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Lecture Notes 2

1.4 Definition of Manifolds

By a basis for a topological space (X,T ), we mean a subset B of T such that for
any U ∈ T and any x ∈ U there exists a V ∈ B such that x ∈ V and V ⊂ U .

Exercise 1.4.1. Let Q denote the set of rational numbers. Show that

{Bn
1/m(x) | x ∈ Qn and m = 1, 2, 3, . . . }

forms a basis for Rn. In particular, Rn has a countable basis. So does any subset
of Rn with the subspace topology.

Exercise 1.4.2. Let T be the topology on R generated as follows. We say that a
subset U of R is open if for every x ∈ U , there exist a, b ∈ R such that x ∈ [a, b)
and [a, b) ⊂ U . Show that T does not have a countable basis. (Hint: Let B be a
basis for T , and for each x ∈ R, let Bx be the basis element such that x ∈ Bx and
Bx ⊂ [x, x+ 1).)

A toplogical space X is said to be Hausdorf, if for every pair of distinct points
p1, p2 ∈ X, there is a pair of disjoint open subsets U1, U2 such that p1 ∈ U1 and
p2 ∈ U2.

Exercise 1.4.3. Show that any compact subset of a Hausdorf space X is closed in
X.

Exercise 1.4.4. Let X be compact, Y be Hausdorf, and f : X → Y be a continuous
one-to-one map. Then f is a homeomorphism between X and f(X).

We say that X ⊂ Rn is convex if for every x, y ∈ X, the line segment

λx+ (1− λ)y, λ ∈ [0, 1]

lies in X

Exercise 1.4.5 (Topology of Convex Sets). Show that every compact convex subset
of Rn, which contains an open subset of Rn, is homeomorphic to Bn

1
(o). (Hint:

Suppose that o lies in the open set which lies in X. Define f : Sn−1 → R by
f(u) := supx∈X〈u, x〉. Show that g : X → Bn

1
(o), given by g(x) := x/f(x/‖x‖), if

x 6= o, and g(o) := o, is a homeomorphism.)
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By a neighborhood of a point x of a topological space X we mean an open subset
of X which contains x. We say a topological space X is locally homeomorphic to a
topological space Y if each x ∈ X has a neighborhood which is homeomorphic to
Y .

By a manifold M , we mean a topological space which satisfies the following
properties:

1. M is hausdorf.

2. M has a countable basis.

3. M is locally homeomorphic to Rn.

The “n” in item 3 in the above defintion is called the dimension of M .

Exercise 1.4.6. Show that condition 3 in the definition of manifold may be replaced
by the following (weaker) condition:

3’. For every point p of M there exist an open set U ⊂ Rn and a one-to-one
continuous mapping f : U → M , such that p ∈ f(U).

Conditions 1 and 2 are not redondant, as demonstrated in the following Exercise:

Exercise 1.4.7. Let X be the union of the lines y = 1 and y = −1 in R2, and P
be the partition of X consisting of all the subsets of the form {(x, 1)} and {(x,−1)}
where x ≥ 0, and all sets of the form {(x, 1), (x,−1)} where x < 0. Show that X is
locally homeomorphic to R but is not hausdorf.

It can also be shown that there exist manifolds which satisfy conditions 1 and 3
but not 2. One such example is the “long line”, see Spivak.

Finally, it turns out that we do not need to wory about condition 2 if our
topological space is compact

Theorem 1.4.8. If a topological space is compact, and satisfies conditions 1 and 3,
then it satisfies condition 2 as well. In particular, it is a manifold.

1.5 Examples of Manifolds

Exercise 1.5.1. Show that Sn is a manifold.

Exercise 1.5.2. Show that any open subset of a manifold is a manifold, with respect
to the subspace topology.

Exercise 1.5.3 (Product Manifolds). If M and N are manifolds of dimension m
and n respectively, show that M ×N is a manifold of dimension m+n, with respect
to its product topology. In particular, the torus T n is an n-dimensional manifold.

We say that a group G acts on a topological space X if for every g ∈ G there
exists a homeomorphism fg : X → X such that
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1. fe is the indentity function on X.

2. fg ◦ fh = fg◦h.

where e is the indentity element of G. For each p ∈ X, the orbit of p is

[p] := {g(p) | g ∈ G}.

Exercise 1.5.4. Show that The collection of orbits P := {[p] | p ∈ X} is a partition
of X.

