp a hyperplane that sepa-

rates Kp and C; that is, Kp and C lie in the opposite closed half- spaces determined

by Hp, say C � H+
p and Kp � H�

p . Since C and Kp are both convex, the existence

of a separating hyperplane follows from a well-known theorem in convexity.

Suppose there exists p0 2 X 0, and set H = Hp0 for some choice of Hp0 . Let X

be the component of f�1(H) containing p0. Then (as in the proof of Lemma 3.7)

the positive side of f is locally supported on a �xed side of H at every point of X.

Since C lies on the other side of H, it follows that (X \ @M) � X 0.

We denote by @M�, any component of @M that intersects X. Then X 0 intersects

@M�, so X
0 � @M�. Now observe that the condition

int@C(Kp \ @C) 6= ;

is open and closed on the points p ofX 0. Moreover, since @M� is compact, there must

exist a point q 2 @M� such that f(q) is contained in the interior of no line segment in

f(@M�); for instance, we may let q be a point which is a maximizer for the distance

of f(@M�) from any �xed point in Rn+1. It follows that int@C(Kq \ @C) 6= ;; for,

otherwise, f(@M� \ Uq) would lie in an aÆne subspace of Hq and f(q) would lie

in the interior of a line segment in f(@M�). Therefore int@C(Kp \ @C) 6= ; for all

p 2 @M�. Consequently, the choice of Hp is uniquely determined for all p 2 @M�.

But then Hp is locally constant and hence constant on @M�, so Hp = H. Therefore

f(@M�) � H, and @M� � X. We conclude that X contains every component @M�

of @M that intersects X. Therefore by Lemma 3.7, the restriction of f to X is an

embedding onto a compact convex subset KH of H with �nitely many open subsets

D� of intKH removed, where D� has boundary f(@M�).

Let H� denote the halfspace determined by H that does not contain C. Then

X has a neighborhood V in M such that f(V �X) � intH�. We denote by Ht, a

hyperplane parallel to H and lying in H� at distance t from H, and by H�
t , the side

of Ht that lies in H. For t suÆciently small, we may choose V to be a component

of f�1(H+
t ). But by Lemma 4.3, f�1(H+

t ) is connected. It follows that @M � V ,
and hence @M � X. In particular, f(X) is a convex body in H.

Let Yt be the closure of the component of f�1(intH�
t ) that intersects V . By

Lemma 4.2, f embeds the Yt onto nested convex caps as t! 0. Therefore f embeds

the union of the Yt onto a convex cap with boundary f(@X). Thus (
S
Yt) [X is a

compact manifold with boundary, and M = (
S
Yt) [X. But then f(@M) � H, in

contradiction to the assumption intC 6= ;. �

Proof(Proposition 6.4). Choose R 2 (0; R(f)=4). Set C := conv f(@M), and MC :=

f�1(C). By Lemma 6.5, for the immersion f , the condition K 0
p;R \ intC 6= ;

holds for every p 2 MC . Further, by Proposition 6.2, the convex bodies K 0
p;2R

vary lower semicontinuously in p. Together, these facts imply that for every p in

some neighborhood W in fM of MC , there is a Euclidean ball of radius Æ0 > 0 in

K 0
p;2R \ intC, where Æ0 is independent of p.

Now de�ne

M�
� := f p 2M j distf (p;MC) > � g;
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where distf denotes the intrinsic distance induced on M by f . Let

�(�) := inf
p2M�

�

dist(f(p); C);

where dist denotes the standard distance in Rn+1. Then �(�) > 0 because M�
� is

compact and f(M�
� ) \ C = ;.

Now choose �0 > 0 so that M �M�
�0
� W , and set �0 = �(�0). Let P be any

convex polyhedron such that C � intP , and distH(P;C) 6 �0: By Proposition 6.3,

R(fP ) > 2R.
Set

M+ := f�1P (intP ):

Since M+ �W , then for the immersion f there is a Euclidean ball of radius Æ0 > 0

in K 0
p;2R\ intC, and hence in Kp;2R\ intC, where Æ0 is independent of p 2M+ But

since C � intP , it follows from the de�nition of the clipping fP that Kp;2R \ intC
is the same for fP as it is for f . Therefore rp;2R(fP ) > Æ0 for all p 2M+.

