Oct 10, 2006^1

Math 6455 Differential Geometry I Fall 2006, Georgia Tech

Lecture Notes 12

Riemannian Metrics

0.1 Definition

If M is a smooth manifold then by a Riemannian metric g on M we mean a smooth assignment of an innerproduct to each tangent space of M. This means that, for each $p \in M$, $g_p: T_pM \times T_pM \to \mathbf{R}$ is a symmetric, positive definite, bilinear map, and furthermore the assignment $p \mapsto g_p$ is smooth, i.e., for any smooth vector fields X and Y on M, $p \mapsto g_p(X_p, Y_p)$ is a smooth function. The pair (M, g) then will be called a Riemannian manifold. We say that a diffeomorphism $f: M \to N$ between a pair of Riemannian manifolds (M, g) and (N, h) is an *isometry* provided that

$$g_p(X,Y) = h_{f(p)}(df_p(X), df_p(Y))$$

for all $p \in M$ and $X, Y \in T_p M$.

Exercise 0.1.1. Show that the antipodal reflection $a: \mathbf{S}^n \to \mathbf{S}^n$, a(x) := -x is an isometry.

0.2 Examples

0.2.1 The Euclidean Space

The simplest example of a Riemannian manifold is \mathbf{R}^n with its standard Euclidean innerproduct, $g(X, Y) := \langle X, Y \rangle$.

0.2.2 Submanifolds of a Riemannian manifold

A rich source of examples are generated by immersions $f: N \to M$ of any manifold N into a Riemannian manifold M (with metric g); for this induces a metric h on N given by

$$h_p(X,Y) := g_{f(p)}(df_p(X), df_p(Y)).$$

In particular any manifold may be equipped with a Riemannian metric since every manifold admits an embedding into \mathbf{R}^{n} .

¹Last revised: February 3, 2025

0.2.3 Quotient of a Riemannian manifold by a group of isometries

Note that the set of isometries $f: M \to M$ forms a group. Another source of examples of Riemannian manifolds are generated by taking the quotient of a Riemannian manifold (M, g) by a subgroup G of its isometries which acts properly discontinuously on M. Recall that if G acts properly discontinuously, then M/G is indeed a manifold. Then we may define a metric h on M/G by setting $h_{[p]} := g_p$. More precisely recall that the projections $\pi: M \to M/G$, given by $\pi(p) := [p]$ is a local diffeomorphism, i.e., for any $q \in [p]$ there exists an open neighborhood U of p in M and an open neighborhood V of [p] in M/G such that $\pi: U \to V$ is a diffeomorphism. Then we may define

$$h_{[p]}(X,Y) := g_q((d\pi_q)^{-1}(X), (d\pi_q)^{-1}(Y)).$$

One can immediately check that h does not depend on the choice of $q \in [p]$ and is thus well defined. A specific example of proper discontinuous action of isometries is given by translations $f_z : \mathbf{R}^n \to \mathbf{R}^n$ given by $f_z(p) := p + z$ where $z \in \mathbf{Z}^n$. Recall that $\mathbf{R}^n/\mathbf{Z}^n$ is the torus T^n , which may now be equipped with the metric induced by this group action. Similarly \mathbf{RP}^n admits a canonical metric, since $\mathbf{RP}^n = \mathbf{S}^n/\{\pm 1\}$, and reflections of a sphere are isometries.

0.2.4 Conformal transformations

As another set of examples note that if (M, g) is any Riemannian manifold, then $(M, \lambda g)$ is also a Riemannian manifold where $\lambda \colon M \to \mathbf{R}^+$ is any smooth positive function. Note that this change of metric does not effect the angles between any pair of vectors in a tangent space of M. Thus $(M, \lambda g)$ is said to be *conformal* to (M, g).

Exercise 0.2.1. Show that the inversion $i: \mathbb{R}^n - \{o\} \to \mathbb{R}^n$ given by $i(x) := x/||x||^2$ is a conformal transformation.

Exercise 0.2.2. Show that the stereographic projection $\pi: \mathbf{S}^2 - \{(0,0,1)\} \to \mathbf{R}^2$ is a conformal transformation.