When P is endowed with the quotient topology, then the resulting space is
denoted as X/G.

Exercise 1.5.5. For each integer z ∈ Z, let gz : R → R be defined by gz(x) := x+z.
Show that Z acts on R, and R/Z is homeomorphic to S1.

Exercise 1.5.6. Define an action of Zn on Rn so that Rn/Zn is homeomorphic to
T n.

Let π : X → X/G be given by

π(p) := [p].

We say that a mapping f : X → Y is open if for every open U ⊂ X, f(U) is open
in Y .

Exercise 1.5.7. Show that π : X → X/G is open.

We say that G acts properly discontinuously on X, if

1. For every p ∈ X there exists a neighborhood U of p such that U ∩ g(U) = ∅
for all g ∈ G− {e} .

2. For every p, q ∈ X, such that p 6= hg(q) for any g ∈ G, there exist neighbor-
hoods U and V respectively, such that U ∩ g(V ) = ∅ for all g ∈ G.

Exercise 1.5.8 (Group Actions). Show that if a group G acts properly discontin-
uosly on a manifold M , then M/G is a manifold. (Hints: Openness of π ensures
that M/G has a countable basis. Condition (i) in the defintion of proper disconti-
nuity ensures that π is locally one-to-one, which together with openness, yields that
M/G is locally homeomorphic to Rn. Finally, condition (ii) implies that M/G is
hausdorf.)

Exercise 1.5.9. Show that RPn is homeomorphic to Sn/{±1}, so it is a manifold.

Exercise 1.5.10 (Hopf Fibration). Note that, if C denotes the complex plane, then
S1 = {z ∈ C | ‖z‖ = 1}. Thus, since ‖zw‖ = ‖z‖ ‖w‖, S1 admits a natural group
structure. Further, note that S3 = {(z1, z2) | ‖z1‖

2 + ‖z2‖
2 = 1}. Thus, for every

w ∈ S1, we may define a mapping fw : S3 → S3 by fw(z1, z2) := (wz1, wz2). Show
that this defines a group action on S3, and S3/S1 is homeomorphic to S2.
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Exercise 1.5.11 (Piecewise Linear (PL) manifolds). Suppose that we have a col-
lection X of triangles, such that (i) each edge of a triangle in X is shared by exactly
one other triangle (ii) whenever two triangles of X intersect, they intersect at a
common vertex or along a common edge, (iii) each subset of X consisting of all
the triangles which share a vertex is finite and remains connected, if that vertex is
deleted. Show that X is a 2-dimensional manifold.

The converse of the problem in the above exercise is also true: every two dimen-
sional manifold can be “triangulated”.

Exercise 1.5.12. Generalize the previous exercise to 3-dimensional manifolds.

1.6 Classification of Manifolds

The following theorem is not so hard to prove, though it is a bit tediuos, specially
in the noncompact case:

Theorem 1.6.1. Every connected 1-dimensional manifold is homeomorphic to ei-

ther S1, if it is compact, and to R otherwise.

To describe the classification of 2-manifolds, we need to introduce the notion of
connected sums. Let M1 and M2 be a pair of n-dimensional manifolds and X1 and
X2 be subsets of M1 and M2 respectively, which are homeomorphic to the unit ball
Bn

1
(o). Let Y1 and Y2 be subsets of X1 and X2 which are homeomorphic to the open

ball Un
1
(o), and set

X := (M1 − Y1) ∪ (M2 − Y2).

Let ∂X1 := X1 − Y1 and ∂X2 := X2 − Y2. The each of ∂X1 and ∂X2 are homeo-
morphic to Sn. In particular, there exist a homeomorphism f : ∂X1 → ∂X2. Let P
be the partition of X consiting of all single sets of points in X − (∂X1 ∪ ∂X2) and
all sets of the form {p, f(p)}. The resulting quotient space is called the connected

sum of M1 and M2.

Theorem 1.6.2. Every compact connected 2 dimensional manifold is homeomorphic

to exactly one of the following: S2, RP2, T 2, the connected sum of finitely many

T 2s, or the connected sum of finitely many RP2s.

