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Lecture Notes 4

1.9 Curves of Constant Curvature

Here we show that the only curves in the plane with constant curvature are
lines and circles. The case of lines occurs precisely when the curvature is
ZEro:

Exercise 1. Show that the only curves with constant zero curvature in R"
are straight lines. (Hint: We may assume that our curve, a: I — R™ has unit
speed. Then k = ||@”||. So zero curvature implies that o’ = 0. Integrating
the last expression twice yields the desired result.)

So it remains to consider the case where we have a planar curve whose
curvature is equal to some nonzero constant c. We claim that in this case the
curve has to be a circle of radius 1/¢. To this end we introduce the following
definition. If a curve a: I — R"™ has nonzero curvature, the principal normal
vector field of « is defined as

T
NO =

where T'(t) := o/(t)/]|/(t)|| is the tantrix of o as we had defined earlier.
Thus the principal normal is the tantrix of the tantrix.

Exercise 2. Show that 7'(t) and N(t) are orthogonal. (Hint: Differentiate
both sides of the expression (T'(¢),T'(t)) = 1).

So, if v is a planar curve, {T'(t), N(t)} form a moving frame for R?, i.e.,
any element of R? may be written as a linear combination of T'(t) and N (t)
for any choice of t. In particular, we may express the derivatives of T" and
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N in terms of this frame. The definition of N already yields that, when « is
parametrized by arclength,

T'(t) = k(t)N(t).
To get the corresponding formula for N’ first observe that
N'(t) = aT(t) + bN(1).

for some a and b. To find a note that, since (T, N) =0, (I", N) = —(T, N').
Thus
a= (N'(t), T(t)) = =(T"(t), N(t)) = —~(t

).
Exercise 3. Show that b = 0. (Hint: Differentiate (N(t), N(t)) = 1).

So we conclude that
N'(t) = —s(t)T (1),
where we still assume that ¢ is the arclength parameter. The formulas for
the derivative may be expressed in the matrix notation as

Tyl [ 0 s ][ T0
N@#) | | —k() O N(t) |-
Now recall that our main aim here is to classify curves of constant curva-

ture in the plane. To this end define the center of the osculating circle of «
as

1
p(t) == aft) + %N(t).

The circle which is centered at p(t) and has radius of 1/k(t) is called the
osculating circle of «v at time ¢. This is the circle which best approximates «
up to the second order:

Exercise 4. Check that the osculating circle of « is tangent to « at a(t) and
has the same curvature as a at time ¢.

Now note that if « is a circle, then it coincides with its own osculating
circle. In particular p(t) is a fixed point (the center of the circle) and ||a(t) —
p(t)|| is constant (the radius of the circle). Conversely:

Exercise 5. Show that if a has constant curvature ¢, then (i) p(t) is a fixed
point, and (ii) ||a(t) — p(t)|| = 1/c (Hint: For part (i) differentiate p(t); part
(ii) follows immediately from the definition of p(t)).

So we conclude that a curve of constant curvature ¢ # 0 lies on a circle
of radius 1/c.



1.10 Signed Curvature and Turning Angle

As we mentioned earlier the curvature of a curve is a measure of how fast
it is turning. When the curve lies in a plane, we may assign a sign of plus
or minus one to this measure depending on whether the curve is rotating
clockwise or counterclockwise. Thus we arrive at a more descriptive notion
of curvature for planar curves which we call signed curvature and denote by
k. Then we have

K| = k.

To obtain a formula for %, for any vector V € R?, let JV be the counter-
clockwise rotation by 90 degrees. More formally,

JV = (0,0,1) x V.

Then we set (T'(t), JT (1))
R(t) :== W

Exercise 6. Show that if « is a unit speed curve then

E(t) = k(t)(N(t), JT(t)).
In particular, |R| = k.

Exercise 7. Compute the signed curvatures of the clockwise circle a(t) =
(cost,sint), and the counterclockwise circle a(t) = (cos(—t), sin(—t)).

