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2.10 Measure of C'!' maps

If X' is a topological space, we say that A C X is dense is X provided that
A = X, where A denotes the closure of A. In other words, A is dense in X
if every open subset of X intersects A.

Theorem 1. Let f: M™ — N™ be a C' map. Suppose that m > n. Then
N — f(M) is dense in M.

To prove the above result we need to develop the notion of measure zero,
which is defined as follows. We say that C' C R™ is a cube of side length A
provided that

C =lay, a1 + A X -+ X [an, an, + A,

for some aq,...,a, € R". We define the mesure or volume of a cube of side
length A by

u(C) == A",
We say a X C R" has measure zero if for every € > 0, we may cover X by a

family of cubes Cj, i € I, such that ), ., u(C;) < e.

Lemma 2. A countable union of sets of measure zero in R™ has measure
zero.

Proof. Let X;, i = 1,2,... be a countable collection of subsets of R" with

measure zero. Then we may cover each X; by a family C;; of cubes such that
Zj Cij < €/2". Then

[e.9] oo €
DI T
=1 j i=1
Since U; X; C U;;Cy;, it follows then that U; X; has measure zero. O
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Lemma 3. If U C R" is open and nonemepty, then it cannot have measure
zero.

Proof. By definition, for evey point p € U there exists » > 0 such that
B.(p) C U. Thus, since U # (), U contains a cube C' (of side length A\ <
2r/y/n). Suppose there is a covering of U by a family of cubes. Then, since
C' is compact, there exists a finite subcollection C;, 2 = 1...,m which cover
C. Let N be the number of integer lattice points (i.e., points with integer
coefficients) which lie in C, then

(max(0,A —1))" <N < (A+1)"

Similarly, if N — ¢ is the number of integer lattice points in C; and and C}
has edge length A;, then
(max(0, A, —1))" < N; < (N + D)™

Now note that, since C; cover C, that N <Y~ N;. Thus,

N+ 1)

Ms

(max(0,A —1))" <

i=1

Next note that if we scale all the cubes by a factor of k, and let N*, NF
denote the number of lattice point in kC' and kC; respectively, we still have
Nk <5 NFE. Thus it follows that

(max(0, kA — 1))" < Zm:(zm +1)",

=1

for any k£ > 0. In particular, assuming k& > 1/, we have
(kA —1)" Z (kA +1)"

which in turn yields



Taking the limit of both sides as k — oo yields

A< ZlA? = ;u(@)-

Thus the total measure of any covering of U by cubes is bounded below by
a positive constant, and therefore, U cannot have measure zero. [

Lemma 4. Let U C R"™ be an open subset and f: U — R" be a C' map.
Suppose that X C U has measure zero. Then f(X) has measure zero.

Proof. Define K: U — R by

K(p) = maX(Dz‘fj (p)),

where 1 < 4,5 < n. Then, since f is C*, for each p € U, there exists an open
neighborhood V), of p in U such that

max(D;f/(q)) < K(p) +1, forall q€V,.

In particular we may let V,, be a small ball with rational radius centered at
a point with rational coefficients. So there exists a countable family of open
neighborhoods V;, which cover U, such that

max(D; f(q)) < K,, forall ¢q¢cV,.

So it follows by a lemma we proved earlier (which was a consequence of the
mean value theorem) that

I f(p) — f@| < Kellp—gq| forall p,qeV,.

Now let Xy := X NV, Then f(X) = U f(X,). In particular, since f(X,) is
countable, to prove that f(X) has measure zero, it suffices to show that each
f(X,) has measure zero.

To see that f(X,) has measure zero, forst note that X, has measure zsro,
since it is a subset of X which has measure zero by assumption. Thus we
may cover X, be a colloection C; of cubes of total measure less than ¢, for
any € > 0. Now note that each C; is contained in a ball of radius /n)\;/2,
where J; is the edge length of C;. Thus f(C;) is contained in a ball of radius



L)X;/2, where L := Ky/n, which yields that f(C;) is contained in a cube C!
of edge length L\,. So

Sn(C) =3I = IS u(C) < I
=1 =1 =1

Since L does not depend on €, and C! cover f(X,) we conclude then that
f(X,) has measure zero. O

We say a X C M has measure zero provided that for every p € M there
exists a local chart (U, ¢) such that ¢(U N X) has measure zero. The last
result can be used to show that this concept is well defined:

Exercise 5. Show that the concept of measure zero for a subset of a manifold
does not depent on the choice of local charts.