0.2.5 The hyperbolic space

Finally, an important example is the hyperbolic space which may be represented by a number of models. One model, known as Poincare's half space model, is to take the open upper half space of \mathbf{R}^n and define there a metric via

$$g_p(X,Y) := \frac{\langle X,Y \rangle}{(p_n)^2},$$

where p_n denotes the n^{th} coordinate of p. Another description of the hyperbolic space may be given by taking the open unit ball if \mathbf{R}^n and defining

$$g_p(X,Y) := \frac{\langle X,Y \rangle}{(1-\|p\|^2)^2}.$$

This is known as Poincare's ball model.

Exercise 0.2.3. Show that the Poincare half-plane and the Poincare disk are isometric (Hint: identify the Poincare half-plane with the region y > 1 in \mathbb{R}^2 and do an inversion).

0.3 Metric in local coordinates

Let (U, ϕ) be a local chart for (M, g). Then, recall that if $e_1, \ldots e_n$ denote the standard basis of \mathbf{R}^n , we obtain a basis for each T_pM , for $p \in U$ by setting

$$E_i(p) := d\phi_{\phi(p)}^{-1}(e_i)$$

Now if $X, Y \in T_p M$, then $X = \sum_{i=1}^n X^i E_i$ and $Y = \sum_{i=1}^n Y^i E_i$. Further, if we set $g_{ij}(p) := g_p(E_i, E_j)$,

then, since g is bilinear we have

$$g_p(X,Y) = \sum_{i,j=1}^n X^i Y^j g_p(E_i, E_j) = \sum_{i,j=1}^n X^i Y^j g_{ij}(p).$$

Thus in any local coordinate (U, ϕ) a metric is completely determined by the functions g_{ij} which may be regarded as the coefficients of a positive definite matrix.

To obtain a concrete example, note that if $M \subset \mathbf{R}^n$ is a submanifold, with the induce metric from \mathbf{R}^n , and (ϕ, U) is a local chart of M, then if we set $f := \phi^{-1}$, $f : \phi(U) \to \mathbf{R}^n$ is a *parametrization* for U, and $d(f)(e_i) = D_i f$. Consequently,

$$g_{ij}(p) = \langle D_i f(f^{-1}(p)), D_j f(f^{-1}(p)) \rangle.$$

For instance, note that a surface of revolution in \mathbb{R}^3 which is given by rotating the curve (r(t), z(t)) in the *xz*-plane about the *z* axis can be parametrized by

$$f(t,\theta) = (r(t)\cos\theta, r(t)\sin\theta, z(t)).$$

So

 $D_1 f(t,\theta) = (r'(t)\cos\theta, r'(t)\sin\theta, z'(t))$ and $D_2 f(t,\theta) = (-r(t)\sin\theta, r(t)\cos\theta, 0),$ and consequently $g_{ij}(f(t,\theta))$ is given by

$$\left(\begin{array}{cc} (r')^2 + (z')^2 & 0\\ 0 & r^2 \end{array}\right).$$

Note that if we assume that the curve in the xz-plane is parametrized by arclength, then $(r')^2 + (z')^2 = 1$, so the above matrix becomes more simple to work with.

Exercise 0.3.1. Compute the metric of \mathbf{S}^2 in terms of spherical coordinates θ and ϕ .

Exercise 0.3.2. Compute the metric of the surface given by the graph of a function $f: \Omega \subset \mathbf{R}^2 \to \mathbf{R}$.

0.4 Length of Curves

In a Riemannian manifold (M, g), the length of any piecewise smooth curves $c: [a, b] \to M$ with c(a) = p and c(b) = q is defined as

$$\text{Length}[c] := \int_{a}^{b} \sqrt{g_{c(t)}(c'(t), c'(t))} \, dt,$$

where

$$c'(t) := dc_t(1).$$

Note that the definition for the length of curves here is a generalization of the Euclidean case where we integrate the speed of the curve. Indeed the last formula above coincides with the regular notion of derivative when M is just \mathbf{R}^n . To see this, recall that $dc_t(1) = (c \circ \gamma)'(0)$ where $\gamma: (\epsilon, \epsilon) \to [a, b]$ is a curve with $\gamma(0) = t$ and $\gamma'(0) = 1$, e.g., $\gamma(u) = t+u$. Thus by the chain rule $(c \circ \gamma)'(0) = c'(\gamma(0))\gamma'(0) = c'(t)$.