Let UR(p) be the open distance ball about p 2 M with radius R in fM , with

respect to the metric induced by fP . As in the proof of Proposition 6.3, we consider

two cases: either (i) UR(p) \M
+ = ;, or (ii) UR(p) \M

+ 6= ;:
(Case i) Suppose UR(p) \ M+ = ;. Then fP (UR(p)) � P , and consequently

rp;R(fP ) = inradius(BR(fP (p)) \ P ). Choose 0 < �1 < R, and set

Æ1 := inffinradius(BR(x) \ C) j dist(x;C) 6 �1g:

Note that Æ1 > 0, becauseBR(x)\C depends continuously on x. Now if distH(P;C) �
�1, we have

rp;R(fP ) = inradius(BR(fP (p)) \ P )

> inradius(BR(fP (p)) \ C) > Æ1;

where Æ1 is by de�nition independent of P .
(Case ii) Suppose UR(p) \M+ 6= ;. Let q 2 UR(p) \M+. Then rq;2R(fP ) > Æ0,

where recall that Æ0 depends only on some �xed neighborhood W of MC in fM . In

particular, Æ0 is independent of P . By Lemma 6.1.3, rp;R(fP ) > Æ0=3.
Thus we have proved the proposition for 0 < R < R(f)=4, � := minf�0; �1g, and

Æ = minfÆ0=3; Æ1g, which are all positive and independent of P . �

7. Convergence and Finiteness Theorem

Here we prove a noncollapsing convergence theorem for a sequence of locally con-

vex immersed hypersurfaces, fk : Mk ! Rn+1. This result occupies a place between

the Blaschke selection theorem and the Cheeger-Gromov compactness theorems for

abstract Riemannian manifolds. Namely, it is an extrinsic analogue of the \Conver-

gence Theorem of Riemannian Geometry"([27, Pg. 300]). Condition 1 below plays

the role of the bounds on injectivity radius and sectional curvature in that theorem.

A corollary of Theorem 7.1 is a bound on the number of homeomorphism classes

of locally convex, compact immersed hypersurfaces having �xed boundary and uni-

form bounds on radius of convexity, inradius of convexity and volume. By contrast,

under the special boundary conditions of Theorem 1.2, we have at most two such
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classes, independently of such bounds. Note that �niteness theorems for Lipschitz

homeomorphism classes can be derived in a more abstract Gromov-Hausdor� set-

ting; see Petersen [27, p. 299], with reference to papers of Siebenmann and Sullivan

in [7]. However, our setting is suited to a simpler approach.

Our framework for Theorem 7.1 allows a highly intuitive (if unavoidably technical)

proof. The ingredients include: convergence of local convex pieces, by Blaschke

selection; locally de�ned vector �elds radiating from the centers of inradius balls in

the limit convex pieces; and patching together these local vector �elds to obtain a

Lipschitz vector �eld vk that is strongly transverse to fk. Thus we use the Lipschitz
structure of locally convex immersions, and our uniform radius of convexity bounds,

to construct uniform, locally embedded collars for the fk. For k suÆciently large,

this collar structure yields explicit bi-Lipschitz homeomorphisms and convergence

of immersions.

For each fk, we �x a locally convex extension efk : fMk ! Rn+1. Set edk := dist
ef
k

,

and dk := edkjMk �Mk. Recall that a �- net in a metric space M is a collection of

points pi 2M such that every point of M is at distance less than � from some pi.

Theorem 7.1. Let Mk be a sequence of compact n-manifolds whose boundaries

@Mk, which we assume nonempty, are homeomorphically identi�ed. Let fk : Mk !

Rn+1 be a sequence of one-sidedly locally convex immersions that are �xed on the

boundary. Assume:

(1) there is a uniform lower bound R > 0 for the radii of convexity R(fk), such
that the corresponding inradii of convexity rR(fk) also have a uniform lower

bound r > 0,

(2) for any � > 0, the number of elements in some �-net for the metric dk on

Mk has a uniform upper bound.

