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Integration on Manifolds, Volume, and Partitions of Unity

Suppose that we have an orientable Riemannian manifold (M, g) and a function
f: M — R. How can we define the integral of f on M7 First we answer this
question locally, i.e., if (U, ¢) is a chart of M (which preserves the orientation of

M), we define
dvg 1= oMz det (g%, ¢~ Hx)))dx,

where g;; are the coefficients of the metric g in local coordinates (U, ¢). Recall that

93(]9) = Q(Ef(P); Ef(p)), where Ef(p) = dqﬁ;é))(ei).

Now note that if (V) is any other (orientation preserving) local chart of M, and
W := U NV, then there are two ways to compute fW fdvg, and for these to yield
the same answer we need to have

/ (2))y/det (gl (6~ (2))dz = /w " F (@) /det(gls (4 (2)))da.

(1)
To check whether the above expression is valid recall that the change variables
formula tells that if D C R™ is an open subset, f: D — R is some function, and
u: D — D is a diffeomorphism, then

/f dx_/f )) det (dug )da.

Now recall that, by the definition of manifolds, ¢ o p=1: (W) — (W) is a diffeo-
morphism. So, by the change of variables formula, the integral on the left hand side
of (1) may be rewritten as

/¢ \/det (95;(=1(2))) det(d(¢ 0 ¥); ')
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So for equality in (1) to hold we just need to check that

Vdet(g?’jw ! %det (95 (¥=1(x))) det(d(¢ 0 ™ 1)z),

for all x € ¢(W) or, equivalently,

Vdet(g () = /det(g? (p) det(d( 0 ¥ ") ), (2)

for all p € W. To see that the above equality holds, let (a;;) be the matrix of the
linear transformation d(¢ o1 ~!) and note that

gl = gldp(e),dv(e;))
= g(d¢~ " od(¢pop ) (e;),dp " od(dov")(e)))

g (d¢1 ( > az‘éef) ,dg™! ( > ajka))
¢ k
= Z ailajkg?k'
I

So if (g%) and (gf;) denote the matrices with the coefficients g;’bj

have

and g;@, then we

(9) = (aij)(ai)(g))-
Taking the determinant of both sides of the above equality yields (2). In particular
note that /det(a;;)? = | det(a;;)| = det(ai;), because, since M is orientable and ¢
and 1) are by assumption orientation preserving charts, det(a;;) > 0.

Next we discuss, how to integrate a function on all of M. To see this we need
the notion of partition of unity which may be defined as follows: Let U;, i € I, be
an open cover of M, then by a (smooth) partition of unity subordinate to U; we
mean a collection of smooth functions 8;: M — R with the following properties:

1. supp6; C A;.
2. for any p € M there exists only finitely many ¢ € I such that 6;(p) # 0.
3. Y ierbilp) =1, for allp € M.

Here supp denotes support, i.e., the closure of the set of points where a given function
is nonzero. Further note that by property 2 above, the sum in item 3 is well-defined.

Theorem 0.1. If M is any smooth manifold, then any open covering of M admits
a subordinate smooth partition of unity.



Using the above theorem, whose proof we postpone for the time being, we may
define | u fdvg, for any function f: M — R as follows. Cover M by a family of
local charts (U, ¢;), and let 6; be a subordinate partition of unity. Then we set

/M fdvg == Z/Ui 0; fdv,.

il

Note that this defintion does not depend on the choice of local charts or the cor-
responding partitions of unity. The volume of any orientable Riemannian manifold
may now be defined as the integral of the constant function one:

vol(M) := / dvg.
M
Now we proceed towards proving Theorem 0.1.
Exercise 0.2. Compute the area of a torus of revolution in R?3.
Lemma 0.3. Any open cover of a manifold has a countable subcover.

Proof. Suppose that U;, i € I, is an open covering of a manifold M (where I is
an arbitrary set). By defintion, M has a countable basis B = {B,};cs. For every
i€, let Ay :={B; | Bj C U;}. Then A; is an open covering for M. Next, let
A := UjerA;. Since A C B, A is countable, so we may denote the elements of A
by Ag, where k =1, 2,.... Note that A is still an open covering for M. Further,
for each k there exists an ¢ € I such that A; C U;. We may collect all such U; and
reindex them by k, which gives the desired countable subcover. O

Lemma 0.4. Any manifold has a countable basis such that each basis element has
compact closure.

