Oct 10, 2006^1

Math 6455 Differential Geometry I Fall 2006, Georgia Tech

Lecture Notes 13

Integration on Manifolds, Volume, and Partitions of Unity

Suppose that we have an orientable Riemannian manifold (M, g) and a function $f: M \to \mathbf{R}$. How can we define the integral of f on M? First we answer this question locally, i.e., if (U, ϕ) is a chart of M (which preserves the orientation of M), we define

$$\int_{U} f dv_g := \int_{\phi(U)} f(\phi^{-1}(x)) \sqrt{\det(g_{ij}^{\phi}(\phi^{-1}(x)))} dx,$$

where g_{ij} are the coefficients of the metric g in local coordinates (U, ϕ) . Recall that

$$g_{ij}^{\phi}(p) := g(E_i^{\phi}(p), E_j^{\phi}(p)), \quad \text{where} \quad E_i^{\phi}(p) := d\phi_{\phi(p)}^{-1}(e_i).$$

Now note that if (V, ψ) is any other (orientation preserving) local chart of M, and $W := U \cap V$, then there are two ways to compute $\int_W f dv_g$, and for these to yield the same answer we need to have

$$\int_{\phi(W)} f(\phi^{-1}(x)) \sqrt{\det(g_{ij}^{\phi}(\phi^{-1}(x)))} dx = \int_{\psi(W)} f(\psi^{-1}(x)) \sqrt{\det(g_{ij}^{\psi}(\psi^{-1}(x)))} dx.$$
(1)

To check whether the above expression is valid recall that the change variables formula tells that if $D \subset \mathbf{R}^n$ is an open subset, $f: D \to \mathbf{R}$ is some function, and $u: \overline{D} \to D$ is a diffeomorphism, then

$$\int_{D} f(x) \, dx = \int_{\overline{D}} f(u(x)) \det(du_x) dx.$$

Now recall that, by the definition of manifolds, $\phi \circ \psi^{-1} : \psi(W) \to \phi(W)$ is a diffeomorphism. So, by the change of variables formula, the integral on the left hand side of (1) may be rewritten as

$$\int_{\psi(W)} f(\psi^{-1}(x)) \sqrt{\det(g_{ij}^{\phi}(\psi^{-1}(x)))} \det(d(\phi \circ \psi)_x^{-1}) dx.$$

¹Last revised: November 23, 2009

So for equality in (1) to hold we just need to check that

$$\sqrt{\det(g_{ij}^{\psi}(\psi^{-1}(x))))} = \sqrt{\det(g_{ij}^{\phi}(\psi^{-1}(x)))} \det(d(\phi \circ \psi^{-1})_x),$$

for all $x \in \psi(W)$ or, equivalently,

$$\sqrt{\det(g_{ij}^{\psi}(p))} = \sqrt{\det(g_{ij}^{\phi}(p))} \det(d(\phi \circ \psi^{-1})_{\psi(p)}), \tag{2}$$

for all $p \in W$. To see that the above equality holds, let (a_{ij}) be the matrix of the linear transformation $d(\phi \circ \psi^{-1})$ and note that

$$g_{ij}^{\psi} = g(d\psi^{-1}(e_i), d\psi^{-1}(e_j))$$

= $g(d\phi^{-1} \circ d(\phi \circ \psi^{-1})(e_i), d\phi^{-1} \circ d(\phi \circ \psi^{-1})(e_j))$
= $g\left(d\phi^{-1}\left(\sum_{\ell} a_{i\ell}e_{\ell}\right), d\phi^{-1}\left(\sum_{k} a_{jk}e_{k}\right)\right)$
= $\sum_{\ell k} a_{il}a_{jk}g_{\ell k}^{\phi}.$

So if (g_{ij}^{ψ}) and (g_{ij}^{ϕ}) denote the matrices with the coefficients g_{ij}^{ψ} and g_{ij}^{ϕ} , then we have

$$(g_{ij}^{\psi}) = (a_{ij})(a_{ij})(g_{ij}^{\phi}).$$

Taking the determinant of both sides of the above equality yields (2). In particular note that $\sqrt{\det(a_{ij})^2} = |\det(a_{ij})| = \det(a_{ij})$, because, since M is orientable and ϕ and ψ are by assumption orientation preserving charts, $\det(a_{ij}) > 0$.

