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Lecture Notes 13

Integration on Manifolds, Volume, and Partitions of Unity

Suppose that we have an orientable Riemannian manifold (M, g) and a function
f : M → R. How can we define the integral of f on M? First we answer this
question locally, i.e., if (U, φ) is a chart of M (which preserves the orientation of
M), we define ∫

U
fdvg :=

∫
φ(U)

f(φ−1(x))
√

det(gφij(φ−1(x)))dx,

where gij are the coefficients of the metric g in local coordinates (U, φ). Recall that

gφij(p) := g(Eφi (p), Eφj (p)), where Eφi (p) := dφ−1
φ(p)(ei).

Now note that if (V, ψ) is any other (orientation preserving) local chart of M , and
W := U ∩ V , then there are two ways to compute

∫
W fdvg, and for these to yield

the same answer we need to have∫
φ(W )

f(φ−1(x))
√

det(gφij(φ−1(x)))dx =
∫
ψ(W )

f(ψ−1(x))
√

det(gψij(ψ−1(x)))dx.

(1)
To check whether the above expression is valid recall that the change variables
formula tells that if D ⊂ Rn is an open subset, f : D → R is some function, and
u : D → D is a diffeomorphism, then∫

D
f(x) dx =

∫
D
f(u(x)) det(dux)dx.

Now recall that, by the definition of manifolds, φ ◦ ψ−1 : ψ(W )→ φ(W ) is a diffeo-
morphism. So, by the change of variables formula, the integral on the left hand side
of (1) may be rewritten as∫

ψ(W )
f(ψ−1(x))

√
det(gφij(ψ−1(x))) det(d(φ ◦ ψ)−1

x )dx.
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So for equality in (1) to hold we just need to check that√
det(gψij(ψ−1(x))) =

√
det(gφij(ψ−1(x))) det(d(φ ◦ ψ−1)x),

for all x ∈ ψ(W ) or, equivalently,√
det(gψij(p)) =

√
det(gφij(p)) det(d(φ ◦ ψ−1)ψ(p)), (2)

for all p ∈ W . To see that the above equality holds, let (aij) be the matrix of the
linear transformation d(φ ◦ ψ−1) and note that

gψij = g(dψ−1(ei), dψ−1(ej))

= g(dφ−1 ◦ d(φ ◦ ψ−1)(ei), dφ−1 ◦ d(φ ◦ ψ−1)(ej))

= g

(
dφ−1

(∑
`

ai`e`

)
, dφ−1

(∑
k

ajkek

))
=

∑
`k

ailajkg
φ
`k.

So if (gψij) and (gφij) denote the matrices with the coefficients gψij and gφij , then we
have

(gψij) = (aij)(aij)(g
φ
ij).

Taking the determinant of both sides of the above equality yields (2). In particular
note that

√
det(aij)2 = | det(aij)| = det(aij), because, since M is orientable and φ

and ψ are by assumption orientation preserving charts, det(aij) > 0.
Next we discuss, how to integrate a function on all of M . To see this we need

the notion of partition of unity which may be defined as follows: Let Ui, i ∈ I, be
an open cover of M , then by a (smooth) partition of unity subordinate to Ui we
mean a collection of smooth functions θi : M → R with the following properties:

1. supp θi ⊂ Ai.

2. for any p ∈M there exists only finitely many i ∈ I such that θi(p) 6= 0.

3.
∑

i∈I θi(p) = 1, for all p ∈M .

Here supp denotes support, i.e., the closure of the set of points where a given function
is nonzero. Further note that by property 2 above, the sum in item 3 is well-defined.

Theorem 0.1. If M is any smooth manifold, then any open covering of M admits
a subordinate smooth partition of unity.
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Using the above theorem, whose proof we postpone for the time being, we may
define

∫
M fdvg, for any function f : M → R as follows. Cover M by a family of

local charts (Ui, φi), and let θi be a subordinate partition of unity. Then we set∫
M
fdvg :=

∑
i∈I

∫
Ui

θifdvg.

Note that this defintion does not depend on the choice of local charts or the cor-
responding partitions of unity. The volume of any orientable Riemannian manifold
may now be defined as the integral of the constant function one:

vol(M) :=
∫
M
dvg.

Now we proceed towards proving Theorem 0.1.

Exercise 0.2. Compute the area of a torus of revolution in R3.

Lemma 0.3. Any open cover of a manifold has a countable subcover.

Proof. Suppose that Ui, i ∈ I, is an open covering of a manifold M (where I is
an arbitrary set). By defintion, M has a countable basis B = {Bj}j∈J . For every
i ∈ I, let Ai := {Bj | Bj ⊂ Ui}. Then Ai is an open covering for M . Next, let
A := ∪i∈IAi. Since A ⊂ B, A is countable, so we may denote the elements of A
by Ak, where k = 1, 2, . . . . Note that Ak is still an open covering for M . Further,
for each k there exists an i ∈ I such that Ak ⊂ Ui. We may collect all such Ui and
reindex them by k, which gives the desired countable subcover.

