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Lecture Notes 12

Riemannian Metrics

0.1 Definition

If M is a smooth manifold then by a Riemannian metric g on M we mean a smooth
assignment of an innerproduct to each tangent space of M . This means that, for
each p ∈ M , gp : TpM × TpM → R is a symmetric, positive definite, bilinear map,
and furthermore the assignment p 7→ gp is smooth, i.e., for any smooth vector fields
X and Y on M , p 7→ gp(Xp, Yp) is a smooth function. The pair (M, g) then will be
called a Riemannian manifold. We say that a diffeomorphism f : M → N between
a pair of Riemannian manifolds (M, g) and (N,h) is an isometry provided that

gp(X,Y ) = hf(p)(dfp(X), dfp(Y ))

for all p ∈M and X, Y ∈ TpM .

Exercise 0.1.1. Show that the antipodal reflection a : Sn → Sn, a(x) := −x is an
isometry.

0.2 Examples

0.2.1 The Euclidean Space

The simplest example of a Riemannian manifold is Rn with its standard Euclidean
innerproduct, g(X,Y ) := ⟨X,Y ⟩.

0.2.2 Submanifolds of a Riemannian manifold

A rich source of examples are generated by immersions f : N →M of any manifold
N into a Riemannian manifold M (with metric g); for this induces a metric h on N
given by

hp(X,Y ) := gf(p)(dfp(X), dfp(Y )).

In particular any manifold may be equipped with a Riemannian metric since every
manifold admits an embedding into Rn.
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0.2.3 Quotient of a Riemannian manifold by a group of isometries

Note that the set of isometries f : M →M forms a group. Another source of exam-
ples of Riemannian manifolds are generated by taking the quotient of a Riemannian
manifold (M, g) by a subgroup G of its isometries which acts properly discontinu-
ously on M . Recall that if G acts properly discontinuously, then M/G is indeed
a manifold. Then we may define a metric h on M/G by setting h[p] := gp. More
precisely recall that the projections π : M → M/G, given by π(p) := [p] is a local
diffeomorphism, i.e., for any q ∈ [p] there exists an open neighborhood U of p in M
and an open neighborhood V of [p] inM/G such that π : U → V is a diffeomorphism.
Then we may define

h[p](X,Y ) := gq((dπq)
−1(X), (dπq)

−1(Y )).

One can immediately check that h does not depend on the choice of q ∈ [p] and is
thus well defined.A specific example of proper discontinuous action of isometries is
given by translations fz : R

n → Rn given by fz(p) := p + z where z ∈ Zn. Recall
that Rn/Zn is the torus Tn, which may now be equipped with the metric induced by
this group action. Similarly RPn admits a canonical metric, since RPn = Sn/{±1},
and reflections of a sphere are isometries.

0.2.4 Conformal transformations

As another set of examples note that if (M, g) is any Riemannian manifold, then
(M,λg) is also a Riemannian manifold where λ : M → R+ is any smooth positive
function. Note that this change of metric does not effect the angles between any
pair of vectors in a tangent space of M . Thus (M,λg) is said to be conformal to
(M, g).

Exercise 0.2.1. Show that the inversion i : Rn−{o} → Rn given by i(x) := x/∥x∥2
is a conformal transformation.

Exercise 0.2.2. Show that the stereographic projection π : S2 − {(0, 0, 1)} → R2

is a conformal transformation.

0.2.5 The hyperbolic space

Finally, an important example is the hyperbolic space which may be represented by
a number of models. One model, known as Poincare’s half space model, is to take
the open upper half space of Rn and define there a metric via

gp(X,Y ) :=
⟨X,Y ⟩
(pn)2

,
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where pn denotes the nth coordinate of p. Another description of the hyperbolic
space may be given by taking the open unit ball if Rn and defining

gp(X,Y ) :=
⟨X,Y ⟩

(1− ∥p∥2)2
.

This is known as Poincare’s ball model.

Exercise 0.2.3. Show that the the Poincare half-plane and the Poincare disk are
isometric (Hint: identify the Poincare half-plane with the region y > 1 in R2 and
do an inversion).

0.3 Metric in local coordinates

Let (U, ϕ) be a local chart for (M, g). Then, recall that if e1, . . . en denote the
standard basis of Rn, we obtain a basis for each TpM , for p ∈ U by setting

Ei(p) := dϕ−1
ϕ(p)(ei).

