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Differential Geometry
Fall 2007, Georgia Tech

Lecture Notes 1

1 Curves

1.1 Definition and Examples

A (parametrized) curve (in Euclidean space) is a mapping α : I → Rn, where
I is an interval in the real line. We also use the notation

I 3 t α7−→ α(t) ∈ Rn,

which emphasizes that α sends each element of the interval I to a certain
point in Rn. We say that α is (of the class of) Ck provided that it is k times
continuously differentiable. We shall always assume that α is continuous
(C0), and whenever we need to differentiate it we will assume that α is
differentiable up to however many orders that we may need.

Some standard examples of curves are a line which passes through a point
p ∈ Rn, is parallel to the vector v ∈ Rn, and has constant speed ‖v‖

[0, 2π] 3 t α7−→ p+ tv ∈ Rn;

a circle of radius R in the plane, which is oriented counterclockwise,

[0, 2π] 3 t α7−→
(
r cos(t), r sin(t)

)
∈ R2;

and the right handed helix (or corkscrew) given by

R 3 t α7−→
(
r cos(t), r sin(t), t

)
∈ R3.

Other famous examples include the figure-eight curve

[0, 2π] 3 t α7−→
(

sin(t), sin(2t)
)
∈ R2,
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the parabola
R 3 t α7−→

(
t, t2) ∈ R2,

and the cubic curve
R 3 t α7−→

(
t, t2, t3) ∈ R3.

Exercise 1. Sketch the cubic curve (Hint: First draw each of the projections
into the xy, yz, and zx planes).

Exercise 2. Find a formula for the curve which is traced by the motion of a
fixed point on a wheel of radius r rolling with constant speed on a flat surface
(Hint: Add the formula for a circle to the formula for a line generated by
the motion of the center of the wheel. You only need to make sure that the
speed of the line correctly matches the speed of the circle).

Exercise 3. Let α : I → Rn, and β : J → Rn be a pair of differentiable
curves. Show that(〈

α(t), β(t)
〉)′

=
〈
α′(t), β(t)

〉
+
〈
α(t), β′(t)

〉
and (

‖α(t)‖
)′

=

〈
α(t), α′(t)

〉
‖α(t)‖

.

(Hint: The first identity follows immediately from the definition of the inner-
product, together with the ordinary product rule for derivatives. The second
identity follows from the first once we recall that ‖ · ‖ := 〈·, ·〉1/2).

Exercise 4. Show that if α has unit speed, i.e., ‖α′(t)‖ = 1, then its velocity
and acceleration are orthogonal, i.e., 〈α′(t), α′′(t)〉 = 0.

Exercise 5. Show that if the position vector and velocity of a planar curve
α : I → R2 are always perpendicular, i.e., 〈α(t), α′(t)〉 = 0, for all t ∈ I, then
α(I) lies on a circle centered at the origin of R2.

Exercise 6. Use the fundamental theorem of Calculus for real valued func-
tions to show:

α(b)− α(a) =

∫ b

a

α′(t) dt.
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Exercise 7. Prove that

‖α(b)− α(a)‖ ≤
∫ b

a

‖α′(t)‖ dt.

(Hint: Use the fundamental theorem of calculus and the Cauchy-Schwarts
inequality to show that for any unit vector u ∈ Rn,〈

α(b)− α(a), u
〉

=

∫ b

a

〈α′(t), u〉dt ≤
∫ b

a

‖α′(t)‖dt.

Then set u := (α(b)− α(a))/‖α(b)− α(a)‖.

The previous exercise immediately yields the following theorem. Here
‘sup’ denotes supremum or the least upper bound.

Theorem 8 (Mean Value Theorem for curves). If α : I → Rn is a C1

curve, then for every t, s ∈ I,

‖α(t)− α(s)‖ ≤ sup
[t,s]

‖α′‖|t− s|.

1.2 Reparametrization

We say that β : J → Rn is a reparametrization of α : I → Rn provided that
there exists a smooth bijection θ : I → J such that α(t) = β

(
θ(t)

)
. In other

words, the following diagram commutes:

For instance β(t) = (cot(2t), sin(2t)), 0 ≤ t ≤ π, is a reparametrization
of α(t) = (sin(t), cos(t)), 0 ≤ t ≤ 2π, with θ : [0, 2π] → [0, π] given by
θ(t) = t/2.

