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Lecture Notes 12

Riemannian Metrics

0.1 Definition

If M is a smooth manifold then by a Riemannian metric g on M we mean a smooth
assignment of an innerproduct to each tangent space of M. This means that, for
each p € M, g,: T, M x T,M — R is a symmetric, positive definite, bilinear map,
and furthermore the assignment p — g, is smooth, i.e., for any smooth vector fields
X and Y on M, p — gy(X,,Y)) is a smooth function. The pair (M, g) then will be
called a Riemannian manifold. We say that a diffeomorphism f: M — N between
a pair of Riemannian manifolds (M, ¢g) and (IV, h) is an isometry provided that

9p(X,Y) = hy) (dfp(X), dfp(Y))
forallpe M and X, Y € T,M.

Exercise 0.1.1. Show that the antipodal reflection a: S — S”, a(z) := —x is an
isometry.

0.2 Examples
0.2.1 The Euclidean Space

The simplest example of a Riemannian manifold is R™ with its standard Euclidean
innerproduct, g(X,Y) := (X,Y).

0.2.2 Submanifolds of a Riemannian manifold

A rich source of examples are generated by immersions f: N — M of any manifold
N into a Riemannian manifold M (with metric g); for this induces a metric h on N
given by

hp(X,Y) = g (dfp(X), dfp(Y)).

In particular any manifold may be equipped with a Riemannian metric since every
manifold admits an embedding into R™.
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0.2.3 Quotient of a Riemannian manifold by a group of isometries

Note that the set of isometries f: M — M forms a group. Another source of exam-
ples of Riemannian manifolds are generated by taking the quotient of a Riemannian
manifold (M, g) by a subgroup G of its isometries which acts properly discontinu-
ously on M. Recall that if G acts properly discontinuously, then M/G is indeed
a manifold. Then we may define a metric h on M/G by setting hy, := g,. More
precisely recall that the projections 7: M — M/G, given by m(p) := [p] is a local
diffeomorphism, i.e., for any ¢ € [p] there exists an open neighborhood U of p in M
and an open neighborhood V of [p] in M /G such that 7: U — V is a diffeomorphism.
Then we may define

hip (X,Y) = gq((dmg) H(X), (drg) TH(Y)).-

One can immediately check that h does not depend on the choice of ¢ € [p] and is
thus well defined.A specific example of proper discontinuous action of isometries is
given by translations f,: R™ — R™ given by f,(p) := p + z where z € Z". Recall
that R™/Z"™ is the torus 7", which may now be equipped with the metric induced by
this group action. Similarly RP" admits a canonical metric, since RP" = S"/{£1},
and reflections of a sphere are isometries.

0.2.4 Conformal transformations

As another set of examples note that if (M, g) is any Riemannian manifold, then
(M, \g) is also a Riemannian manifold where \: M — R is any smooth positive
function. Note that this change of metric does not effect the angles between any
pair of vectors in a tangent space of M. Thus (M, \g) is said to be conformal to

(M, g).

Exercise 0.2.1. Show that the inversion i: R"—{o} — R" given by i(x) := x/| |z
is a conformal transformation.

Exercise 0.2.2. Show that the stereographic projection 7: 82 — {(0,0,1)} — R?
is a conformal transformation.

0.2.5 The hyperbolic space

Finally, an important example is the hyperbolic space which may be represented by
a number of models. One model, known as Poincare’s half space model, is to take
the open upper half space of R™ and define there a metric via

(X,Y)
(pn)?’

gp(X,Y) =



where p, denotes the n'" coordinate of p. Another description of the hyperbolic
space may be given by taking the open unit ball if R™ and defining

(X,Y)

9Gp(X,Y) = —————.
: (1 —lplI*)?
This is known as Poincare’s ball model.

Exercise 0.2.3. Show that the the Poincare half-plane and the Poincare disk are
isometric (Hint: identify the Poincare half-plane with the region y > 1 in R? and
do an inversion).

0.3 Metric in local coordinates

Let (U,¢) be a local chart for (M,g). Then, recall that if ej,...e, denote the
standard basis of R", we obtain a basis for each T, M, for p € U by setting
— -1 )
Ei(p) == d¢¢(p)(el)-
Now if X, Y € T,M, then X = " | X'F; and Y = Y1 | Y'E;. Further, if we set

then, since g is bilinear we have

gp(X,Y) = Z X'Yg,(E;, Ej) Z XY gi(p
7.7 1 ,_] 1

Thus in any local coordinate (U, ¢) a metric is completely determined by the func-
tions g;; which may be regarded as the coefficients of a positive definite matrix.
To obtain a concrete example, note that if M C R"™ is a submanifold, with the
induce metric from R™, and (¢,U) is a local chart of M, then if we set f := ¢~}
f:o(U) — R™ is a parametrization for U, and d(f)(e;) = D;f. Consequently,
9ij () = (Dif (f 1 (0)), Dif(f 7 (P)))-

For instance, note that a surface of revolution in R? which is given by rotating the
curve (r(t), z(t)) in the zz-plane about the z axis can be parametrized by

f(t,0) = (r(t) cosb,r(t)sinb, z(t)).
So
Dif(t,0) = (r'(t) cos 0,7 (t)sinf,2'(t)) and Dyf(t,0) = (—r(t)sind,r(t)cosd,0),
and consequently g;;(f(¢,0)) is given by
(7R
0 r? )"

Note that if we assume that the curve in the xz-plane is parametrized by arclength,
then (r')2 + (2/)? = 1, so the above matrix becomes more simple to work with.