Then there exists a one-sidedly locally convex immersion f : M ! Rn+1 with locally

convex extension ef : fM ! Rn+1 , and neighborhoods Nk of Mk in fMk, such that

after passing to a subsequence, there are homeomorphisms fk : M ! Mk with bi-

Lipschitz extensions hk : fM ! Nk (Lipschitz constants depending only on R and r),
such that fk Æ hk ! f .

We begin with an elementary lemma:

Lemma 7.2. Suppose K is a convex body in Rn+1, and Br(y) � K � BR(x). Then:

(1) for some �0 = �0(R; r) > 0, and for any z1 2 @K, K contains the truncated

spherical cone

Tz1 := f z2 2 R
n+1

j k z2 � z1 k� r; \z2z1y � �0 g;

(2) projection from y determines a distance-nonincreasing, bi-Lipschitz homeo-

morphism �y : @K ! @Br(y), where the Lipschitz constant is determined by

R and r.

Proof. Since K � B2R(y), without loss of generality we take x = y.
1. Set �0 := sin�1(r=R) = half the angle subtended by Br(y) from a point on

@BR(y). Clearly this is the required angle bound.
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2. Given a segment 
 in BR(y), we denote its length by ` and its angle subtended

at y by �. Since d@K is induced from Euclidean distance, it suÆces to show that there

is an upper bound in terms of R and r for the ratio `=� taken over all suÆciently

short segments 
 whose chords do not enter Br(y). For a given `, the smallest

subtended angle, say �(`), occurs when 
 lies on the boundary of the cone over

Br(y) from a point on @BR(y) and 
 has an endpoint at the cone point. As in

part 1, the cone angle is 2� = 2 sin�1(r=R). Since tan�(`) = ` sin �=(R� ` cos �), it
follows that

lim
`!0

`=�(`) = lim
`!0

`= tan�(`) = R2=r:

�

Proof (Theorem 7.1). Let fpki g be a �nite �-net for dk on Mk (k = 0; 1; : : :), where
� will be speci�ed below. By condition 2, we may assume the number of points in

fpki g, say m(�), is independent of k. By condition 1, for each efk there is a convex

piece of Euclidean radius R centered at every point of Mk. In particular, there is

such a convex piece Kk
i for efk centered at pki . By de�nition, this means that Kk

i is

a convex body in BR(fk(p
k
i )), and

efk embeds an open neighborhood Uk
i �

fMk of p
k
i

onto @Kk
i \ intBR(fk(p

k
i )). In this proof, we shall refer to the neighborhood Uk

i as

a convex piece of fMk.

By condition 1, each Kk
i contains some ball Br(y

k
i ). Since intrinsic distance is

not less than extrinsic distance, Uk
i contains the open edk-ball in fMk of radius R

centered at pki . Note that two di�erent points of fMk having the same efk-image lie

at edk-distance at least R from each other.

By passing to iterated subsequences, we may assume the following net convergence

properties. For each �xed i, the sequence fk(p
k
i ) converges to a point xi 2 Rn+1,

the sequence yki converges to a point yi 2 R
n+1, and the convex bodies Kk

i converge

to a convex set Ki in BR(xi). Moreover, for each i and j, we may assume that the

distances edk(p
k
i ; p

k
j ) converge. These follow from condition 2 and the assumption of

�xed boundary, which together con�ne the images of the fk to a bounded region.

SinceKi contains Br(yi), Ki is a convex body. Further we may assume, after passing

to a subsequence, that Kk
i contains Br=2(yi), for all i and k.

Let Si = @Ki \ intBR(xi), so Si is an embedded convex hypersurface in the

interior of the ball BR(xi). Let dUk

i

(resp. dSi) denote the intrinsic distance on Uk
i

(resp. Si). Let B
k
R=2

(pki ) (resp. B
Si
R=2

(xi)) denote the corresponding closed distance

balls. If qk; rk 2 Bk
R=2

(pki ), then qk and rk are joined by a edk-minimizer whose efk-

image cannot touch the boundary of BR(xi). Therefore edk(qk; rk) = dUk

i

(qk; rk) =

d@Kk

i

(fk(qk); fk(rk)). Suppose efk(qk) ! z1, efk(rk) ! z2, where qk; rk 2 Bk
R=2(p

k
i )