Exercise 0.4.1. Compute the length of the radius of the Poincare-disk (with respect to the Poincare metric).

0.5 The classical notation for metric

For any curve $c: [a, b] \to \mathbf{R}^n$ we may write $c(t) = (x_1(t), \ldots, x_n(t))$. Consequently, if we define $g_{ij}(p) := g_p(e_i, e_j)$ where e_1, \ldots, e_n is the standard basis for \mathbf{R}^n , then bilinearity of g yields that

$$g_{c(t)}(c'(t),c'(t)) = \sum_{i,j=1}^{n} g_{c(t)}(e_i,e_j)x'_i(t)x'_j(t) = \sum_{i,j=1}^{n} g_{ij}(c(t))x'_i(t)x'_j(t).$$

Thus we may write

Length[c] :=
$$\int_{a}^{b} \sqrt{\sum_{i,j=1}^{n} g_{ij}(c(t)) \frac{dx_i}{dt} \frac{dx_j}{dt}} dt.$$

Indeed classically metrics were specified by an expression of the form

$$ds^2 = \sum_{i,j=1}^n g_{ij} dx_i dx_j.$$

and then length of a curve was defined as the integral of ds, which was called "the element of arclength", along that curve:

$$\operatorname{Length}[c] = \int_c ds.$$

In particular note that, in the classical notation, the standard Euclidean metric in the plane is given by $ds^2 = \sum_{i=1}^n dx_i^2$. Further, in the Poincare's disk model, $ds^2 = \sum_{i=1}^n dx_i^2/x_n^2$.

0.6 Distance

For any pairs of points $p, q \in M$, let C(p,q) denote the space piecewise smooth curves $c: [a,b] \to M$ with c(a) = p and c(b) = q. Then, if M is connected, we may define the distance between p and q as

$$d_q(p,q) := \inf\{\operatorname{Length}[c] \mid c \in C(p,q)\}.$$

So the distance between a pair of points is defined as the greatest lower bound of the lengths of curves which connect those points. First we show that this is a generalization of the standard notion of distance in \mathbb{R}^n .

Lemma 0.6.1. For all continuous maps $f: (a, b) \to \mathbf{R}^n$

$$\left\|\int_{a}^{b} f(t)dt\right\| \leq \int_{a}^{b} \|f(t)\|dt$$

Proof. By the Cauchy-Schwarts inequality, for any unit vector $u \in \mathbf{S}^{n-1}$,

$$\left\langle \int_{a}^{b} f(t)dt, u \right\rangle = \int_{a}^{b} \langle f(t), u \rangle dt \le \int_{a}^{b} \|f(t)\| dt.$$

In particular we may let $u := \int_a^b f(t)dt/||\int_a^b f(t)dt||$, assuming that $\int_a^b f(t)dt \neq 0$ (otherwise the lemma is obviously true).

Corollary 0.6.2. If $(M,g) = (\mathbf{R}^n, \langle \rangle)$ then $d_g(p,q) = ||p-q||$.

Proof. First note that if we set c(t) := (1 - t)p + tq, then

Length[c] :=
$$\int_0^1 \|p - q\| dt = \|p - q\|.$$

So $d_g(p,q) \leq ||p-q||$. It remains then to show that $d_g(p,q) \geq ||p-q||$. The later inequality holds because for all curves $c \colon [a,b] \to \mathbf{R}^n$

$$\int_{a}^{b} \|c'(t)\| \, dt \ge \left\| \int_{a}^{b} c'(t) \, dt \right\| = \|c(b) - c(a)\|.$$

The previous result shows that (M, d_g) is a metric space when M is the Euclidean space \mathbb{R}^n and g, which induces d, is the standard innerproduct. Next we show that this is the case for all Riemannian manifolds. To this end we first need a local lemma:

Lemma 0.6.3. Let (B,g) be a Riemannian manifold, where $B := \overline{B}_r^n(o) \subset \mathbf{R}^n$. Then there exists m > 0 such that for any piecewise C^1 curve $c : [a,b] \to B$ with c(a) = o and $c(b) \in \partial B$ we have Length[c] > m.

