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Riemannian Geodesics

Here we show that every Riemannian manifold admits a unique connection, called
the Riemanninan or Levi-Civita connection, which satisfies two properties: symme-
try, and compatibility with the metric, as we describe below. This result is known
as the fundamental theorem of Rimeannian gemetry. Further we will show that the
geodesics which arise from a Riemannian connection are locally minimize distance.

0.1 The bracket

For any pair of vector fields X, Y ∈ X (M) we may define a new vector field
[X, Y ] ∈ X (M) as follows. First recall that TpM is isomorphic to DpM the space
of derivations of the germ of functions of M at. Thus we may define [X, Y ] by
desrcribing how it acts on functions at each point:

[X, Y ]pf := Xp(Y f)− Yp(Xf).

One may check that this does indeed define a derivation, i.e., [X, Y ]p(λf + g) =
λ[X, Y ]pf + [X, Y ]pg, and [X, Y ]p(fg) = ([X, Y ]pf)g(p) + f(p)([X, Y ]pg). Further
note that if ei(p);= ei denotes the standard basis vector field of Rn then [ei, ej ] = 0
(since partial derivatives commute). On the other hand it is not difficult to construct
examples of vector fields whose bracket does not vanish:

Example 0.1. Let X, Y be vector fields on R2 given by X(x, y) = (1, 0) and
Y (x, y) = (0, x). Then

[X, Y ]f = X
(
x

∂f

∂y

)
− Y

(∂f

∂x

)
=

∂f

∂y
+ x

∂2f

∂x∂y
− x

∂2f

∂y∂x
=

∂f

∂y

Lemma 0.2. Let f : M → N be a diffeomorphism, and X, Y ∈ X (M). Then

df([X, Y ]) = [dfX, dfY ].

Proof. Recall that for any vectorfield Z on M and function g on N , we have(
(dfZ)g

)
(f(p)) = (dfZ)f(p)g = (dfpZ)g = Zp(g ◦ f).
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Thus if we let Z := dfZ, and p := f(p), then((
Zg

)
◦ f

)
(p) =

(
Zg

)(
p
)

= Zpg = Zp(g ◦ f) =
(
Z(g ◦ f)

)
(p).

Using the last set of identities, we may now compute(
[X, Y ]g

)
(p) = [X, Y ]p(g ◦ f)

= Xp

(
Y (g ◦ f)

)
− Yp

(
X(g ◦ f)

)
= Xp

(
(Y g) ◦ f

)
− Yp

(
(Xg) ◦ f

)
= Xp(Y g)− Y p(Xg)

=
(
[X,Y ]g

)
(p).

Corollary 0.3. Let (U, φ) be a local chart of M and Ei(p) := dφ−1
φ(p)(ei) be the

associated coordinate vector fields on U . Then [Ei, Ej ] = 0.

Exercise 0.4. Show that the bracket satisfies the following properties:

[X, Y ] = −[Y, X] and [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0

0.2 Riemannian Connections

Recall that the standard connection in Rn is defined as

∇XY := (X(Y 1), . . . , X(Y n)).

Furthermore, recall that in Rn, for any function f : Rn → R and vector field X we
have

Xf = 〈X, grad f〉.

Using these identites, we compute that

Z〈X, Y 〉 =
∑ 〈

Z, grad(XiY i)
〉

=
∑ 〈

Z, grad(Xi)Y i + Xi grad(Y i))
〉

=
∑ 〈

Z, gradXi
〉
Y i +

∑ 〈
Z, gradY i

〉
Xi

= 〈∇ZX, Y 〉+ 〈X,∇ZY 〉.

Motivated by this observation we say that a connection on a Riemannian manifold
(M, g) is compatible with the metric provided that

Zg(X, Y ) = g(∇ZX, Y ) + g(X,∇ZY ).
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Further note that

〈Y,∇X grad f〉 − 〈X,∇Y grad f〉 =
n∑

i=1

Y iXiDif −
n∑

i=1

XiY iDif = 0.

This property, together with the compatibility of ∇ with the innerproduct which we
estalished above, may be used to compute that

(∇XY −∇Y X)f =
〈
∇XY, grad f〉 − 〈∇Y X, grad f〉+ 〈Y,∇X grad f

〉
− 〈X,∇Y grad f〉

= X〈Y, grad f〉 − Y 〈X, grad f〉
= X(Y f)− Y (Xf)
= [X, Y ](f).

Thus we say that a connection on a manifold is symmetric provided that

∇XY −∇Y X = [X, Y ].