Exercise 8. Show that

(v'(t) x 7"(t),(0,0,1))
@1

Another simple and useful way to define the signed curvature (and the
regular curvature) of a planar curve is in terms of the turning angle 6, which
is defined as follows. We claim that for any planar curve a: I — R? there
exists a continuous function #: I — R? such that

R(t) :==

T(t) = (cos(t),sinf(t)).
Note that cos(0(t)) = (T'(t), (1,0)). Thus

0(t) = £(T(t),(1,0)) + 2k,
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where £ is an integer depending on t. Assuming that ¢ is the arclength
parameter, or « has unit speed,

Exercise 9. Check the above formula.

Now we check that 6 indeed exists. To this end note that 7" may be
thought of as a mapping from I to the unit circle S'. Thus it suffices to show
that

Proposition 10. For any continuous function T: I — S', where I = |a, 1]
1s a compact interval, there exists a continuous function 0: I — R such that

T(t) = (cos(6(t)),sin(0(t)).

Proof. Since T is continuous and [ is compact, T is uniformly continuous,
this means that for ¢ > 0, we may find a § > 0 such that ||T'(t) — T'(s)|| < e,
whenever |t — s| < 0. In particular, we may set o to be equal to some
constant less than one, and ¢, to be the corresponding constant. Now choose
a partition

a=10<z;<---<uz,:=0b

of [a,b] such that |z; — z;_1| < €, for i = 1,...,n. Then T'([x;, x;_;]) does
not cover S'. So we may define 6;: [x;_1,2;] — R by setting 0;(z) to be
the angle in [0, 27), measured counterclockwise, between T'(x;_;) and T'(x).
Finally, 6 may be defined as

k-1
0(z) =0y + ZQI(%) +0p(z), if x € [mp_y,xs]

=1

1.11 Total Signed Curvature and Winding Number

The total signed curvature of a C* curve a: [a,b] — R? is defined as

b
total K[a] ::/ ()|l ()] dt.



Recall that if o has unit speed, then & = ', where 6 is the turning angle
of v provided by Proposition 10. So if we set Af := 6(b) — 0(a), then the
fundamental theorem of calculus yields that

total K] = / b%(t)dt: / be’(t)dt:Ae.

Note that A# is well-defined even when « is only C'. Thus the total curvature
of a C! curve may be defined as

total Ko := A#,

despite the fact that curvature of @ may not be defined pointwise. We say
that a: [a,b] — R? is closed provided that a(a) = a(b). In addition, if
o (a) = o/,(b), then « closes smoothly, and is called a C' closed curve.
Then 0(b) = 6(a) + 2kw for some integer k. So total K[a] = 2kw. The integer
k is called the Hopf rotation index or winding number of a.

Exercise 11. (i) Compute the total curvature and rotation index of a circle
which has been oriented clockwise, and a circle which is oriented counter-
clockwise. Sketch the figure eight curve (cost,sin2t), 0 < ¢t < 27, and
compute its total signed curvature and rotation index.

We say that a closed curve a: [a,b] — R? is simple if it is one-to-one on
la,b). Furthermore, « is oriented counter clockwise provides that for every
t € [a,b], the counterclockwise rotation Ja' points into the compact region
Q2 bounded by «([a,b]), i.e., there exists € > 0 such that a(t) + eJ/(t) € Q.
The following result proved by H. Hopf is one of the fundamental theorems
in theory of planar curves.

Theorem 12 (Hopf’s turning angle theorem). For any simple closed C*
curve a: [a, b] — R? which has counterclockwise orientation, total K[a] = 27.

Hopf proved the above result using analytic methods including Green’s
theorem. Here we outline a more elementary proof which will illustrate that
the above theorem is simply a generalization of one of the most basic results
in Euclidean geometry: the sum of the angles in a triangle is 7, which is
equivalent to the sum of the exterior angles being 2.