The geometric quantities associated to a curve do not change under
reparametrization. These include length and curvature as we define below.
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1.3 Length and Arclength

By a partition P of an interval [a, b] we mean a collection of points {t0, . . . , tn}
of [a, b] such that

a = t0 < t1 < · · · < tn = b.

The approximation of the length of α with respect to P is defined as

length[α, P ] :=
n∑
i=1

‖α(ti)− α(ti−1)‖,

and if Partition[a, b] denotes the set of all partitions of [a, b], then the length
of α is given by

length[α] := sup
{

length[α, P ] | P ∈ Partition[a, b]
}
.

Exercise 9. Show that the shortest curve between any pairs of points in Rn

is the straight line segment joining them. (Hint: Use the triangle inequality).

We say that a curve is rectifiable if it has finite length.

Exercise* 10 (Nonrectifiable curves). Show that there exists a curve
α : [0, 1] → R2 which is not rectifiable (Hint: One such curve, known as
the Koch curve (Figure 1), may be obtained as the limit of a sequence of
curves αi : [0, 1]→ R defined as follows. Let α0 trace the line segment [0, 1].
Consider an equilateral triangle of sides 1/3 whose base rests on the middle
third of [0, 1]. Deleting this middle third from the interval and the triangle
yields the curve traced by α1.

Figure 1:

Repeating this procedure on each of the 4 subsegments of α1 yields α2.
Similarly αi+1 is obtained from αi. You need to show that αi converge to a
(continuos) curve, which may be done using the Arzela-Ascoli theorem. It
is easy to see that this limit has infinite length, because the length of αi is
(4/3)i. Another example of a nonrectifiable curve α : [0, 1]→ R2 is given by
α(t) := (t, t sin(π/t)), when t 6= 0, and α(t) := (0, 0) otherwise. The difficulty
here is to show that the length is infinite.)
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If a curve is C1, then its length may be computed as the following theorem
shows. Note also that the following theorem shows that a C1 curve over a
compact domain is rectifiable. First we need the following fact:

Theorem 11 (Length of C1 curves). Show that if α : I → Rn is a C1

curve, then

length[α] =

∫
I

‖α′(t)‖ dt.

Proof. It suffices to show that (i) length[α, P ] is not greater than the above
integral, for any P ∈ Partition[a, b], and (ii) there exists a sequence PN of
partitions such that limN→∞ length[α, PN ] is equal to the integral. The first
part follows quickly from Exercise 7. To prove the second part, let PN be
a partition given by ti := a + i(b − a)/N . Recall that, by the definition of
integral, for any ε > 0, we may choose N large enough so that∣∣∣∣∣

∫
I

‖α′(t)‖ dt−
N∑
i=1

‖α′(ti)‖
b− a
N

∣∣∣∣∣ ≤ ε

2
. (1)

Next note that the mean value theorem for curves (Theorem 8), yields that∣∣∣∣∣length[α, PN ]−
N∑
i=1

‖α′(ti)‖
b− a
N

∣∣∣∣∣ ≤
∣∣∣∣∣
N∑
i=1

( sup
si∈[ti−1,ti]

‖α′(si)‖ − ‖α′(ti)‖)
b− a
N

∣∣∣∣∣ .
But, by the triangle inequality,

sup
si∈[ti−1,ti]

‖α′(si)‖ − ‖α′(ti)‖ ≤ sup
si∈[ti−1,ti]

‖α′(si)− α′(ti)‖.

Finally since α′ is continuos on the closed interval [a, b], we may suppose that
N is so large that

sup
si∈[ti−1,ti]

‖α′(si)− α′(ti)‖ ≤
ε

2(b− a)
.