Exercise 0.5. Show that a connection is symmetric if and only the correspding
Christoffel symbold satisfy

Γk
ij = Γk

ji

in every local chart.

If a connection is compatible with the metric and is symmetric we say that
it is Riemannian. The following result is known as the fundamental theorem of
Riemannian Geometry

Theorem 0.6. Every Riemannian manifold admits a unique Riemannian connec-
tion.

Proof. First suppose that the manifold (M, g) does admit some Riemannian con-
nection ∇. We will show then that ∇ is unique. To see this, first note that, for any
vector fields X, Y , Z ∈M,

Zg(X, Y ) = g(∇ZX, Y ) + g(X,∇ZY ),
Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ),
Y g(Z,X) = g(∇Y Z,X) + g(Z,∇Y X).

This yields that

Zg(X, Y ) + Xg(Y, Z)− Y g(Z,X)
= g([X, Z], Y ) + g([Y, Z], X) + g([X, Y ], Z) + 2g(Z,∇Y X).
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Therefore

g(Z,∇Y X) =
1
2

(
Zg(X, Y ) + Xg(Y, Z)− Y g(Z,X)

− g([X, Z], Y )− g([Y, Z], X)− g([X, Y ], Z)
)
.

This shows that ∇Y X is completely determined by g, so it must be unique.
To prove existence, now note that we may define ∇ by using the last expression

displayed above. It is easy to check that ∇ would then be a Riemannian connection.

Next we are going to derive the local expression for the Christophel symbols
associated to a Riemannian connection. Let (U, φ) be a local chart of M and Ei(p) :=
dφ−1

φ(p)(ei) be the corresponding coordinate vector fields on U . Then, recalling the
[Ei, Ej ] = 0, the last displayed expression yields that

g
(
Ek,

∑
`

Γ`
ijE`

)
=

1
2

(
Ekg(Ei, Ej) + Eig(Ej , Ek)− Ejg(Ek, Ei)

)
.

Now set gij := g(Ei, Ej). Further recall that if f : M → R is any function then
Eif(p) = Di(f ◦ φ−1)(φ(p)). Thus if we set f := f ◦ φ−1, then Ei(f), then we have
Eif(p) = Dif(φ(p)), and the last expression may be rewritten as:∑

`

Γ`
ijgk` =

1
2

(
Dkgij + Digjk −Djgki

)
.

Now let gij be the coefficients of the matrix which is the inverse of the matrix with
coefficients gij . Then

∑
k gk`g

km = δ`m where δ`m are the coefficients of the identity
matrix. Therefore ∑

k`

Γ`
ijgk`g

km =
∑

`

Γ`
ijδ`m = Γm

ij .

This yields that

Γm
ij =

1
2

∑
k

gkm
(
Dkgij + Digjk −Djgki

)
. (1)

0.3 Induced connection on Riemanninan submanifolds

Recall that if M is a manifold with connection ∇, then any submanifold M ⊂ M
inherits a connection ∇ given by

∇XY :=
(
∇XY

)>
.

Further recall that, if (M, g) is a Riemannian manifold, then M inherits a Rieman-
nian metric g given by

g(X, Y ) := g(X,Y ).
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Thus one may ask that if ∇ is the Riemannian connection of M , then is ∇ a
Riemannian connection, i.e., is it symmetric and is compatible with g? Here we
show that the answer is yes:

Proposition 0.7. The induced connection on a Riemannian submanifold is Rie-
mannian.

Proof. Let p ∈ M , X, Y be vector fields on M , and X, Y be their extensions to a
neighborhood U ⊂ M of p. Then

Zpg(X, Y ) = Zpg(X,Y )
= g(∇ZpX,Yp) + g(Xp,∇ZpY )

= g((∇ZpX)>, Yp) + g(Xp, (∇ZpY )>)
= g(∇ZpX, Yp) + g(Xp,∇ZpY )

So ∇ is compatible with g. Next note that

∇XpY −∇YpX = (∇Xp
Y )> − (∇Y p

X)> = [X,Y ]>p .

But if f is any function on M and f is its restriction to M , then

[X,Y ]pf = Xp(Y f)− Yp(Xf) = Xp(Y f)− Yp(Xf) = [X, Y ]pf.

Thus
[X,Y ]>p = [X, Y ]>p = [X, Y ]p.

So ∇ is symmetric.

0.4 Speed of Geodesics

If (M, g) is a Riemannian metric, we say that a curve c : I → M is a (Riemannian)
geodesic provided that g is a geodesic with respect to the Riemannian connection
of M .

