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2.10 Measure of C1 maps

If X is a topological space, we say that A ⊂ X is dense is X provided that
A = X, where A denotes the closure of A. In other words, A is dense in X
if every open subset of X intersects A.

Theorem 1. Let f : Mn → Nm be a C1 map. Suppose that m > n. Then
N − f(M) is dense in M .

To prove the above result we need to develop the notion of measure zero,
which is defined as follows. We say that C ⊂ Rn is a cube of side length λ
provided that

C = [a1, a1 + λ] × · · · × [an, an + λ],

for some a1, . . . , an ∈ Rn. We define the mesure or volume of a cube of side
length λ by

µ(C) := λn.

We say a X ⊂ Rn has measure zero if for every ε > 0, we may cover X by a
family of cubes Ci, i ∈ I, such that

∑
i∈I µ(Ci) ≤ ε.

Lemma 2. A countable union of sets of measure zero in Rn has measure
zero.

Proof. Let Xi, i = 1, 2, . . . be a countable collection of subsets of Rn with
measure zero. Then we may cover each Xi by a family Cij of cubes such that∑

j Cij < ε/2i. Then
∞∑
i=1

∑
j

Cij =
∞∑
i=1

ε

2i
= ε.

Since ∪iXi ⊂ ∪ijCij, it follows then that ∪iXi has measure zero.
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Lemma 3. If U ⊂ Rn is open and nonemepty, then it cannot have measure
zero.

Proof. By definition, for evey point p ∈ U there exists r > 0 such that
Br(p) ⊂ U . Thus, since U �= ∅, U contains a cube C (of side length λ ≤
2r/

√
n). Suppose there is a covering of U by a family of cubes. Then, since

C is compact, there exists a finite subcollection Ci, i = 1 . . . , m which cover
C. Let N be the number of integer lattice points (i.e., points with integer
coefficients) which lie in C, then(

max(0, λ − 1)
)n ≤ N ≤ (λ + 1)n.

Similarly, if N − i is the number of integer lattice points in Ci and and Ci

has edge length λi, then(
max(0, λi − 1)

)n ≤ Ni ≤ (λi + 1)n.

Now note that, since Ci cover C, that N ≤
∑m

i=1 Ni. Thus,

(
max(0, λ − 1)

)n ≤
m∑

i=1

(λi + 1)n.

Next note that if we scale all the cubes by a factor of k, and let Nk, Nk
i

denote the number of lattice point in kC and kCi respectively, we still have
Nk ≤

∑m
i=1 Nk

i . Thus it follows that

(
max(0, kλ − 1)

)n ≤
m∑

i=1

(kλi + 1)n,

for any k > 0. In particular, assuming k ≥ 1/λ, we have

(kλ − 1)n ≤
m∑

i=1

(kλi + 1)n,

which in turn yields (
λ − 1

k

)n

≤
m∑

i=1

(
λi +

1

k

)n

.
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Taking the limit of both sides as k → ∞ yields

λn ≤
m∑

i=1

λn
i =

m∑
i=1

µ(Ci).

Thus the total measure of any covering of U by cubes is bounded below by
a positive constant, and therefore, U cannot have measure zero.

Lemma 4. Let U ⊂ Rn be an open subset and f : U → Rn be a C1 map.
Suppose that X ⊂ U has measure zero. Then f(X) has measure zero.

Proof. Define K : U → R by

K(p) := max(Dif
j(p)),

where 1 ≤ i, j ≤ n. Then, since f is C1, for each p ∈ U , there exists an open
neighborhood Vp of p in U such that

max(Dif
j(q)) ≤ K(p) + 1, for all q ∈ Vp.

In particular we may let Vp be a small ball with rational radius centered at
a point with rational coefficients. So there exists a countable family of open
neighborhoods V� which cover U� such that

max(Dif
j(q)) ≤ K�, for all q ∈ V�.

So it follows by a lemma we proved earlier (which was a consequence of the
mean value theorem) that

‖f(p) − f(q)‖ ≤ K�‖p − q‖ for all p, q ∈ V�.

Now let X� := X ∩ V�. Then f(X) = ∪�f(X�). In particular, since f(X�) is
countable, to prove that f(X) has measure zero, it suffices to show that each
f(X�) has measure zero.

To see that f(X�) has measure zero, forst note that X� has measure zsro,
since it is a subset of X which has measure zero by assumption. Thus we
may cover X� be a colloection Ci of cubes of total measure less than ε, for
any ε > 0. Now note that each Ci is contained in a ball of radius

√
nλi/2,

where λi is the edge length of Ci. Thus f(Ci) is contained in a ball of radius
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Lλ�/2, where L := K�

√
n, which yields that f(Ci) is contained in a cube C ′

i

of edge length Lλ�. So

∞∑
i=1

µ(C ′
i) =

∞∑
i=1

Lnλn
� = Ln

∞∑
i=1

µ(Ci) ≤ Ln ε.

