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Lecture Notes 5

1.13 Osculating Circle and Radius of Curvature

Recall that in a previous section we defined the osculating circle of a planar
curve α : I → R2 at a point a of nonvanishing curvature t ∈ I as the circle
with radius r(t) and center at

α(t) + r(t)N(t)

where

r(t) :=
1

κ(t)

is called the radius of curvature of α. If we had a way to define the osculating
circle independently of curvature, then we could define curvature simply as
the reciprocal of the radius of the osculating circle, and thus obtain a more
geometric definition for curvature.

Exercise 1. Let r(s, t) be the radius of the circle which is tangent to α at
α(t) and is also passing through α(s). Show that

κ(t) = lim
s→t

r(s, t).

To do the above exercise first recall that, as we showed in the previous
lecture, curvature is invaraint under rigid motions. Thus, after a rigid motion,
we may assume that α(t) = (0, 0) and α′(t) is parallel to the x-axis. Then,
we may assume that α(t) = (t, f(t)), for some function f : R → R with
f(0) = 0 and f ′(0) = 0. Further, recall that

κ(t) =
|f ′′(t)|

(
√

1 + f ′(t)2)3
.
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Thus
κ(0) = |f ′′(0)|.

Next note that the center of the circle which is tangent to α at (0, 0) must
lie on the y-axis at some point (0, r), and for this circle to also pass through
the point (s, f(s)) we must have:

r2 = s2 + (r − f(s))2.

Solving the above equation for r and taking the limit as s → 0, via the
L’Hopital’s rule, we have

lim
s→0

2|f(s)|
f 2(s) + s2

= |f ′′(0)| = κ(0),

which is the desired result.

Note 2. The above limit can be used to define a notion of curvature for
curves that are not twice differentiable. In this case, we may define the
upper curvature and lower curvature respectively as the upper and lower
limit of

2|f(s)|
f 2(s) + s2

.

as s → 0. We may even distinguish between right handed and left handed
upper or lower curvature, by taking the right handed or left handed limits
respectively.

Exercise* 3. Let α : I → R2 be a planar curve and t0, t1, t2 ∈ I with
t1 ≤ t0 ≤ t2. Show that κ(t0) is the reciprocal of the limit of the radius of
the circles which pass through α(t0), α(t1) and α(t2) as t1, t2 → t0.

1.14 Kneser’s Nesting Theorem

We say that the curvature of a curve is monotone if it is strictly increasing or
decreasing. The following result shows that the osculating circles of a curve
with monotone curvature are “nested”, i.e., the lie inside each other:

Theorem 4 (Kneser’s Nesting theorem). Let α : I → R2 be a C4 curve
with monotone nonvanishing curvature. Then the osculating circles of α are
pairwise disjoint.
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To prove the above result we need the following Lemma. Note that if
α : I → R2 is a curve with nonvanishing curvature, then the centers of the
osculating circles of α for the curve

β(t) := α(t) + r(t)N(t),

where r(t) := 1/κ(t) is the radius of curvature of α. This curve β is known
as the evolute of α.

Exercise 5. Show that if α : I → R2 is a C4 curve with monotone non-
vanishing curvature, then its evolute β is a regular curve which also has
nonvanishing curvature. In particular β contains no line segments.

Now we are ready to prove the main result of this section:

Proof of Neser’s Theorem. We may suppose that ‖α′‖ = 1, and its curvature
κ is increasing. We need to show that for every t0, t1 ∈ I, with t0 < t1, the
osculating circle at t1 lies inside the osculating circle at t0. To this end it
suffices to showing that

‖β(t0)− β(t1)‖+ r(t1) < r(t0).

To see this end first note that, since β contains no line segments (see the
previous exercise)

‖β(t0)− β(t1)‖ <
∫ t1

t0

‖β′(t)‖dt.

Now a simple computation completes the proof:∫ t1

t0

‖β′(t)‖ =

∫ t1

t0

|r′(t)| dt

=

∫ t1

t0

−r′(t) dt = r(t0)− r(t1).

(Here |r′| = −r′, becuase, since κ is increasing by assumption, r is decreas-
ing.)

Kneser’s theorem has a number of interesting corollaries:
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Exercise 6. Show that a curve with monotone curvature cannot have any
self intersections.

Exercise 7. Show that a curve with monotone curvature cannot have any
bitangent lines.

The last two exercises show that a curve with monotone curvature looks
essentially as depicted in the following figure, i.e., it spirals around itself.

1.15 Total Curvature and Convexity

The boundary of X ⊂ Rn is defined as the intersection of the closure of X
with the closure of its complement.

Exercise 8. Is it true that the boundary of any set is equal to its closure
minus its interior? (Hint: Consider a ball with its center removed)

We say that a simple closed curve α : I → R2 is convex provided that
its image lies on one side of every tangent line. A subset of Rn is convex
if it contains the line segment joining each pairs of its points. Clearly the
intersection of convex sets is convex.