Proof. Define $f: \mathbf{S}^{n-1} \times B \to \mathbf{R}$ by $f(u, p) := g_p(u, u)$. Note that, since g is positive definite, f > 0. Thus since f is continuous and $\mathbf{S}^{n-1} \times B$ is compact $f \ge \lambda^2 > 0$. Consequently, bilinearity of g yields that

$$g_p(v,v) \ge \lambda^2 \|v\|^2.$$

The above inequality is obvious when ||v|| = 0, and when $||v|| \neq 0$, observe that $g_p(v,v) = g_p(v/||v||, v/||v||) ||v||^2$. Next note that

$$\operatorname{Length}[c] = \int_{a}^{b} \sqrt{g_{c(t)}(c'(t), c'(t))} \, dt \ge \lambda \int_{a}^{b} \|c'(t)\| \, dt$$

But $\int_a^b \|c'(t)\|$ is just the length of c with respect to the standard metric on \mathbb{R}^n . Thus, by the previous proposition,

$$\int_{a}^{b} \|c'(t)\| \, dt \ge \|c(b) - c(a)\| = r.$$

So setting $m := \lambda r$ finishes the proof.

The proof of the next observation is immediate:

Lemma 0.6.4. If $f: M \to N$ is an isometry, then $\text{Length}[c] = \text{Length}[f \circ c]$ for any piecewise C^1 curve $c: [a, b] \to M$.

Note that if (M, g) is a Riemannian manifold and $f: M \to N$ is a diffeomorphism between M and any smooth manifold N, then we may *push forward* the metric of M by defining

$$df(g)_p(X,Y) := g_{f^{-1}(p)}(df^{-1}(X), df^{-1}(Y)).$$

Then f is an isometry between (M, g) and (N, df(g)). In particular we may assume that any local charts (U, ϕ) on a Riemannian manifold (M, g) is an isometry, with respect to the push forward metric $d\phi(g)$ on $\phi(U)$. This observation, together with the previous lemma easily yields that:

Proposition 0.6.5. If (M,g) is any Riemannian manifold then (M,d_g) is a metric space.

Proof. It is immediate that d is symmetric and satisfies the triangle inequality. Furthermore it is clear that d is always nonnegative. Showing that d is positive definite, however, requires more work. Specifically, we need to show that when $p \neq q$, then d(p,q) > 0. Suppose $p \neq q$. Then, since M is Hausdorff, there exists an open neighborhood V of p such that $q \notin V$. Let (U, ϕ) be a local chart centered at p. Choose r so small that $\overline{B}_r(o) \subset \phi(V \cap U)$, and set $W := \phi^{-1}(\overline{B}_r(o))$. Then $\phi: W \to \overline{B}_r(o)$ is a diffeomorphism, and we may equip $\overline{B}_r(o)$ with the push forward metric $d\phi(g)$ which will turn ϕ into an isometry. Now let $c \colon [a, b] \to M$ be any piecewise C^1 curve with c(a) = p and c(b) = q. Then there exist $a \leq b' \leq b$ such that $c[a,b'] \subset W$ and $c(b') \in \partial W$ (to find b' let $\overset{\circ}{W} := \phi^{-1}(B_r(o))$ be the interior of W, then $c^{-1}(\overset{\circ}{W})$ is an open subset of [a, b] which contains a, and we may let b' be the upper bound of the component of $c^{-1}(\tilde{W})$ which contains a.) Let $\overline{c}: [a, b'] \to W$ be the restriction of c. Then obviously Length $[c] \ge \text{Length}[\overline{c}]$. But Length $[\overline{c}] = \text{Length}[\phi \circ \overline{c}]$ since ϕ is an isometry, and by the previous lemma then length of any curve in $(B_r^n(o), d\phi(g))$ which begins at the center of the ball and ends at its boundary is bounded below by a positive constant.