and z1; z2 2 Si. Then dSi(z1; z2) = d@Ki
(z1; z2). Since d@Kk

i

(fk(qk); fk(rk)) converges

to d@Ki
(z1; z2) (see [5, p. 81] or [3]), we have the following distance convergence

formula:
edk(qk; rk)! d@Ki

(z1; z2):
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It is convenient to de�ne a Lipschitz atlas, on an open subset of fMk containingMk,

by using the central projections �i : R
n+1 � Br=2(yi) ! @Br=2(yi) from the points

yi; or what is the same, the nearest-point projections to Br=2(yi). Speci�cally,

by Lemma 7.2.2, the map �ki = �i Æ efk : Bk
R=2

(pki ) ! @Br=2(yi) is a distance-

nonincreasing, bi-Lipschitz homeomorphism, with Lipschitz bound depending only

on R and r, from Bk
R=2

(pki ), under the metric edk, onto its image in @Br=2(yi).

Now we specify a net size �, depending only on r and R, as follows. For all k

and i, the image �i(B
Si
R=2

(xi)) contains a ball of some radius 5� > 0 about �i(xi) in

@Br=2(yi). Thus � < R=10. Let V k
i (resp. V 0ki ) be the corresponding preimage in

Bk
R=2

(pki ) under �
k
i of the open ball of radius 3� (resp. 2�) about �i(xi) in @Br=2(yi).

We may assume Bk
�(p

k
i ) � V 0ki and Bk

2�(p
k
i ) � V k

i � Bk
R=2

(pki ). Regarding the V
k
i as

chart neighborhoods, with bi-Lipschitz chart maps onto balls in @Br=2(yi), we obtain

a Lipschitz atlas on the union of the V k
i carrying the metric edk. The transition

functions are bi-Lipschitz with constants depending only on R and r. Moreover, on

chart neighborhoods, edk is bi-Lipschitz equivalent to the chart distance, by Lemma

7.2.2. Therefore, since � is a Lebesgue number for the atlas fV k
i g, then

edk(p; q) < �
implies

(7.1) edk(p; q) < c0j efk(p)� efk(q)j;

where c0 depends only on R and r.
Since �ki is distance-nonincreasing, we may pull back an appropriate function on

the 3�-ball about �i(xi) in @Br=2(yi) by efk, to obtain a Lipschitz function �ki :

V k
i ! [0; 1], taking value 1 on V 0ki and 0 on the complement of a neighborhood of

V 0ki whose closure lies in V k
i , where the Lipschitz constant depends only on R and

r. Then we may de�ne a vector �eld vk as follows. Let vki : V k
i ! Rn+1 be the

radial vector �eld vki (p) := j efk(p)� yij
�1( efk(p)� yi). Lemma 7.2.2 states that vki is

Lipschitz. Therefore vk = �0�i�m(�)�
k
i v

k
i is a Lipschitz vector �eld de�ned on the

union of the V k
i . Since the Lipschitz constants of the �ki and vki depend only on

R and r, as does the number of summands m(�) by condition 2, then so does the

Lipschitz constant of vk. Thus by (7.1), if edk(p; q) < � then

(7.2) jvk(p)� vk(q)j � c1 edk(p; q) � coc1j efk(p)� efk(q)j:

By the assumption of one-sided local convexity, at any point p in the union of the

V k
i , the convex hull of the rays determined by the unit vectors fvki (p) : p 2 V k

i g is an

outward-pointing convex cone, which is supported by any support hyperplane for efk
at p. By Lemma 7.2.1, there is a positive lower bound, �0, for the angle between this
cone and any support hyperplane at p. Therefore there is a positive lower bound,

depending only on R and r, for the length of vk(p) for any p in the union of the V 0ki .

Let Nk denote the union of the V 0ki , and de�ne Gk : Nk � [��; �]! Rn+1 by

Gk(p; t) := efk(p) + tvk(p):

Now we prove:
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Claim (y) there exist Æ 2 (0; R) and � > 0 such that for every k and every

p 2 Nk, the restriction of Gk to Bk
Æ (p)� [��; �] is an embedding.