The last three inequalities yield that∣∣∣∣∣length[α, PN ]−
N∑
i=1

‖α′(ti)‖
b− a
N

∣∣∣∣∣ ≤ ε

2
(2)
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Inequalities (1) and (2), together with triangle inequality yield that,∣∣∣∣∫
I

‖α′(t)‖ dt− length[α, PN ]

∣∣∣∣ ≤ ε

which completes the proof.

Exercise 12. Compute the length of a circle of radius r, and the length of
one cycle of the curve traced by a point on a circle of radius r rolling on a
straight line.

Exercise 13 (Invariance of length under reparametrization). Show
that if β is a reparametrization of a C1 curve α, then length[β] = length[α],
i.e., length is invariant under reparametrization (Hint : you only need to
recall the chain rule together with the integration by substitution.)

Let L := length[α]. The arclength function of α is a mapping s : [a, b]→
[0, L] given by

s(t) :=

∫ t

a

‖α′(u)‖ du.

Thus s(t) is the length of the subsegment of α which stretches from the initial
time a to time t.

Exercise 14 (Regular curves). Show that if α is a regular curve, i.e.,
‖α′(t)‖ 6= 0 for all t ∈ I, then s(t) is an invertible function, i.e., it is one-to-
one (Hint : compute s′(t)).

Exercise 15 (Reparametrization by arclength). Show that every regu-
lar curve α : [a, b]→ Rn, may be reparametrized by arclength ( Hint: Define
β : [0, L] → Rn by β(t) := α(s−1(t)), and use the chain rule to show that
‖β′‖ = 1; you also need to recall that since f(f−1(t)) = t, then, again by
chain rule, we have (f−1)′(t) = 1/f ′(f−1(t)) for any smooth function f with
nonvanishing derivative.)

1.4 Cauchy’s integral formula and
curves of constant width

Let α : → R2 be a curve and u(θ) := (cos(θ), sin(θ)) be a unit vector. The
projection of α into the line passing through the origin and parallel to u is
given by αu(t) := 〈α(t), u〉u.
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Exercise 16 (Cauchy’s integral formula). Show that if α : I → R2 has
length L, then the average length of the projections αu, over all directions,
is 2L/π, i.e.,

1

2π

∫ 2π

0

length[αu(θ)] dθ =
L

π
.

(Hint : First prove this fact for the case when α traces a line segment. Then
a limiting argument settles the general case, once you recall the definition of
length.)

As an application of the above formula we may obtain a sharp inequality
involving width of closed curves. The width of a set X ⊂ R2 is the distance
between the closest pairs of parallel lines which contain X in between them.
For instance the width of a circle of radius r is 2r. A curve α : [a, b]→ R2 is
said to be closed provided that α(a) = α(b). We should also mention that α
is a Ck closed curve provided that the (one-sided) derivatives of α match up
at a and b.

Exercise 17 (Width and length). Show that if α : [a, b]→ R2 is a closed
curve with width w and length L, then

w ≤ L

π
.

Note that the above inequality is sharp, since for circles w = L/π. Are
there other curves satisfying this property? The answer may surprise you.
For any unit vector u(θ), the width of a set X ⊂ R2 in the direction u, wu,
is defined as the distance between the closest pairs of lines which contain X
in between them. We say that a closed curve in the plane has constant width
provided that wu is constant in all directions.

Exercise 18. Show that if the equality in Exercise 17 holds then α is a curve
of constant width.

The last exercise would have been insignificant if circles were the only
curves of constant width, but that is not the case:

Exercise 19 (Reuleaux triangle). Consider three disks of radius r whose
centers are on an equilateral triangle of sides r, see Figure 2. Show that
the curve which bounds the intersection of these disks has constant width.
Also show that similar constructions for any regular polygon yield curves of
constant width.

7



Figure 2:

It can be shown that of all curves of constant width w, Reuleaux triangle
has the least are. This is known as the Blaschke-Lebesque theorem. A recent
proof of this result has been obtained by Evans Harrell.

Note that the Reuleaux triangle is not a C1 regular curve for it has sharp
corners. To obtain a C1 example of a curve of constant width, we may take a
curve which is a constant distance away from the Reuleaux triangle. Further,
a C∞ example may be constructed by taking an evolute of a deltoid, see Gray
p. 177.
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