Exercise 0.3.1. Compute the metric of S? in terms of spherical coordinates § and
0.
Exercise 0.3.2. Compute the metric of the surface given by the graph of a function

f:QCcR2>R.

0.4 Length of Curves

In a Riemannian manifold (M, g), the length of any piecewise smooth curves c: [a,b] —
M with ¢(a) = p and ¢(b) = ¢ is defined as

b
Lengthle] i= [ /ao(e(0).<(0) at

where

d(t) = dey(1).

Note that the definition for the length of curves here is a generalization of the
Euclidean case where we integrate the speed of the curve. Indeed the last formula
above coincides with the regular notion of derivative when M is just R™. To see this,
recall that dey(1) = (c o) (0) where v: (e,€) — [a,b] is a curve with (0) = ¢ and
v (0) =1, e.g., ¥(u) = t+u. Thus by the chain rule (coy)'(0) = ¢/(7(0))v'(0) = (¢).

Exercise 0.4.1. Compute the length of the radius of the Poincare-disk (with respect
to the Poincare metric).
0.5 The classical notation for metric

For any curve c: [a,b] — R"™ we may write ¢(t) = (z1(¢),...,xn(t)). Consequently,
if we define g;;(p) := gp(ei,ej) where ey, ..., e, is the standard basis for R", then
bilinearity of g yields that

9oy (), () = D geqoy (i e)xi(®)a(t) = > gij(c(t))ai(t)y(t).

i,j=1 i,j=1

Thus we may write

b . dIL‘z dz;
Length[c] := / > gijle(t) yr dTﬂdt

ij=1

Indeed classically metrics were specified by an expression of the form

n
d82 == Z gijdxidzj.

,j=1



and then length of a curve was defined as the integral of ds, which was called “the
element of arclength”, along that curve:

Length[c| = /ds.

In particular note that, in the classical notation, the standard Euclidean metric
in the plane is given by ds®> = Dy d:v?. Further, in the Poincare’s disk model,

ds® = 3L, daf /a7
0.6 Distance

For any pairs of points p, ¢ € M, let C(p,q) denote the space piecewise smooth
curves c: [a,b] — M with ¢(a) = p and ¢(b) = ¢q. Then, if M is connected, we may
define the distance between p and ¢ as

dg(p, q) := inf{Length[c] | c € C(p,q)}.

So the distance between a pair of points is defined as the greatest lower bound
of the lengths of curves which connect those points. First we show that this is a
generalization of the standard notion of distance in R™.

Lemma 0.6.1. For all continuous maps f: (a,b) - R"

/f dtH /!f ).

Proof. By the Cauchy-Schwarts inequality, for any unit vector u € S*1,

</ab f(t)dt,u> = /ab<f(t),u>dt < /ab £ ()]l

In particular we may let u := f: fdt/|| fff(t)dt”, assuming that fff(t)dt # 0
(otherwise the lemma is obviously true). O

Corollary 0.6.2. If (M, g) = (R",()) then dy4(p,q) = |[p — ¢||.
Proof. First note that if we set ¢(t) := (1 — t)p + tq, then

Length|c] /Ilp qlldt = |lp—ql|-

So dg(p,q) < |lp — ¢||. It remains then to show that dy(p,q) > ||p — ¢||. The later
inequality holds because for all curves c: [a,b] — R"

b
/ 1)l dt >

bd(t)dtH — Jle(b) - e(a)|.




The previous result shows that (M, dy) is a metric space when M is the Euclidean
space R™ and g, which induces d, is the standard innerproduct. Next we show that
this is the case for all Riemannian manifolds. To this end we first need a local
lemma:

Lemma 0.6.3. Let (B,g) be a Riemannian manifold, where B := B, (0) C R".
Then there exists m > 0 such that for any piecewise C' curve c: [a,b] — B with
c(a) = o and ¢(b) € OB we have Length[c] > m.

Proof. Define f: S""1 x B — R by f(u,p) := gp(u,u). Note that, since g is positive
definite, f > 0. Thus since f is continuous and S”~! x B is compact f > A2 > 0.
Consequently, bilinearity of g yields that

gp(v’ U) > )‘2”””2'

The above inequality is obvious when [|v|| = 0, and when |[v|| # 0, observe that
6o(0,0) = go(v/Iloll o/ [0} [o]>- Next note that

b b
Lengthle] = [ /oy (O @)t = A [ o)) at.