First we will give another definition for total® which will establish the
connection between the total signed curvature and the sum of the exterior



angles in a polygon. By a polygon P we mean a closed curve formed by line
segments joing an ordered set of points (po, cee pn) in R?, where p, = po,
but p; # p;_1, for i« = 1,...,n. Furthermore we assume that the vectors
pipi—i, and p;y 1p; are not parallel. Each p; is called a vertex of P. At
each vertex p;, © = 1...n, we define the turning angle 6; to be the angle in
(—m, ) determined by the vectors p;p;_;, and p;11p;, and measured in the
counterclockwise direction (we set p,y1 := p;). More formaly,

O; := Z(piDi—i, Di+1Di) SIgN(Di—1, Pis Pit1),
where we set sign(p;_1, pi, piv1) = 0 if p;_1, p; pix1 lie on a line; otherwise,

: ] <pipi—z' X pit1pis (0,0, 1)>
sign(pi—1, Pi, Pit1) = [pipii X pieipil :

So sign(p;_1, pi, pir1) = 1 provided that p; 41 lies on the left hand side of the
oriented line ¢ spanned by p;_1p;, i.e., the side where J(p;_1p;) points, and
sign(p;_1, pi, piv1) = —1 if p;y1 lies on the right hand side of ¢, i.e., the side
where —J(p;_1p;) points. Note that if P forms a simple closed curve which is
oriented counterclockwise, then 6; = 7 — 8, where 6; € (0, 7) are the interior
angles of . So 6; are sometimes called exterior angles. The total curvature
of P is defined as the sum of its turning angles:

total K[ P] := Z 0;.
i=1

Now let a: [a,b] — R? be a closed planar curve. For i = 0,...,n, set t; :=
a—l—ib_T“, and let P,[a] be the closed polygon with vertices (a(tg), o ,@(tn)).

Lemma 13. If n is sufficiently large, then total Ko = total k[ P,[c]].

Proof. Let 6 be the rotation angle of a, and 6; be the turning angles of P, [«].
Since a is C, there exists, for i = 0,...,n, an element ¢; € [t;_y,t;] such that
T(t;) is parallel to a(t;) — a(t;—1). Furthermore, choosing n large enough, we
can make sure that 6(¢;) —0(¢;_;) < 7, since 6 is continuous. Then it follows
that 6; = 6(t;) — 0(t;_1). So

S 0, =57 (0 — 0 1)) = 0(b) — 6(a) = A,

which completes the proof. ]



Now to complete the proof of Theorem 12 we need only to verify:

Lemma 14. For any simple closed polygonal curve P, oriented counter clock-
wise, total K[a] = 2.

Proof. First note that the lemma holds for triangles. Then it holds for convex
polygons as well, since they can be decomposed into triangles, by connecting
a point in the interior of the region bounded by the polygon to all the vertices.
The rest of the proof proceeds by induction. Suppose that the lemma holds
for all polygons with n sides, and assume that P is a polygon with n + 1
sides. If P is convex, then we are done. Otherwise, the boundary of the
convex hull of P, which we call @) yields a convex simple closed polygonal
curve whose vertices form a subset of the vertices of P. Any vertex of P
which does not lie on @) is part of a polygonal path of P whose end points lie
on a pair of adjacent vertices of ). Joining the edge in between these vertices
to the polygonal path, we obtain a simple closed polygonal curve. There are
a finite number of such curves which we call Ry,..., R,,. We claim that

total K[P] + Z total K[ R;] = total K[Q] + 2m,
i=1

which will complete the proof, since total [ R;] = 27 by the inductive hy-
pothesis, and total K[Q] = 27 as well since @ is convex. It is enough to
establish the above equality for the case m = 1:

total K[P] 4 total K[R] = total K[Q] + 2.