By (7.1), we may choose Æ0 satisfying 0 < Æ0 < min(�; r), independently of k

and p 2 Nk, so that Bk
�(p) contains a convex piece Uk

p of fMk of Euclidean radius

Æ0. That is, there is a convex body Kk
p � BÆ0(

efk(p)) such that efk embeds Uk
p onto

@Kk
p \ intBÆ0(

efk(p)). Since Æ0 < �, we have Kk
p � (Kk

i \ BÆ0(
efk(p)) whenever

p 2 V k
i , and hence whenever �ki (p) 6= 0. Therefore by Lemma 7.2.1, for any i such

that �ki (p) 6= 0, the convex body Kk
p contains the truncated spherical cone with

vertex efk(p), radius Æ0, angle �0 and axis vector �vki (p). Therefore K
k
p contains the

convex hull of these truncated cones. It follows that there is a uniform Æ; 0 < Æ < Æ0,

such that Kk
p contains a truncated cone T k

p with vertex efk(p), radius Æ, angle �0 and

axis vector �vk(p). In particular, if edk(p; q) < Æ, then the angle between the line

Lk(p) := f efk(p) + tvk(p)j t 2 Rg and the vector efk(q)� efk(p) is at least �0.

Now, writing z = efk(p), Claim (y) may be rephrased as follows. For vectors

z1; z2; v; w 2 Rn+1, suppose jv � wj � c0c1jz2 � z1j, and the angle � between v and

z2 � z1 satis�es 0 < �0 � � � � � �0. Then there exists � > 0 such that js2j > �
whenever z2+ s2v2 lies on the line fz1+ s1v1g. To verify this, we may work without

loss of generality in R2, with z1 = (0; 0); v = (a; 0); z2 = t(cos �; sin �) where t > 0,

and z2 + s2w = (b; 0). Then the second component of v � w is �t sin �=s2, and so

t sin �0=js2j � t sin �=js2j � c0c1t:

Thus we may take � = sin �0=c0c1, and Claim (y) is veri�ed.

Now we specify a new uniform net size �0 = Æ=10, for Æ as in (y). Recall Æ < � <

R=10. We pass to a subsequence, also denoted by efk, with �0-nets fp
k
i g satisfying

the net convergence properties.

We may assume the Euclidean Hausdor� distance between the convex bodies

Ki and Kk
i is as small as we please, uniformly in k and i, and similarly for the

hypersurfaces efk(B
k
R=2

(pki )) and BSi
R=2

(xi). We have seen that for p 2 Nk, the line

Lk(p) := f efk(p) + tvk(p)jt 2 Rg is the axis of a truncated spherical cone T k
p of

uniform size, where T k
p has vertex efk(p) and lies in Kk

p . Moreover, by construction,

vk(q) is arbitrarily close to v0(p) if efk(q) is suÆciently close to ef0(p). It follows that

if p 2 B0
Æ (p

0
i ), then we may assume the segment f ef0(p)+ tv0(p)j � � � t � �g strikes

efk(B
k
R=2

(pki )) once only, at an angle bounded away from zero uniformly in k and

i. Therefore each pki has a neighborhood W k
i , where B

k
�0
(pki ) � W k

i � Bk
R=2

(pki ),

for which efk(W
k
i ) is the G0-image of a section of B0

2�0
(p0i )� [��; �]. Moreover, this

section has Lipschitz height function over the zero section, with Lipschitz constant

independent of i and k.
Thus there is a bi-Lipschitz homeomorphism hki : W

0
i !W k

i , whereW
0
i = B0

2�0
(p0i ).

Rede�ne the neighborhoodNk ofMk in fMk byNk := [iW
k
i . We now de�ne a map ehk

ofN0 ontoNk by setting ehk(p) := hki (p) if p 2W 0
i . To see that

ehk is well-de�ned (and
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hence continuous), observe that if p 2W 0
i \W

0
j , then

ed0(p
0
i ; p

0
j) < 4�0. Therefore we

may assume edk(p
k
i ; p

k
j ) < 5�0 and edk(h

k
i (p); h

k
j (p)) < 10�0 < R. Therefore hki (p) and

hkj (p) lie on a convex piece of fMk with efk(h
k
i (p)) =

efk(h
k
j (p)), hence h

k
i (p) = hkj (p).