Next we discuss, how to integrate a function on all of M. To see this we need the notion of *partition of unity* which may be defined as follows: Let U_i , $i \in I$, be an open cover of M, then by a (smooth) partition of unity subordinate to U_i we mean a collection of smooth functions $\theta_i \colon M \to \mathbf{R}$ with the following properties:

- 1. supp $\theta_i \subset A_i$.
- 2. for any $p \in M$ there exists only finitely many $i \in I$ such that $\theta_i(p) \neq 0$.
- 3. $\sum_{i \in I} \theta_i(p) = 1$, for all $p \in M$.

Here supp denotes *support*, i.e., the closure of the set of points where a given function is nonzero. Further note that by property 2 above, the sum in item 3 is well-defined.

Theorem 0.1. If M is any smooth manifold, then any open covering of M admits a subordinate smooth partition of unity.

Using the above theorem, whose proof we postpone for the time being, we may define $\int_M f dv_g$, for any function $f: M \to \mathbf{R}$ as follows. Cover M by a family of local charts (U_i, ϕ_i) , and let θ_i be a subordinate partition of unity. Then we set

$$\int_M f dv_g := \sum_{i \in I} \int_{U_i} \theta_i f dv_g$$

Note that this definition does not depend on the choice of local charts or the corresponding partitions of unity. The *volume* of any orientable Riemannian manifold may now be defined as the integral of the constant function one:

$$\operatorname{vol}(M) := \int_M dv_g.$$

Now we proceed towards proving Theorem 0.1.

Exercise 0.2. Compute the area of a torus of revolution in \mathbb{R}^3 .

Lemma 0.3. Any open cover of a manifold has a countable subcover.

Proof. Suppose that U_i , $i \in I$, is an open covering of a manifold M (where I is an arbitrary set). By definition, M has a countable basis $B = \{B_j\}_{j \in J}$. For every $i \in I$, let $A_i := \{B_j \mid B_j \subset U_i\}$. Then A_i is an open covering for M. Next, let $A := \bigcup_{i \in I} A_i$. Since $A \subset B$, A is countable, so we may denote the elements of A by A_k , where $k = 1, 2, \ldots$ Note that A_k is still an open covering for M. Further, for each k there exists an $i \in I$ such that $A_k \subset U_i$. We may collect all such U_i and reindex them by k, which gives the desired countable subcover.

Lemma 0.4. Any manifold has a countable basis such that each basis element has compact closure.

Proof. By the previous lemma we may cover any manifold M by a countable collection of charts (U_i, ϕ_i) . Let V_j be a countable basis of \mathbf{R}^n such that each V_j has compact closure \overline{V}_j , e.g., let V_j be the set of balls in \mathbf{R}^n centered at rational points and with rational radii less than 1. Then $B_{ij} := \phi_i^{-1}(V_j)$ gives a countable basis for U_i such that each basis element has compact closure, since $\overline{B}_{ij} = \phi_i^{-1}(\overline{V}_j)$. So $\cup_{ij}B_{ij}$ gives the desired basis, since a countable collection of countable sets is countable.

Lemma 0.5. Any manifold M is countable at infinity, i.e., there exists a countable collection of compact subsets K_i of M such that $M \subset \bigcup_i K_i$ and $K_i \subset \operatorname{int} K_{i+1}$.

Proof. Let B_i be the countable basis of M given by the previous lemma, i.e., with each \overline{B}_i compact. Set $K_1 := \overline{B}_1$ and let $K_{i+1} := \bigcup_{j=1}^r \overline{B}_j$, where r is the smallest integer such that $K_i \subset \bigcup_{j=1}^r B_j$.

By a refinement of an open cover U_i of M we mean an open cover V_j such that for each $j \in J$ there exists $i \in I$ with $V_j \subset U_i$. We say that an open covering is locally finite, if for every $p \in M$ there exists finitely many elements of that covering which contain p.