Lemma 0.4. Any manifold has a countable basis such that each basis element has
compact closure.

Proof. By the previous lemma we may cover any manifold M by a countable col-
lection of charts (Ui, φi). Let Vj be a countable basis of Rn such that each Vj
has compact closure V j , e.g., let Vj be the set of balls in Rn centered at rational
points and with rational radii less than 1. Then Bij := φ−1

i (Vj) gives a countable
basis for Ui such that each basis element has compact closure, since Bij = φ−1

i (V j).
So ∪ijBij gives the desired basis, since a countable collection of countable sets is
countable.

Lemma 0.5. Any manifold M is countable at infinity, i.e., there exists a countable
collection of compact subsets Ki of M such that M ⊂ ∪iKi and Ki ⊂ intKi+1.

Proof. Let Bi be the countable basis of M given by the previous lemma, i.e., with
each Bi compact. Set K1 := B1 and let Ki+1 := ∪rj=1Bj , where r is the smallest
integer such that Ki ⊂ ∪rj=1Bj .
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By a refinement of an open cover Ui of M we mean an open cover Vj such that
for each j ∈ J there exists i ∈ I with Vj ⊂ Ui. We say that an open covering is
locally finite, if for every p ∈M there exists finitely many elements of that covering
which contain p.

Lemma 0.6. Any open covering of a manifold M has a countable locally finite
refinement by charts (Ui, φi) such that φi(Ui) = Bn

3 (o) and Vi := φ−1(Bn
1 (o)) also

cover M .

Proof. First note that for every point p ∈ M , we may find a local chart (Up, φp)
such that φp(Up) = Bn

3 (o), and set Vp := φ−1(Bn
1 (o)). Further, we may require that

Up lies inside any given open set which contains p. Let Aα be an open covering for
M . By a previous lemma, after replacing Aα by a subcover, we may assume that
Aα is countable. Now consider the sets Aα ∩ (intKi+2−Ki−1). Since Ki+1− intKi

is compact, there exists a finite number of open sets Uα,ipj ⊂ Aα ∩ (intKi+2 −Ki−1)
such that V α,i

pj covers Aα ∩ (Ki+1 − intKi). Since Ki and Aα are countable, the
collection Uα,ipj is a countable. Further, by construction Uα,ipj is locally finite, so it is
the desired refinement.

Note 0.7. The last result shows in particular that every manifold is paracompact,
i.e., every open cover of M has a locally finite refinement.

Proof of Theorem 0.1. Let Aα be an open cover of M . Note that if Ui is any refine-
ment of Aα and θi is a partition of unity subordinate to Ui then, θi is subordinate to
Aα. In particular, it is enough to show that the refinement Ui given by the previous
lemma has a subordinate partition of unity. To this end note that there exists a
smooth nonnegative function f : R→ R such that f(x) = 0 for x ≥ 2, and f(x) = 1
for x ≤ 1. Define θi : M → R by θi(p) := f(‖φi(p)‖) if p ∈ Ui and θi(p) := 0 other-
wise. Then θi are smooth. Finally, θi(p) := θi(p)/

∑
j θj(p), is the desired partition

of unity.

Recall that earlier we showed that any compact manifold admits a Riemannian
metric, since it can be isometrically embedded in some Euclidean space. As an
application of the previous result we now ca n show:

Corollary 0.8. Any manifold admits a Riemannian metric

Proof. Let (Ui, φi) be an atlas of M , and let θi be a subordinate partition of unity.
Now for p∈Ui define gip(X,Y ) := 〈dφi(X), dφi(Y )〉. Then we define a Riemannian
metric g on M by setting gp(X,Y ) :=

∑
i θi(p)g

i
p(X,Y ).

Exercise 0.9. Show that every manifold is normal, i.e., for every disjoint closed
sets A1, A2 in M there exists a pair of disjoint open subsets U1, U2 of M such that
X1 ⊂ U1 and X2 ⊂ U2. [Hint: Use the fact that every manifold admits a metric]

4



Exercise 0.10. Show that if U is any open subset of a manifold M and A ⊂ U is
a closed subset, then there exists smooth function f : M → R such that f = 1 on A
and f = 0 on M − U .

Exercise 0.11. Compute the volume (area) of a torus of revolution in R3.

Exercise 0.12. Let M ⊂ Rn be an embedded submanifold which may be param-
eterized by f : U → Rn, for some open set U ⊂ Rm, i.e., f is a one-to-one smooth
immersion and f(U) = M . Show that then vol(M) =

∫
U

√
det(Jx(f) · Jx(f)T ) dx,

where Jx(f) is the jacobian matrix of f at x.
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