Now recall that any metric space has a natural topology. In particular (M, d_g) is a topological space. Next we show that this topological space is identical to the original M.

Lemma 0.6.6. Let (M, g^1) , (M, g^2) be Riemannian manifolds, and suppose M is compact. Then there exist a constant $\lambda > 0$ such that for any $p, q \in M$ we have

$$d_{g^1}(p,q) \ge \lambda \, d_{g^2}(p,q)$$

Proof. Define $f: \mathbf{S}^{n-1} \times M \to \mathbf{R}$ by $f(u, p) := g_p^1(u, u)/g_p^2(u, u)$. Note that, since g is positive definite, f > 0. Thus since f is continuous and $\mathbf{S}^{n-1} \times M$ is compact $f \ge \lambda^2 > 0$. Consequently, bilinearity of g yields that

$$g_p^1(v,v) \ge \lambda^2 g_p^2(v,v),$$

for all $v \in \mathbf{R}^n$. Next note that the above inequality yields

$$\operatorname{Length}_{g_1}[c] = \int_a^b \sqrt{g_{c(t)}^1(c'(t),c'(t))} \, dt \ge \lambda \int_a^b \sqrt{g_{c(t)}^2(c'(t),c'(t))} \, dt = \lambda \operatorname{Length}_{g_2}[c].$$

for any curve $c: [a, b] \to M$. In particular the above inequalities hold for all curves $c: [a, b] \to M$ with c(a) = p and c(b) = q.

Proposition 0.6.7. The metric space (M, d_g) , endowed with its metric topology, is homeomorphic to M with its standard topology.

Proof. There are two parts to this argument:

Part I: We have to show that every open neighborhood U of M is open in its metric topology, i.e., for every $p \in U$ there exists an r > 0 such that $B_r^g(p) \subset U$, where

$$B_r^g(p) := \{ q \in M \mid d_g(p,q) < r \}.$$

To see this first note that, as we showed in the proof of the previous proposition, there exists an open neighborhood V of p with $V \subset U$ such that there exists a homeomorphism $\phi: \overline{V} \to \overline{B}_1^n(o)$. Now, much as in the proof of the previous proposition, if we endow $\overline{B}_1^n(o)$ with the push forward metric induced by ϕ then $(\overline{B}_1^n(o), d\phi(g))$ becomes isometric to (\overline{V}, g) . But recall that, as we showed in the earlier proposition, the distance of any point in the boundary $\partial B_1^n(o) = \mathbf{S}^n$ of $\overline{B}_1^n(o)$ from the origin owas bigger than some constant, say λ . Thus the same is true of the distance of ∂V from p. In particular, if we choose $r < \lambda$, then $B_r^p(p) \subset V \subset U$.

Part II: We have to show that every metric ball $B_r^g(p)$ is open in M, i.e., at every $q \in B_r^g(p)$ we can find a open neighborhood U of q in M such that $U \subset B_r^g(p)$. To see this let V be an open neighborhood of p such that there exists a homeomorphism $\psi \colon \overline{V} \to \overline{B}_1^n(o)$, and endow $\overline{B}_1^n(o)$ with the push forward metric $d\psi(g)$. Then the distance of $\psi(\overline{V} \cap B_r^g(p))$ from o is equal to r, with respect to the metric $d\psi(g)$. So, by the previous proposition, this distance, with respect to the Euclidean metric on $\overline{B}_1^n(o)$ must be at least $\lambda r > 0$. Thus if we choose $r' < \lambda_r$, then the Euclidean ball $B_{r'}^n(o) \subset \psi(V)$. Consequently, $U := \psi^{-1}(B_{r'}^n(o)) \subset V$, and U is open in M, since $B_{r'}^n(o)$ is open.