Lemma 0.6. Any open covering of a manifold M has a countable locally finite refinement by charts (U_i, ϕ_i) such that $\phi_i(U_i) = B_3^n(o)$ and $V_i := \phi^{-1}(B_1^n(o))$ also cover M.

Proof. First note that for every point $p \in M$, we may find a local chart (U_p, ϕ_p) such that $\phi_p(U_p) = B_3^n(o)$, and set $V_p := \phi^{-1}(B_1^n(o))$. Further, we may require that U_p lies inside any given open set which contains p. Let A_α be an open covering for M. By a previous lemma, after replacing A_α by a subcover, we may assume that A_α is countable. Now consider the sets $A_\alpha \cap (\operatorname{int} K_{i+2} - K_{i-1})$. Since $K_{i+1} - \operatorname{int} K_i$ is compact, there exists a finite number of open sets $U_{p_j}^{\alpha,i} \subset A_\alpha \cap (\operatorname{int} K_{i+2} - K_{i-1})$ such that $V_{p_j}^{\alpha,i}$ covers $A_\alpha \cap (K_{i+1} - \operatorname{int} K_i)$. Since K_i and A_α are countable, the collection $U_{p_j}^{\alpha,i}$ is a countable. Further, by construction $U_{p_j}^{\alpha,i}$ is locally finite, so it is the desired refinement.

Note 0.7. The last result shows in particular that every manifold is *paracompact*, i.e., every open cover of M has a locally finite refinement.

Proof of Theorem 0.1. Let A_{α} be an open cover of M. Note that if U_i is any refinement of A_{α} and θ_i is a partition of unity subordinate to U_i then, θ_i is subordinate to A_{α} . In particular, it is enough to show that the refinement U_i given by the previous lemma has a subordinate partition of unity. To this end note that there exists a smooth nonnegative function $f: \mathbf{R} \to \mathbf{R}$ such that f(x) = 0 for $x \ge 2$, and f(x) = 1 for $x \le 1$. Define $\overline{\theta}_i \colon M \to \mathbf{R}$ by $\overline{\theta}_i(p) \coloneqq f(\|\phi_i(p)\|)$ if $p \in U_i$ and $\overline{\theta}_i(p) \coloneqq 0$ otherwise. Then $\overline{\theta}_i$ are smooth. Finally, $\theta_i(p) \coloneqq \overline{\theta}_i(p) / \sum_j \overline{\theta}_j(p)$, is the desired partition of unity.

Recall that earlier we showed that any *compact* manifold admits a Riemannian metric, since it can be isometrically embedded in some Euclidean space. As an application of the previous result we now can show:

Corollary 0.8. Any manifold admits a Riemannian metric

Proof. Let (U_i, ϕ_i) be an atlas of M, and let θ_i be a subordinate partition of unity. Now for $p_{\in}U_i$ define $g_p^i(X, Y) := \langle d\phi_i(X), d\phi_i(Y) \rangle$. Then we define a Riemannian metric g on M by setting $g_p(X, Y) := \sum_i \theta_i(p) g_p^i(X, Y)$.

Exercise 0.9. Show that every manifold is *normal*, i.e., for every disjoint closed sets A_1 , A_2 in M there exists a pair of disjoint open subsets U_1 , U_2 of M such that $X_1 \subset U_1$ and $X_2 \subset U_2$. [*Hint:* Use the fact that every manifold admits a metric]

Exercise 0.10. Show that if U is any open subset of a manifold M and $A \subset U$ is a closed subset, then there exists smooth function $f: M \to \mathbf{R}$ such that f = 1 on A and f = 0 on M - U.

Exercise 0.11. Compute the volume (area) of a torus of revolution in \mathbf{R}^3 .

Exercise 0.12. Let $M \subset \mathbf{R}^n$ be an embedded submanifold which may be parameterized by $f: U \to \mathbf{R}^n$, for some open set $U \subset \mathbf{R}^m$, i.e., f is a one-to-one smooth immersion and f(U) = M. Show that then $\operatorname{vol}(M) = \int_U \sqrt{\det(J_x(f) \cdot J_x(f)^T)} dx$, where $J_x(f)$ is the jacobian matrix of f at x.