Lemma 0.8. Every Riemannian geodesic c : I → M has constant speed, i.e., g(c′(t), c′(t))
is constant.

Proof. Let c′ be a vector field in a neighborhood U of c(t0) such that c′(c(t)) = c′(t),
for all t ∈ [t0 − ε, t0 + ε]. Now define f : U → R by f(p) = g(c′(p), c′(p)). Then
g(c′(t), c′(t)) = f(c(t)), and it follows that

d

dt
g(c′(t), c′(t))

∣∣∣
t=t0

= (f ◦ c)′(t0) = c′(t0)
[
g(c′, c′)

]
= 2 g

(
∇c′(t0)c

′, c′(t0)
)

= 0.

Thus g(c′(t), c′(t)) is constant.
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If c : I → M is any curve, then we say that c : J → M is a reparametrization of
c provided that c = c ◦ u for some diffeomorphism u : J → I.

Lemma 0.9. If c : I → M is a geodesic, then so is any reparametrization c = c ◦ u,
where u(t) = kt + t0 for some constants k and t0.

Proof. The chain rule yields that

c′(t) = dct(1) = dcu(t) ◦ dut(1) = dcu(t)(u
′(t)) = dcu(t)(k) = kdcu(t)(1) = kc′(u(t)).

Consequently,
∇c′(t)c

′ = ∇kc′(kt+t0)kc′ = k2∇c′(kt+t0)c
′ = 0.

Proposition 0.10. Let c : I → M be a geodesic. Then any reparamterization
c : J → M of c is a geodesic as well, if and only if it has constant speed.

Proof. If c is a geodesic, then it must have constant speed as we showed earlier.
Now suppose that c has constant speed. Further note that, since c = c ◦u, for some
diffeomorphism u : J → I, it follows that

c′(t) = dct(1) = dcu(t) ◦ dut(1) = dcu(t)(u
′(t)) = u′(t)dcu(t)(1) = u′(t)c′(u(t)).

Thus, since c′ and c′ both have constant magnitudes, it follows that u′ is constant.
But then u(t) = kt + t0, and the previous lemma implies that c is a geodesic.

0.5 Example: Geodesics of H2

Here we show that the (nontrivial) geodesics in the Poincare’s upper half-plane
either trace vertical lines or semicircles which meet the x-axis orthogonally. To this
end, we first recall that the standard (hyperbolic) metric on the upper half plane is
given by

g(x,y)(X, Y ) =
〈X, Y 〉

y2
.

Thus
g11(x, y) =

1
y2

, g12(x, y) = g21(x, y) = 0, g22(x, y) =
1
y2

.

Further

g11(x, y) = y2, g12(x, y) = g21(x, y) = 0, g22(x, y) = y2.

Now note that we may let the local chart φ to be the identity function. Then
Γm

ij = Γm
ij , and so using (1) we may compute that

Γ1
11 = Γ2

12 = Γ1
22 =, 0 Γ2

11 =
1
y
, Γ1

12 = Γ2
22 = −1

y
.
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Now recall that c : I → H2 is a geodesic if the following equations are satisfied:

c̈k(t) +
∑
ij

ċi(t)ċj(t)Γk
ij(c(t)) = 0.

So if c(t) = (x(t), y(t)), then we have

ẍ− 2
ẋẏ

y
= 0, ÿ +

ẋ2 − ẏ2

y
= 0. (2)

To find the solution to these equations, subject to initial conditions c(0) = (x0, y0)
and ċ(0) = (ẋ0, ẏ0), first suppose that ẋ0 = 0. Then the second equation reduces to
ẏ/y = const. Thus, when ẋ0 = 0, then either c traces a vertical line (if ẏ0 6= 0) or is
just a point (if ẏ0 = 0). It remains then to consider the case when ẋ0 6= 0. We claim
that in this case c traces a part of a circle centered at a point on the x-axis, i.e.,

(x− a)2 + y2 = const

for some constant a (in particular, when ẋ0 6= 0, then ẏ0 6= 0 as well, which may
be readily seen from the second equation in (2)). Differentiating both sides of the
above equality yields that the above equality holds if and only if

a = x +
yẏ

ẋ
.

So we just need to check that a is indeed constant, which is a matter of a simple
computation with the aid of (2):

ȧ = ẋ +
(ẏ2 + yÿ)ẋ− yẏẍ

ẋ2
= ẋ +

(ẏ2 + ẏ2 − ẋ2)ẋ− ẏ(2ẋẏ)
ẋ2

= 0.
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