Proof. By the previous lemma we may cover any manifold M by a countable col-
lection of charts (U;,¢;). Let V; be a countable basis of R™ such that each Vj
has compact closure V, e.g., let V; be the set of balls in R™ centered at rational
points and with rational radii less than 1. Then B;; := ¢; *(V;) gives a countable
basis for U; such that each basis element has compact closure, since B;; = ¢ 1(Vj).
So U;;B;; gives the desired basis, since a countable collection of countable sets is
countable. O

Lemma 0.5. Any manifold M is countable at infinity, i.e., there exists a countable
collection of compact subsets K; of M such that M C U;K; and K; C int K;41.

Proof. Let B; be the countable basis of M given by the previous lemma, i.e., with
each B; compact. Set Kj := B; and let K;41 := U’]"-ZlBj, where r is the smallest
integer such that K; C U;_, B;. ]



By a refinement of an open cover U; of M we mean an open cover V; such that
for each j € J there exists ¢« € I with V; C U;. We say that an open covering is
locally finite, if for every p € M there exists finitely many elements of that covering
which contain p.

Lemma 0.6. Any open covering of a manifold M has a countable locally finite
refinement by charts (U, ¢;) such that ¢;(U;) = B(0) and V; := ¢~1(B7(0)) also
cover M.

Proof. First note that for every point p € M, we may find a local chart (U, ¢p)
such that ¢,(U,) = B%(0), and set V,, := ¢~1(B7(0)). Further, we may require that
Up, lies inside any given open set which contains p. Let A, be an open covering for
M. By a previous lemma, after replacing A, by a subcover, we may assume that
Aq is countable. Now consider the sets A, N (int Ko — K;_1). Since K;; 1 — int K
is compact, there exists a finite number of open sets U;;;.’Z C AN (int Ko — Kj—1)
such that V};;” covers Ay, N (K41 — int K;). Since K; and A, are countable, the
collection U;,);’i is a countable. Further, by construction Uﬁ;.’i is locally finite, so it is
the desired refinement. O

Note 0.7. The last result shows in particular that every manifold is paracompact,
i.e., every open cover of M has a locally finite refinement.

Proof of Theorem 0.1. Let A, be an open cover of M. Note that if U; is any refine-
ment of A, and 0; is a partition of unity subordinate to U; then, 6; is subordinate to
A, In particular, it is enough to show that the refinement U; given by the previous
lemma has a subordinate partition of unity. To this end note that there exists a
smooth nonnegative function f: R — R such that f(z) =0 for z > 2, and f(x) =1
for x < 1. Define §;: M — R by 0;(p) := f(||¢:(p)||) if p € U; and 0;(p) := 0 other-
wise. Then 6; are smooth. Finally, 6;(p) := 0;(p)/ > y 0;(p), is the desired partition
of unity. O

Recall that earlier we showed that any compact manifold admits a Riemannian
metric, since it can be isometrically embedded in some Euclidean space. As an
application of the previous result we now ca n show:

Corollary 0.8. Any manifold admits a Riemannian metric

Proof. Let (U;, ¢;) be an atlas of M, and let 6; be a subordinate partition of unity.
Now for peUs define g(X,Y) := (d¢i(X),d¢;(Y)). Then we define a Riemannian
metric g on M by setting g,(X,Y) := >, 0;(p)g}(X,Y). O

Exercise 0.9. Show that every manifold is normal, i.e., for every disjoint closed
sets A1, Ao in M there exists a pair of disjoint open subsets Uy, Us of M such that
X1 C Uy and Xy C Us. [Hint: Use the fact that every manifold admits a metric]



Exercise 0.10. Show that if U is any open subset of a manifold M and A C U is
a closed subset, then there exists smooth function f: M — R such that f =1 on A
and f=0on M —U.

Exercise 0.11. Compute the volume (area) of a torus of revolution in R3.

Exercise 0.12. Let M C R" be an embedded submanifold which may be param-
eterized by f: U — R", for some open set U C R, i.e., f is a one-to-one smooth
immersion and f(U) = M. Show that then vol(M) = [, /det(Jo(f) - Jo(f)T) dz,
where J,(f) is the jacobian matrix of f at .