Further, the earlier result that open subsets of R™ cannot have measure
zero, can be used in the following:

Exercise 6. Show that if a X C M has measure zero, then M — X is dense.

Thus to prove Theorem 1, we just need to show that f(M) has measure
zero in N. To this end, we first show:

Lemma 7. If U C R" is open, f: U — R™ is C', and m > n, then f(U)
has measure zero in R™.

Proof. Let m: R™ — R™ be the projection into the first n coordinates. Then
fom: 7w} (U) — R™is C'. Thus, since U has measure zero in 7 *(U), it
follows that f o w(U) has measure zero. But fon(U) = f(U), so we are
done. ]

Now we are ready to prove Theorem 1. This proof requires the following
facts.

Exercise 8. Show that every manifold admits a countable Atlas.

Exercise 9. Show that a countable union of sets of measure zero in a man-
ifold has measure zero.

Proof of Theorem 1. Let (U;, ¢;) be a countable atlas for M. Since f(U;)
covers f(M), it suffices to show that f(U;) has measure zero in N. To see
this let p € f(U;), and (V,%) be a local chart of N centered at p. Then
YV N F(U) = (VN f(o;H(R™)) C 9o fog '(R") which has measure
zero in R™. 0]



2.11 Whitney’s 2n+1 Embedding Theorem
Here we show that

Theorem 10. Every smooth compact manifold M™ admits a smooth embed-
ding into R**1.

The basic idea for the proof of the above theorem is to embedd M™ is
some Euclidean space R (which, as we have already shown, is possible for
N sufficiently large) and then reduce the codimension (N —n) by successive
projections. More precisely, let f: M — RY be an embedding, identify M
with f(M), and for u € SV, define 7: RN — R¥~! by

() = — (z,u)u.

We claim that if N > 2n + 1, then there exists u € S¥~1 such that 7,y is
an embedding, which would complete the proof. To establish the claim recall
that all we need is to find a u such that (i) 7|y is one-to-one and (ii) |
has full rank.

In order to meet condition (i), we proceed as follows. Let

Ay = {(p.p) | p € M},

be the diagonal of M x M. Note that since Ay, is closed in M x M, M x M —
Ay is an open subset of M x M and is therefore a 2n dimensional manifold.
Now define o: M x M — Ay — SV=1 by

__p=q
lp—ql’

and note that , if N > 2n + 1, then dim(M x M — Ay) =2n < N —1 =
dim(S™~1). Thus, by the result in the previous subsection, the image of o
has measure zeo in SV~!'. In particular, there exists © € SV~! such that
u & to(M x M — Ays). Then 7, is one-to-one, because if m,(p) = m,(q),
we have p — ¢ = (p — ¢q,u)u, which yields that p — ¢ is either parallel or
antiparallel to u. Thus, since ||u|| = 1, it would follow that either o(p, ¢) = u
or o(p,q) = —u, which is not possible.

In order to find u such that 7|5, has full rank note that, since M C RV,
T,M Cc T,RY, for all p € M. Thus, if § — p: T,RY — R is the standard
isomorphism, 6,(T,M) is well-defined and is a subspace of R". So, by an
abuse of notation, we may identify T, M with 6,(T,M).

o(p,q) :
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Exercise 11. Show that d(m,) is nonsingluar at p € M, if and only if u ¢
T,M.

So to complete the proof it suffices to show that the set of v € S¥~! such
that u € T, M for some p € M has measure zero (since the union of two sets
of measure zero has measure zero, we will then be able to find u such that =,
is one-to-one and is an immesion at the same time). To see this note that if
we identify T, M with 6, (T, M), then the tangent bundle T M gets identified
with a sebset of SV~! via a C'*' map. Thus, since as we showed earlier, T' M
has dimension 2n — 1, it follows that 7'M has measure zero in S¥~1. So
TM N SY~! has measure zero, which completes the proof.