Exercise 9. Show that a simple closed planar curve α : I → R2 is convex
only if it lies on the boundary of a convex set. (Hint: By defintion, through
each point p of Γ there passes a line `p with respect to which Γ lies on one
side. Thus each `p defines a closed half plane Hp which contains Γ. Show
that Γ lies on the boundary of the intersection of all these half planes).

The total curvature of a curve α : I → Rn is defined as∫
I

κ(t)dt,

where t is the arclength parameter.
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Exercise 10. Show that the total curvature of any convex planar curve is
2π. (Hint : We only need to check that the exterior angles of polygonal
approximations of a convex curve do not change sign. Recall that, as we
showed in a previous section, the sum of these angles is the total signed
curvature. So it follows that the signed curvature of any segment of α is
either zero or has the same sign as any other segment. This in turn implies
that the signed curvature of α does not change sign. So the total signed
curvature of α is equal to its total curvature up to a sign. Since by definition
the curve is simple, however, the total signed curvature is ±2π by Hopf’s
theorem.)

Theorem 11. For any closed planar curve α : I → R2,∫
I

κ(t)dt ≥ 2π,

with equality if and only if α is convex.

First we show that the total curvature of any curve is at least 2π. To this
end recall that when t is the arclength parameter κ(t) = ‖T ′(t)‖. Thus the
total curvature is simply the total length of the tantrix curve T : I → S2.
Since T is a closed curve, to show that its total length is bigger than 2π, it
suffices to check that the image of T does not lie in any semicircle.

Exercise 12. Verify the last sentence.

To see the that the image of T does not lie in any semicircle, let u ∈ S1

be a unit vector and note that∫ b

a

〈T (t), u〉dt =

∫ b

a

〈α′(t), u〉dt = 〈α(b)− α(a), u〉 = 0.

Since T (t) is not constant (why?), it follows that the function t 7→ 〈T (t), u〉
must change sign. So the image of T must lie on both sides of the line through
the origin and orthogonal to u. Since u was chosen arbitrarily, it follows that
the image of T does not lie in any semicircle, as desired.

Next we show that the total curvature is 2π if and only if α is convex.
The “if” part has been established already in exercise 10. To prove the “only
if” part, suppose that α is not convex, then there exists a tangent line `0 of
α, say at α(t0), with respect to which the image of α lies on both sides. Then
α must have two more tangent lines parallel to `0.
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Exercise 13. Verify the last sentence (Hint : Let u be a unit vector or-
thogonal to ` and note that the function t 7→ 〈α(t) − α(t0), u〉 must have a
minimum and a maximum differerent from 0. Thus the derivative at these
two points vanishes.)

Now that we have established that α has three distinct parallel lines, it
follows that it must have at least two parallel tangents. This observation is
worth recording:

Lemma 14. If α : I → R2 is a closed curve which is not convex, then it has
a pair of parallel tangent vectors which generate disitinct parallel lines.

Next note that

Exercise 15. If α : I → R2 is closed curve whose tantrix T : I → S1 is not
onto, then the total curvature is bigger than 2π. (Hint : This is immediate
consequence of the fact that T is a closed curve and it does not lie in any
semicircle)

So if T is not onto then we are done (recall that we are trying to show
that if α is not convex, then its total curvature is bigger than 2π). We
may assume, therefore, that T is onto. This together with the above lemma
yields that the total curvature is bigger than 2π. To see this note that let
t1, t2 ∈ I be the two points such that T (t1) and T (t2) are parallel and the
corresponding tangent lines are distinct. Then T restricted to [t1, t2] is a
closed nonconstant. So either T ([t1, t2]) (i) covers some open segment of the
circle twice or (ii) covers the entire circle. Since we have established that
T is onto, the first possibility implies that the length of T is bigger than
2π. Further, since, T restricted to I − (t1, t2) is not constant, the second
possibility (ii) would imply the again the first case (i). Hence we conclude
that if α is not convex, then its total curvature is bigger than 2π, which
completes the proof of Theorem 11.

Corollary 16. Any simple closed curve α : I → R2 is convex if and only if
its signed curvature does not change sign.

Proof. Since α is simple, its total signed curature is ±2π by Hopf’s theorem.
After switching the orientation of α, if necessary, we may assume that the
total signed curvature is 2π. Suppose, towards a contradiction, that the
signed curvature does change sign. The integral of the signed curvature over
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the regions where its is positive must be bigger than 2π, which in turn implies
that the total curvature is bigger than 2π, which contradicts the previous
theorem. So if α is convex, then κ does not change sign.

Next suppose that κ does not change sign. Then the total signed curva-
ture is equal to the total curvature (up to a sign), which, since the curve is
simple, implies, via the Hopf’s theorem, that the total curvature is 2π. So
by the previous theorem the curve is convex.
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