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1.17 The Frenet-Serret Frame and Torsion

Recall that if α : I → Rn is a unit speed curve, then the unit tangent vector
is defined as

T (t) := α′(t).

Further, if κ(t) = ‖T ′(t)‖ 6= 0, we may define the principal normal as

N(t) :=
T ′(t)

κ(t)
.

As we saw earlier, in R2, {T,N} form a moving frame whose derivatives
may be expressed in terms of {T,N} itself. In R3, however, we need a third
vector to form a frame. This is achieved by defining the binormal as

B(t) := T (t)×N(t).

Then similar to the computations we did in finding the derivatives of {T,N},
it is easily shown that T (t)

N(t)
B(t)

′

=

 0 κ(t) 0
−κ(t) 0 τ(t)

0 −τ(t) 0

 T (t)
N(t)
B(t)

 ,

where τ is the torsion which is defined as

τ(t) := −〈B′, N〉.

Note that torsion is well defined only when κ 6= 0, so that N is defined.
Torsion is a measure of how much a space curve deviates from lying in a
plane:
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Exercise 1. Show that if the torsion of a curve α : I → R3 is zero everywhere
then it lies in a plane. (Hint : We need to check that there exist a point p
and a (fixed) vector v in R3 such that 〈α(t) − p, v〉 = 0. Let v = B, and p
be any point of the curve.)

Exercise 2. Computer the curvature and torsion of the circular helix

(r cos t, r sin t, ht)

where r and h are constants. How does changing the values of r and h effect
the curvature and torsion.

1.18 Curves of Constant Curvature and Torsion

The above exercise shows that the curvature and torsion of a circular helix
are constant. The converse is also true

Theorem 3. The only curve α : I → R3 whose curvature and torsion are
nonzero constants is the circular helix.

The rest of this section develops a number of exercises which lead to the
proof of the above theorem

Exercise 4. Show that α : I → R3 is a circular helix (up to rigid motion)
provided that there exists a vector v in R3 such that

〈T, v〉 = const,

and the projection of α into a plane orthogonal to v is a circle.

So first we need to show that when κ and τ are constants, v of the above
exercise can be found. We do this with the aid of the Frenet-Serret frame.
Since {T,N,B} is an orthonormal frame, we may write

v = a(t)T (t) + b(t)N(t) + c(t)B(t).

Next we need to find a, b and c subject to the condtions that v is a constant
vector, i.e., v′ = 0, and that 〈T, v〉 = const. The latter implies that

a = const

because 〈T, v〉 = a. In particular, we may set a = 1.
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Exercise 5. By setting v′ = 0 show that

v = T +
κ

τ
B,

and check that v is the desired vector, i.e. 〈T, v〉 = const and v′ = 0.

So to complete the proof of the theorem, only the following remains:

Exercise 6. Show that the projection of α into a plane orthogonal to v, i.e.,

α(t) := α(t)− 〈α(t), v〉 v

‖v‖2

is a circle. (Hint : Compute the curvature of α.)

1.19 Intrinsic Characterization of Spherical Curves

In this section we derive a characterization in terms of curvature and torsion
for unit speed curves which lie on a shphere. Suppose α : I → R3 lies on
a sphere of radius r. Then there exists a point p in R3 (the center of the
sphere) such that

‖α(t)− p‖ = r.

Thus differentiation yields

〈T (t), α(t)− p〉 = 0.

Differentiating again we obtain:

〈T ′(t), α(t)− p〉+ 1 = 0.

The above expression shows that κ(t) 6= 0. Consequently N is well defined,
and we may rewrite the above expression as

κ(t)〈N(t), α(t)− p〉+ 1 = 0.

Differentiating for the third time yields

κ′(t)〈N(t), α(t)− p〉+ κ(t)〈−κ(t)T (t) + τ(t)〈B(t), α(t)− p〉 = 0,

which using the previous expressions above we may rewrite as

−κ
′(t)

κ(t)
+ κ(t)τ(t)〈B(t), α(t)− p〉 = 0.
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Next note that, since {T,N,B} is orthonormal,

r2 = ‖α(t)− p‖2

= 〈α(t)− p, T (t)〉2 + 〈α(t)− p,N(t)〉2 + 〈α(t)− p,B(t)〉2

= 0 +
1

κ2(t)
+ 〈α(t)− p,B(t)〉2.

Thus, combining the previous two calculations, we obtain:(
κ′(t)

κ2(t)

)2

= τ 2(t)

(
r2 − 1

κ2(t)

)
.

Exercise 7. Check the converse, that is supposing that the curvature and
torsion of some curve satisfies the above expression, verify whether the curve
has to lie on a sphere of radius r.

To do the above exercise, we need to first find out where the center p of
the sphere could lie. To this end we start by writing

p = α(t) + a(t)T (t) + b(t)N(t) + c(t)B(t),

and try to find a(t), b(t) and c(t) so that p′ = (0, 0, 0), and ‖α(t)−p‖ = r. To
make things easier, we may note that a(t) = 0 (why?). Then we just need to
find b(t) and c(t) subject to the two constraints mentioned above. We need
to verify whether this is possible, when κ and τ satisfy the above expression.

1.20 The Local Canonical form

In this section we show that all C3 curve in R3 essentially look the same in
the neighborhood of any point which has nonvanishing curvature and a given
sign for torsion.

Let α : (−ε, ε)→ R3 be a C3 curve. By Taylor’s theorem

α(t) = α(0) + α′(0)t+
1

2
α′′(0)t2 +

1

6
α′′′(0)t3 +R(t)

where limt→0 |R(t)|/t3 = 0, i.e., for t small, the remainder term R(t) is neg-
ligible. Now suppose that α has unit speed. Then

α′ = T

α′′ = T ′ = κN

α′′′ = (κN)′ = κ′N + κ(−κT + τB) = −κ2T + κ′N + κτB.
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So we have

α(t) = α(0) + T0t+
κ0N0t

2

2
+

(−κ20T0 + κ′0N0 + κτ0B0)t
3

6
+R(t)

= α(0) + (t− κ20
6
t3)T0 + (

κ0
2
t2 +

κ′0
6
t3)N0 + (

κ0τ0
6
t3)B0 +R(t)

Now if, after a rigid motion, we suppose that α(0) = (0, 0, 0), T = (1, 0, 0),
N = (0, 1, 0), and B = (0, 0, 1), then we have

α(t) =

(
t− κ20

6
t3 +Rx,

κ0
2
t2 +

κ′0
6
t3 +Ry,

κ0τ0
6
t3 +Rz

)
,

where (Rx, Ry, Rz) = R. It follows then that when t is small

α(t) ≈
(
t,
κ0
2
t2,

κ0τ0
6
t3
)
.

Thus, up to third order of differentiation, any curve with nonvanishing cur-
vature in space may be approximated by a cubic curve. Also note that the
above approximtion shows that any planar curve with nonvanishing curvature
locally looks like a parabola.

Exercise 8. Show that the curvature of a space curve α at a point t0 with
nonvanishing curvature is the same as the curvature of the projection of α
into the the osculating plane at time t0. (The osculating plane is the plane
generated by T and N).
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