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Lecture Notes 7

1.17 The Frenet-Serret Frame and Torsion

Recall that if a: I — R™ is a unit speed curve, then the unit tangent vector
is defined as

T(t) == '(t).
Further, if x(t) = ||T"(t)|| # 0, we may define the principal normal as

_ 1)
- ow(t)
As we saw earlier, in R?, {T, N} form a moving frame whose derivatives

may be expressed in terms of {T, N} itself. In R?, however, we need a third
vector to form a frame. This is achieved by defining the binormal as

N(t):

B(t) = T(t) x N(1).

Then similar to the computations we did in finding the derivatives of {T', N},
it is easily shown that

T(t) 0 k() 0 T(t)
NO | = —kt) 0 Tt N |,
B(1) 0 —r(t) 0 B(t)

where 7 is the torsion which is defined as
7(t) .= —(B', N).

Note that torsion is well defined only when x # 0, so that N is defined.
Torsion is a measure of how much a space curve deviates from lying in a
plane:
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Exercise 1. Show that if the torsion of a curve a: I — R? is zero everywhere
then it lies in a plane. (Hint: We need to check that there exist a point p
and a (fixed) vector v in R? such that (a(t) — p,v) = 0. Let v = B, and p
be any point of the curve.)

Exercise 2. Computer the curvature and torsion of the circular helix
(rcost,rsint, ht)

where r and h are constants. How does changing the values of r and h effect
the curvature and torsion.

1.18 Curves of Constant Curvature and Torsion

The above exercise shows that the curvature and torsion of a circular helix
are constant. The converse is also true

Theorem 3. The only curve a: I — R3 whose curvature and torsion are
nonzero constants is the circular helix.

The rest of this section develops a number of exercises which lead to the
proof of the above theorem

Exercise 4. Show that a: I — R3 is a circular helix (up to rigid motion)
provided that there exists a vector v in R? such that

(T, v) = const,
and the projection of « into a plane orthogonal to v is a circle.

So first we need to show that when x and 7 are constants, v of the above
exercise can be found. We do this with the aid of the Frenet-Serret frame.
Since {7, N, B} is an orthonormal frame, we may write

v =a(t)T(t) + bt)N(t) + c(t) B(t).

Next we need to find a, b and ¢ subject to the condtions that v is a constant
vector, i.e., v' = 0, and that (T, v) = const. The latter implies that

a = const

because (T, v) = a. In particular, we may set a = 1.
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Exercise 5. By setting v = 0 show that
v=T+"B,
T

and check that v is the desired vector, i.e. (T,v) = const and v' = 0.
So to complete the proof of the theorem, only the following remains:

Exercise 6. Show that the projection of o into a plane orthogonal to v, i.e.,

a(t) == alt) - <a<t>,v>ﬁ

is a circle. (Hint: Compute the curvature of @.)

1.19 Intrinsic Characterization of Spherical Curves

In this section we derive a characterization in terms of curvature and torsion
for unit speed curves which lie on a shphere. Suppose a: I — R? lies on
a sphere of radius r. Then there exists a point p in R? (the center of the
sphere) such that
le(t) — pll =

Thus differentiation yields

(T'(t),a(t) —p) = 0.
Differentiating again we obtain:

(T'(t),a(t) —p) +1=0.

The above expression shows that k() # 0. Consequently N is well defined,
and we may rewrite the above expression as

K(t)(N(t),a(t) —p)+1=0.
Differentiating for the third time yields
KN (L), a(t) = p) + s(E)(=k(E)T(t) + 7()(B(t), a(t) —p) = 0,

which using the previous expressions above we may rewrite as




Next note that, since {T', N, B} is orthonormal,

rt = Jat) - pl*
= (a(t) =p, T(1))* + {a(t) — p, N(1))* + (a(t) — p, B(t))”

+{a(t) —p, B(1))".

- e

Thus, combining the previous two calculations, we obtain:

(%) =0 (*~ )

Exercise 7. Check the converse, that is supposing that the curvature and
torsion of some curve satisfies the above expression, verify whether the curve
has to lie on a sphere of radius r.

To do the above exercise, we need to first find out where the center p of
the sphere could lie. To this end we start by writing

p=a(t)+a(t)T(t) +b(t)N(t) + c(t)B(t),

and try to find a(t), b(t) and ¢(t) so that p’ = (0,0,0), and ||«a(t)—p|| = r. To
make things easier, we may note that a(t) = 0 (why?). Then we just need to
find b(t) and c¢(t) subject to the two constraints mentioned above. We need
to verify whether this is possible, when x and 7 satisfy the above expression.

1.20 The Local Canonical form

In this section we show that all C® curve in R? essentially look the same in
the neighborhood of any point which has nonvanishing curvature and a given
sign for torsion.

Let a: (—¢,¢) — R? be a C? curve. By Taylor’s theorem

alt) = a(0) + o/ (0)t + %O/’(O)tz + %o/”(O)ts + R(1)
where lim;_,o |R(t)|/t* = 0, i.e., for t small, the remainder term R(t) is neg-
ligible. Now suppose that a has unit speed. Then
o =T
o' =T =kN
o" = (kN) = k'N + k(—kT + 7B) = —k°T + k'N + k7 B.



So we have

lioNotQ i (—IQ(Q)TO + H6N0 + RToBO>t3

) 6
2 /
— a(0) + (t— %t?’)To n (%ﬂ n %tS)No n (%tg)Bo + R(t)

a(t) = a(0)+ Tot +

+ R(t)

Now if, after a rigid motion, we suppose that «(0) = (0,0,0), T' = (1,0,0),
N =(0,1,0), and B = (0,0,1), then we have

2 /
a(t) = (t _ Moy g, M0y fo

. ; 210+ Ry, @t3+RZ),
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where (R, Ry, R,) = R. It follows then that when ¢ is small

Ko 2 KoTo 3)
alt) ~ (t g2 20043
()~ (1, "2,
Thus, up to third order of differentiation, any curve with nonvanishing cur-
vature in space may be approximated by a cubic curve. Also note that the
above approximtion shows that any planar curve with nonvanishing curvature
locally looks like a parabola.

Exercise 8. Show that the curvature of a space curve a at a point ¢y, with
nonvanishing curvature is the same as the curvature of the projection of «
into the the osculating plane at time ¢o. (The osculating plane is the plane
generated by 7" and N).