The reverse argument shows that if ehk(p) = ehk(q) then ed0(p; q) < 10�0 = Æ, and so

p = q. Therefore ehk is one-to-one. Thus ehk is a bi-Lipschitz homeomorphism of N0

onto Nk, with uniform Lipschitz constants. Moreover, we have constructed a map

Fk : Nk ! N0� [��; �] for which Fk Æehk is a section of the bundle N0� [��; �]. Now

the image of the limit section (which exists by construction) is our manifold fM , and

the restriction of G0 to fM is our immersion ef . The composition of the projection

from fM to N0 with ehk give the desired bi-Lipschitz equivalences of fM with Nk; by

abuse of notation, we denote these maps by ehk as well. �

Note 7.3. In Theorem 7.1, we may substitute for condition 2, the condition that

the Mk have uniformly bounded volume. Indeed, if condition 2 fails, then for some

� > 0, the number of disjoint balls of radius �=2 in Mk has no uniform bound. It

easily follows from condition 1 and Lemma 7.2.1 that there is no uniform bound on

volume.

8. Global Convexity; Gluings

The following proposition is key to proving the CHP, since a limit of clippings

will satisfy its hypotheses:

Proposition 8.1. Let f : M ! Rn+1 be a locally convex immersion of a compact

manifold M , and suppose that:

(1) f is one-to-one on each component @M� of @M ,

(2) f(@M) lies on the boundary of a convex body C,
(3) @M has a neighborhood V in M such that f(V ) � C,
(4) f is one-sided on V .

Then f is a convex embedding.

Proof. Let �� := f(@M�). @C is homeomorphic to Sn�1. So, by the generalized

Jordan-Brouwer separation theorem [2, p. 353{355], @C � �� has exactly two com-

ponents, say D�
� and D+

� , and �� is the boundary of each:

@C � �� = D+
� [D�

� :

(Part 1) First, we show how D�
� and D+

� may be distinguished from each other.

Let ef be a locally convex extension of f to a manifold fM without boundary. Cover

@M� by �nitely many open sets Ui in fM such that: ef jUi is an embedding on the

boundary of a convex body Ki in R
n+1, where Ki lies on the positive side of ef(Ui);

and Ui \ intM � V is connected.

(Case (i)) Suppose Ki \ intC 6= ; for some Ui, and hence for all Ui. (Here we

are using the fact that the condition Kp \ intC = ; is both open and closed on

the points p 2 @M .) By convexity, for any x 2 intKi \ intC, the rays through x
determine a homeomorphism �ix of @Ki onto @C, where the restriction of �ix to
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ef(Ui \ @M) is the identity. De�ne D�
� to be the component of @C � �� that does

not contain the connected set �ix(f(Ui\ intM)). Since �ix varies continuously with
x 2 intKi \ intC, this choice of D�

� is independent of x 2 intKi \ intC. Moreover,

the choice of D�
� is independent of i. To see this, suppose p 2 @M \ Ui \ Uj .

Since ef(Ui \ Uj) lies on @(Ki \Kj), then some neighborhood in Ki of ef(p) lies in

Ki \Kj. Since ef(p) lies in C and Ki \ C is a nonempty convex body, then every

neighborhood in Ki of ef(p) intersects intC. Therefore intKi \ intKj \ intC 6= ;.

For x 2 intKi\ intKj \ intC, the choices of D
�
� respectively determined by �ix and

�jx agree. Since @M� is connected, it follows that the choices of D�
� determined by

any choices of i and j agree.
(Case (ii)) Suppose Ki \ intC = ; for all Ui. Since f(Ui \ M) � Ki \ C,

then f(Ui \M) lies in a hyperplane Hi separating Ki and C. Furthermore, Hi is

independent of i, say Hi = H. Thus @M� has a connected neighborhood U 0 in M
which is embedded by f into @C \H. Let D�

� be the component of @C � �� that

does not contain f(U 0 [ intM).

Thus we have de�ned D�
� for every �.

(Part 2) Now let M be the closed manifold obtained by gluing the closure of

D�
� , for each �, to M along @M�. Further, let f be the natural extension of f to

M . It suÆces to show that f is locally convex at the points of @M�. Then f is

locally convex everywhere, and by the theorem of van Heijenoort (Lemma 4.1), f ,
and consequently f , is a convex embedding.