The general case for m > 1 then follows from repeated application of the last
equality. To establish this equality, let v be a vertex of R in the interior of
the region bounded by (). Then v is also a vertex of P. Let «, 3 denote the
turning angles of R and P at v. Then oo + 8 = 27 — (a/ + ') = 0, where o/
and 3’ are the interior angles of R and P at v. So turning angles at vertices
of P or R which are contained inside () cancel each other. We just need to
consider then the vertices v of P which lie on (). In this case, if v is a vertex
of P but not of R, then the turning angle of P at v is equal to that of (). On
the other hand if v also belongs to R, and «a, # denote the turning angles of
P and R at v, then a+ 5 =27 — (o/ + ') = 2m — ' = w4+, where 7 is the
turning angle of @ at v, and v’ = m —  is the corresponding interior angle.
Thus we pick up an extra 7 for each vertex of R on ), which completes the
proof. ]



Our method of proof via polygonal approximations yields a genralization
of Hopf’s theorem to piecewise C! curves. We say « is piecewise C* provided
that there are points a =: tg < t; < --- < t;, := b such that « is C* on each
subintervals [t;_1,t;]. Then the points «(t;), i = 1,...,k will be called the
corners of a or the corners of the region €2 bounded by «. Assuming that
« is oriented counterclockwise, i.e., Ja/(t) points into 2 at all differentiable
points t € [a,b], then the turning angle at the corner 6; is defined as m — 0.
where 0] € [0, 27] is the interior angle of Q at a(t;). So 6; € [, 7]. Now we

define
total ®[a] := Y _ total o, )] + > _ ;.

Theorem 15. Let o be a simple closed piecewise C* planar curve oriented
counter clockwise. Then
total K[a] = 2m.

To prove the above theorem we just need to stipulate that the vertices of
polygonal approximations P, [a] we discussed earlier include all corners of a.

1.12 The fundamental theorem of planar curves

If a: [0, L] — R? is a planar curve parametrized by arclength, then its signed
curvature yields a function 5: [0, L] — R. Now suppose that we are given a
continuous function &: [0, L] — R. Is it always possible to find a unit speed
curve a: [0, L] — R? whose signed curvature is %7 If so, to what extent is
such a curve unique? In this section we show that the signed curvature does
indeed determine a planar curve, and such a curve is unique up to proper
rigid motions.

Recall that by a proper rigid motion we mean a composition of a transla-
tion with a proper rotation. A translation is a mapping 7": R?> — R? given
by

T(p)=p+v

where v is a fixed vector. And a proper rotation p: R> — R? is a linear
mapping given by

( x >‘_ cosf) —sin6 x

P y " | sinf cosf y |’

Exercise 16. Show that the signed curvature of a planar curve is invariant
under proper rigid motions.



Exercise 17 (Local Convexity). Show that if the curvature of a planar curve
a: I — R? does not vanish at an interior point to of I then there exists
an open neighborhood U of ty in I such that «(U) lies on one side of the
tangent line of «v at ty. (Hint: By the invariance of signed curvature under
rigid motions, we may assume that a(ty) = (0,0) and o/(0) = (1,0). Then
we may reparametrize « as (f, f(¢)) in a neighborhood of ;. Recalling the
formula for curvature for graphs, and applying the Taylor’s theorem yields
the desired result.)

Now suppose that we are given a function %: [0, L] — R. If there exist a
curve a: [0, L] — R? with signed curvature %, then

0 =%

where 6 is the rotation angle of . Integration yields

t
o(t) ::/ R(s)ds + 0(0).
0
By the definition of the turning angle

a(t) = (COS 6(t), sin 9(t)>.

Consequently,

aft) = ( /0 ' cos(s)ds, /0 tsin@(s)ds) + a(0),

which gives an explicit formula for the desired curve.

Exercise 18 (Fundamental theorem of planar curves). Let o, 5: [0, L] —
R? be unit speed planar curves with the same signed curvature function
%. Show that there exists a proper rigid motion m: R? — R? such that

a(t) = m(B(t)).

Exercise 19. Use the above formula to show that the only closed curves of
constant curvature in the plane are circles.