Since L does not depend on ε, and C ′
i cover f(X�) we conclude then that

f(X�) has measure zero.

We say a X ⊂ M has measure zero provided that for every p ∈ M there
exists a local chart (U, φ) such that φ(U ∩ X) has measure zero. The last
result can be used to show that this concept is well defined:

Exercise 5. Show that the concept of measure zero for a subset of a manifold
does not depent on the choice of local charts.

Further, the earlier result that open subsets of Rn cannot have measure
zero, can be used in the following:

Exercise 6. Show that if a X ⊂ M has measure zero, then M −X is dense.

Thus to prove Theorem 1, we just need to show that f(M) has measure
zero in N . To this end, we first show:

Lemma 7. If U ⊂ Rn is open, f : U → Rm is C1, and m ≥ n, then f(U)
has measure zero in Rm.

Proof. Let π : Rm → Rn be the projection into the first n coordinates. Then
f ◦ π : π−1(U) → Rm is C1. Thus, since U has measure zero in π−1(U), it
follows that f ◦ π(U) has measure zero. But f ◦ π(U) = f(U), so we are
done.

Now we are ready to prove Theorem 1. This proof requires the following
facts.

Exercise 8. Show that every manifold admits a countable Atlas.

Exercise 9. Show that a countable union of sets of measure zero in a man-
ifold has measure zero.

Proof of Theorem 1. Let (Ui, φi) be a countable atlas for M . Since f(Ui)
covers f(M), it suffices to show that f(Ui) has measure zero in N . To see
this let p ∈ f(Ui), and (V, ψ) be a local chart of N centered at p. Then
ψ(V ∩ f(Ui)) = ψ(V ∩ f(φ−1

i (Rn))) ⊂ ψ ◦ f ◦ φ−1(Rn) which has measure
zero in Rm.
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2.11 Whitney’s 2n+1 Embedding Theorem

Here we show that

Theorem 10. Every smooth compact manifold Mn admits a smooth embed-
ding into R2n+1.

The basic idea for the proof of the above theorem is to embedd Mn is
some Euclidean space RN (which, as we have already shown, is possible for
N sufficiently large) and then reduce the codimension (N − n) by successive
projections. More precisely, let f : M → RN be an embedding, identify M
with f(M), and for u ∈ SN−1, define π : RN → RN−1 by

πu(x) := x − 〈x, u〉u.

We claim that if N > 2n + 1, then there exists u ∈ SN−1 such that πu|M is
an embedding, which would complete the proof. To establish the claim recall
that all we need is to find a u such that (i) πu|M is one-to-one and (ii) πu|M
has full rank.

In order to meet condition (i), we proceed as follows. Let

∆M := {(p, p) | p ∈ M},

be the diagonal of M×M . Note that since ∆M is closed in M×M , M×M−
∆M is an open subset of M ×M and is therefore a 2n dimensional manifold.
Now define σ : M × M − ∆M → SN−1 by

σ(p, q) :=
p − q

‖p − q‖ ,

and note that , if N > 2n + 1, then dim(M × M − ∆M) = 2n < N − 1 =
dim(SN−1). Thus, by the result in the previous subsection, the image of σ
has measure zeo in SN−1. In particular, there exists u ∈ SN−1 such that
u �∈ ±σ(M × M − ∆M). Then πu is one-to-one, because if πu(p) = πu(q),
we have p − q = 〈p − q, u〉u, which yields that p − q is either parallel or
antiparallel to u. Thus, since ‖u‖ = 1, it would follow that either σ(p, q) = u
or σ(p, q) = −u, which is not possible.

In order to find u such that πu|M has full rank note that, since M ⊂ RN ,
TpM ⊂ TpR

N , for all p ∈ M . Thus, if θ − p : TpR
N → RN is the standard

isomorphism, θp(TpM) is well-defined and is a subspace of RN . So, by an
abuse of notation, we may identify TpM with θp(TpM).
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Exercise 11. Show that d(πu) is nonsingluar at p ∈ M , if and only if u �∈
TpM .

So to complete the proof it suffices to show that the set of u ∈ SN−1 such
that u ∈ TpM for some p ∈ M has measure zero (since the union of two sets
of measure zero has measure zero, we will then be able to find u such that πu

is one-to-one and is an immesion at the same time). To see this note that if
we identify TpM with θp(TpM), then the tangent bundle T 1M gets identified
with a sebset of SN−1 via a C1 map. Thus, since as we showed earlier, T 1M
has dimension 2n − 1, it follows that T 1M has measure zero in SN−1. So
TM ∩ SN−1 has measure zero, which completes the proof.
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