Let p 2 @M�\Ui. In case (ii), f is locally convex at p because a neighborhood of

p in M is embedded on @C. In case (i), let U i be a neighborhood of p in M , where

U i \M � Ui \M . Then f(@M�\U i) lies on the boundary of the nonempty convex

body intKi \ intC, and f(U i) lies in C.

Our choice of D�
� implies that f(U i \ intM) and f(U i \ D�

� ) do not intersect,

since �ix(f(Ui \ intM))\D�
� ) = ;. Therefore f is one-one on U i. Moreover, f(U i)

is the graph of a continuous radial distance function in polar coordinates about

x 2 intKi \ intC. Thus for a suÆciently small Euclidean ball B about f(p), f(U i)

separates B into two components. Let B+ be the closure of the component that

contains all segments joining x 2 intKi \ intC \ intB to the points of f(U i) \ B.
For B suÆciently small, B+ � C. Suppose a line segment 
 with endpoints in B+

leaves B+. Since 
 does not leave C or B, then 
 must �rst leave B+ and last

reenter B+ by leaving and entering Ki at points of f(Ui \M). This is impossible

since Ki is convex. Therefore f is locally convex at p, as required. �

9. Proof of the Main Theorems

We begin by showing that the strong CHP follows from the CHP:

Proposition 9.1. Suppose all locally convex immersions f : M ! Rn+1 (M com-

pact) that ful�ll conditions 1-3 of Theorem 1.2 possess the CHP. Then those that are

locally strictly convex on a neighborhood of the boundary possess the strong CHP.

Proof. We assume intC 6= ;, since otherwise the strong CHP holds by Theorem 5.1.

Suppose f : M ! Rn+1 satis�es conditions 1-3, and f is locally strictly convex on
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a neighborhood in M of @M . By assumption, f(M) \ intC = ;. Assume, toward

a contradiction, that there exists a point p 2 intM such that f(p) 2 @C. Then f
locally supports C at p, either on the positive side of f (case (i)), or on its negative

side (case (ii)). In case (i) there is a hyperplane H that supports C and locally

supports the positive side of f at p, both in the same side, say H+. In case (ii),

there is a hyperplane H that supports C in one side, say H�, and locally supports

the positive side of f at p in H+.

In either case, let X � M be the connected component of f�1(H) containing p.
By the strict local convexity assumption, X � intM . By Lemma 3.4, f embeds X
onto a closed convex subset of H. Then X has a neighborhood U in intM , where U
is a manifold with boundary satisfying f(U) � H+ and f(@U) � intH+. Let d be

the distance of f(@U) to H, and let H� be a hyperplane in intH+ that is parallel

to H at distance less than d.
(Case (i)) Denote by H�

� , the side of H� containing H. Now we de�ne a locally

convex immersion f� of M that agrees with f on the complement of U \ f�1(H�
� ).

Namely, we clip the restriction of f to U by H+
� , as in Proposition 4.4. if H� is

suÆciently close to H then f�(M) intersects intC. But this is a contradiction,

because f� and M satisfy conditions 1-3 of Theorem 1.1, and therefore possess the

CHP.

(Case (ii)) In this case, we denote by H+
� , the side of H� containing H. By con-

struction, the component of f�1(intH+
� ) containing p lies in U , and hence in intM .

Moreover, f(@M) � intH+
� . Therefore f

�1(H+
� ) is not connected, in contradiction

to Lemma 4.3. �

We need the following elementary lemma; for a proof, see [30, p. 55].

Lemma 9.2. Let K � Rn+1 be a bounded convex set. Then for every � > 0 there

exists a convex polyhedron P � Rn+1 such that K � intP and distH(K;P ) 6 �.

Proof(Theorems 1.1 and 1.2). If f satis�es the hypothesis of Theorem 1.1, then, by

Proposition 3.3, f is one-sidedly locally convex. Furthermore, since by assumption

f has positive curvature on @M , f is locally strictly convex on a neighborhood inM
of @M . Thus f satis�es all the hypothesis of Theorem 1.2. So it remains to prove

Theorem 1.2.

Suppose that f satis�es the hypothesis of Theorem 1.2. Then, by Condition 2,

either f is one-sided or is locally strictly convex on a neighborhood in M of @M .