Exercise 1.6.3 (The Klein Bottle). Show that the connected sum of two RP2s
is homeomorphic to the quotient space obtained from the following partition P of
[0, 1] × [0, 1]: P consists of all the single sets {(x, y)} where (x, y) ∈ (0, 1) × (0, 1),
all sets of the form {(x,0),(x,1)} where x ∈ (0, 1), and all the sets of the form
{(0, y), (1, 1 − y)} where y ∈ [0, 1]

Once the dimension reaches 3, however, comparitively very little is known about
classification of manifolds, and in dimensions 5 and higher it can be shown that it
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would not be possible to devise any sort of algorithm for such classifications. Thus
it is in dimensions 3 and 4 where the topology of manifolds is of the most interest.

The outstanding question in 3-manifold topology, and perhaps in all of Mathe-
matics (the only other problem which one might claim to have priority is Riemann’s
hypothesis) is the Poincare’s conjecture, which we now describe.

We say that a manifold M is simply connected if for every continuous mapping
f : S1 → M there is a continuous mapping g : B2

1
(o) → M , such that g = f on S1.

For instance, it is intuitively clear that S2 is simply connected, but T 2 is not.

Problem 1.6.4 (Poincare’s Conjecture). Prove that every compact connected and
simply connected 3-dimensional manifold is homeomorphic to S3.

The generalizations of the above problem to dimesions 5 and higher have been
solved by Smale, and in dimension 4, by Freedman, both of whom won the fields
medal. Ironically enough, however, Poincare proposed his conjecture only in dimen-
sion 3.

The above problem is now one of the Clay Mathematical Institute’s “millenial
prize problems”, that is, there is a one million dollar reward for solving Poincare’s
conjecture (not to mention a Fields medal and a host of other accolades).

1.7 Manifolds with boundary

The Euclidean upper half space is define by

Hn := { (x1, . . . , xn) ∈ Rn | xn > 0 }.

By a manifold-with boundary, we mean a hausdorf topological space, with a count-
able basis, which is locally homeomprphic to either Rn or Hn. If M is a manifold-
with-boundary, then the boundary of M , denoted by ∂M , is defined as the set of
all points p of M such that no neighborhood of p is homeomorphic to Rn.

Exercise 1.7.1 (Boundary of a boundary). Show that if M is an n-dimensional
manifold-with-boundary, then ∂M is an (n − 1)-dimensional manifold (without
boundary).

Exercise 1.7.2 (Double of a manifold). Show that every n dimensional manifod-
with-boundary lies in an n dimensional manifold.

Exercise 1.7.3 (The Mobius Strip). LetX := [1, 0]×[1, 0] and let P be the partition
of X consisting of all sinlge sets {(x, y)} where x ∈ (0, 1) and all the sets of the form
{(0, y), (0, 1 − y)} where y ∈ [0, 1]. Show that P is a manifold-with-boundary with
respect to the quotient topology.

Let M1 and M2 be a pair of manifolds-with-boundary and suppose that ∂M1 is
homeomorphic to ∂M2. Let f : ∂M1 → ∂M2 be a homeomorphism and set X :=
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M1 ∪ M2. Let P be the partition of X consisting of all single sets {x} where
x ∈ X − (∂M1 ∪ ∂M2) and all sets of the form {x, f(x)} where x ∈ ∂M1. Then P ,
with its quotient toplogy, is called a gluing of M1 and M2.

Exercise 1.7.4 (Gluing of manifolds-with-boundary). Show that gluing of two man-
ifold M1 and M2 with boundary yields a manifold without boundary, and this man-
ifold is independent of the choice of the homeomorphisms f : ∂M1 → ∂M2.

Exercise 1.7.5 (Mobius and Klein). Show that the gluing of two Mobius strips
yields a Klein Bottle.

The classifications of 2 dimensional manifolds with boundary is well understood:

Theorem 1.7.6. Every compact connected 2 dimensional manifold-with-boundary

is homeomorphic to a 2 dimensional manifold from which a finite number of subsets

each homeomorphic to an open ball has been removed.

For the following exercise assume:

Theorem 1.7.7 (Generalized Jordan-Brouwer). Let M be a connected n dimen-

sional manifold, and N be a subset of M which is homeomorphic to a compact

connected n− 1 dimensional manifold. Them M −N has exactly two components.

Exercise 1.7.8 (Alternative form of Poincare). Show that Poincare’s conjecture
is equivalent to the following: the only compact connected and simply connected
manifold-with-boundary whose boundary is homeomorphic to S2 is homeomorphic
to the ball B3

1
(o).
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