But fab |l (®)|| is just the length of ¢ with respect to the standard metric on R™.
Thus, by the previous proposition,

b
/ I’ @)l dt = Jle(b) — e(a)]| =
So setting m := Ar finishes the proof. O

The proof of the next observation is immediate:

Lemma 0.6.4. If f: M — N is an isometry, then Length[c] = Length[f o c| for
any piecewise C* curve c: [a,b] — M.

O

Note that if (M, g) is a Riemannian manifold and f: M — N is a diffeomorphism

between M and any smooth manifold NV, then we may push forward the metric of
M by defining

df(9)p(X,Y) = g1 (df ~H(X), df TH(Y)).

Then f is an isometry between (M, g) and (N, df(g)). In particular we may assume
that any local charts (U, ¢) on a Riemannian manifold (M, g) is an isometry, with
respect to the push forward metric d¢(g) on ¢(U). This observation, together with
the previous lemma easily yields that:

Proposition 0.6.5. If (M, g) is any Riemannian manifold then (M,dy) is a metric
space.



Proof. Tt is immediate that d is symmetric and satisfies the triangle inequality.
Furthermore it is clear that d is always nonnegative. Showing that d is positive
definite, however, requires more work. Specifically, we need to show that when
p # q, then d(p,q) > 0. Suppose p # q. Then, since M is Hausdorff, there exists
an open neighborhood V of p such that ¢ € V. Let (U, ¢) be a local chart centered
at p. Choose r so small that B,(0) C ¢(V NU), and set W := ¢~ 1(B,(0)). Then
¢: W — B,(0) is a diffeomorphism, and we may equip B, (o) with the push forward
metric d¢(g) which will turn ¢ into an isometry. Now let c: [a,b] — M be any
piecewise C! curve with c(a) = p and c(b) = gq. Then there exist a < & < b

such that c[a,b] € W and c(b') € OW (to find ¥ let W := ¢~1(B,.(0)) be the
interior of W, then ¢~!(W) is an open subset of [a,b] which contains a, and we

may let &' be the upperbound of the component of ¢~!(W) which contains a.) Let
¢: [a,'] = W be the restriction of ¢. Then obviously Length[c] > Length[c]. But
Length[¢] = Length[¢ o ¢] since ¢ is an isometry, and by the previous lemma then
length of any curve in (B]*(0),d¢(g)) which begins at the center of the ball and ends
at its boundary is bounded below by a positive constant. O

Now recall that any metric space has a natural topology. In particular (M, d,)
is a topological space. Next we show that this topological space is identical to the
original M.

Lemma 0.6.6. Let (M,g'), (M,g?) be Riemannian manifolds, and suppose M is
compact. Then there exist a constant A > 0 such that for any p, ¢ € M we have

dg1(p,q) > Ndg2(p, q).

Proof. Define f: S" ! x M — R by f(u,p) := g;(u,u)/g,g(u, u). Note that, since
g is positive definite, f > 0. Thus since f is continuous and S"~! x M is compact
f > A2 > 0. Consequently, bilinearity of ¢ yields that

gh(v,v) > A g2(v,v),

for all v € R™. Next note that the above inequality yields

b b
Length,, [c] = / \/gi(t) (c(t),c(t))dt > X / \/gg( 9 (¢(t),c(t)) dt = XLength,,[c].

for any curve c: [a,b] — M. In particular the above inequalities hold for all curves
c: la,b] - M with ¢(a) = p and ¢(b) = gq. O

Proposition 0.6.7. The metric space (M, dg), endowed with its metric topology, is
homeomorphic to M with its standard topology.



Proof. There are two parts to this argument:

Part I: We have to show that every open neighborhood U of M is open in its
metric topology, i.e., for every p € U there exists an r > 0 such that Bf(p) C U,
where

Bl(p) :=={q € M | dg(p,q) <r}.

To see this first note that, as we showed in the proof of the previous proposition,
there exists an open neighborhood V of p with V' C U such that there exists a home-
omorphism ¢: V — E’f(o). Now, much as in the proof of the previous proposition,
if we endow B] (o) with the push forward metric induced by ¢ then (B (0),d¢(g))
becomes isometric to (V, g). But recall that, as we showed in the earlier proposition,
the distance of any point in the boundary dB}(0) = S of B} (0) from the origin o
was bigger than some constant, say A. Thus the same is true of the distance of 9V
from p. In particular, if we choose r < A, then Bf(p) C V C U.

Part II: We have to show that every metric ball Bf(p) is open in M, i.e., at every
q € BY(p) we can find a open neighborhood U of ¢ in M such that U C BY(p). To
see this let V' be an open neighborhood of p such that there exists a homeomorphism
¥: V — Bj(0), and endow B (0) with the push forward metric di)(g). Then the
distance of ¢(V N By (p)) from o is equal to r, with respect to the metric di(g). So,
by the previous proposition, this distance, with respect to the Euclidean metric on
B7 (o) must be at least A\r > 0. Thus if we choose 7’ < A, then the Euclidean ball
B (0) C ¢(V). Consequently, U := ¢~1(B"(0)) C V, and U is open in M, since
B (0) is open. O