But recall that, by Proposition 3.5, strict convexity on the boundary implies one-

sidedness. So we may assume that f is one-sided.

First assume intC 6= ;. By Lemma 9.2, for every k 2 N , there exists a convex

polyhedron Pk such that C � intPk, and distH(Pk; C) 6
1
k . Let fk := fP

k
be

the clipping of f by Pk, as de�ned in Proposition 4.4. By Propositions 6.3 and

6.4, the radii of convexity of fk have uniform bounds. Further, recall that, by

Proposition 4.4, fk is distance-nonincreasing. Hence, by Theorem 7.1, we obtain

a limit immersion of M , say f 0. Since f 0 satis�es the hypotheses of Proposition

8.1, f 0 is a convex embedding. That is, f 0(M) lies on the boundary of its convex

hull: f 0(M) � @ conv f 0(M). So f 0(M) \ int conv f 0(M) = ;, and it follows that
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f 0(M)\int conv f 0(@M) = ; as well. But note that f 0(@M) = f(@M). Thus we have

f 0(M) \ intC = ;. Therefore, since by construction f 0(M) \ intC = f(M) \ intC,
it follows that f(M) \ intC = ;. Further, if f is locally strictly convex on a

neighborhood in M of @M , then, by Proposition 9.1, f(intM) \ C = ;, which

completes the proof of the convex hull property.

The auxiliary result with regard to the topology of M now easily follows. To see

this, it is enough to note that f 0(M) � @C, because by construction f 0(M) � C,
and, as we showed above, f 0(M) \ intC = ;. Thus, since f 0 is an embedding and

f 0(@M) = f(@M),M is homeomorphic to the closure of a component of @C�f(@M).

Now consider the case intC = ;. Then @M lies in a hyperplane H, and C is a

convex body in H. By Theorem 5.1, if f is locally strictly convex on a neighborhood

in M of @M , then f satis�es the conclusions of Theorem 1.2. It only remains to

show that if f is merely one-sidedly locally convex, then f is an embedding on

@M . Moreover, M may still be regarded as being homeomorphic to the closure of a

component of @C � f(@M) with boundary f(@M), provided that we interpret @C
to be the homeomorph of a doubly covered n-disk.
Take a component @M1 of @M . Then (i) there exists a neighborhood V of @M1 in

M such that f(V �@M1) lies in an open halfspace intH�, or (ii) there exists a point

p 2 @M1 and a neighborhood U of p in fM such that H is a supporting hyperplane

for ef(U). In case (ii), let X be the component of f�1(H) which contains @M1. Then

X contains every component @M� of @M that intersects X. By Lemma 3.7, the

restriction of f to X is an embedding onto a compact convex body KH of H with

open subsets D� of intKH removed. If there are no such D�, then @M1 = @M�

and f embeds M into C, so we are done. Otherwise, X has a neighborhood V in

M such that f(V �X) lies in an open halfspace intH�.

In either case, let Ht, 0 < t < �, be the hyperplane parallel to H in H� at distance

t from H. For t suÆciently small, let H�
t be the halfspace determined by Ht that

lies in H�, and Yt be the closure of the component of f�1(intH�
t ) that intersects

V . By Lemma 4.2, f embeds the Yt onto nested convex caps as t! 0. Therefore f
embeds the union of the Yt onto a convex cap, with boundary f(@M1) in case (i),

and with boundary f(@X) in case (ii). In case (i),
S
Yt is a compact manifold with

boundary @M1, and M =
S
Yt. In case (ii), (

S
Yt) [X is a compact manifold with

boundary
S
@M��X

@M�, and M = (
S
Yt) [X. In either case, the restriction of f

to @M is an embedding. �

Note 9.3. When @M is connected, the image of @M limits the topology of M to

at most two choices by the generalized Jordan-Brouwer separation theorem [2, p.

353{355]. If @M has more than one component, then the topology of M is uniquely

determined, because then @C � f(@M) has at most one connected component that

is bounded by f(@M). If @M has only one component but that component is home-

omorphic to Sn�1, then the topology of M is again uniquely determined. Indeed, if

the closure of each component of @C � f(@M) is a manifold with boundary, then

each is homeomorphic to a ball by the generalized Scho�en
ies theorem.
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