Now if X,Y ∈ TpM , then X =
∑n

i=1X
iEi and Y =

∑n
i=1 Y

iEi. Further, if we set

gij(p) := gp(Ei, Ej),

then, since g is bilinear we have

gp(X,Y ) =
n∑

i,j=1

XiY jgp(Ei, Ej) =
n∑

i,j=1

XiY jgij(p).

Thus in any local coordinate (U, ϕ) a metric is completely determined by the func-
tions gij which may be regarded as the coefficients of a positive definite matrix.

To obtain a concrete example, note that if M ⊂ Rn is a submanifold, with the
induce metric from Rn, and (ϕ,U) is a local chart of M , then if we set f := ϕ−1,
f : ϕ(U) → Rn is a parametrization for U , and d(f)(ei) = Dif . Consequently,

gij(p) = ⟨Dif(f
−1(p)), Djf(f

−1(p))⟩.

For instance, note that a surface of revolution in R3 which is given by rotating the
curve (r(t), z(t)) in the xz-plane about the z axis can be parametrized by

f(t, θ) = (r(t) cos θ, r(t) sin θ, z(t)).

So

D1f(t, θ) = (r′(t) cos θ, r′(t) sin θ, z′(t)) and D2f(t, θ) = (−r(t) sin θ, r(t) cos θ, 0),

and consequently gij(f(t, θ)) is given by(
(r′)2 + (z′)2 0

0 r2

)
.

Note that if we assume that the curve in the xz-plane is parametrized by arclength,
then (r′)2 + (z′)2 = 1, so the above matrix becomes more simple to work with.
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Exercise 0.3.1. Compute the metric of S2 in terms of spherical coordinates θ and
ϕ.

Exercise 0.3.2. Compute the metric of the surface given by the graph of a function
f : Ω ⊂ R2 → R.

0.4 Length of Curves

In a Riemannian manifold (M, g), the length of any piecewise smooth curves c : [a, b] →
M with c(a) = p and c(b) = q is defined as

Length[c] :=

∫ b

a

√
gc(t)(c′(t), c′(t)) dt,

where
c′(t) := dct(1).

Note that the definition for the length of curves here is a generalization of the
Euclidean case where we integrate the speed of the curve. Indeed the last formula
above coincides with the regular notion of derivative whenM is just Rn. To see this,
recall that dct(1) = (c ◦ γ)′(0) where γ : (ϵ, ϵ) → [a, b] is a curve with γ(0) = t and
γ′(0) = 1, e.g., γ(u) = t+u. Thus by the chain rule (c◦γ)′(0) = c′(γ(0))γ′(0) = c′(t).

Exercise 0.4.1. Compute the length of the radius of the Poincare-disk (with respect
to the Poincare metric).

0.5 The classical notation for metric

For any curve c : [a, b] → Rn we may write c(t) = (x1(t), . . . , xn(t)). Consequently,
if we define gij(p) := gp(ei, ej) where e1, . . . , en is the standard basis for Rn, then
bilinearity of g yields that

gc(t)(c
′(t), c′(t)) =

n∑
i,j=1

gc(t)(ei, ej)x
′
i(t)x

′
j(t) =

n∑
i,j=1

gij(c(t))x
′
i(t)x

′
j(t).

Thus we may write

Length[c] :=

∫ b

a

√√√√ n∑
i,j=1

gij(c(t))
dxi
dt

dxj
dt

dt.

Indeed classically metrics were specified by an expression of the form

ds2 =

n∑
i,j=1

gijdxidxj .
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and then length of a curve was defined as the integral of ds, which was called “the
element of arclength”, along that curve:

Length[c] =

∫
c
ds.

In particular note that, in the classical notation, the standard Euclidean metric
in the plane is given by ds2 =

∑n
i=1 dx

2
i . Further, in the Poincare’s disk model,

ds2 =
∑n

i=1 dx
2
i /x

2
n.

0.6 Distance

For any pairs of points p, q ∈ M , let C(p, q) denote the space piecewise smooth
curves c : [a, b] → M with c(a) = p and c(b) = q. Then, if M is connected, we may
define the distance between p and q as

dg(p, q) := inf{Length[c] | c ∈ C(p, q)}.

So the distance between a pair of points is defined as the greatest lower bound
of the lengths of curves which connect those points. First we show that this is a
generalization of the standard notion of distance in Rn.

Lemma 0.6.1. For all continuous maps f : (a, b) → Rn∥∥∥∥∫ b

a
f(t)dt

∥∥∥∥ ≤
∫ b

a
∥f(t)∥dt.

Proof. By the Cauchy-Schwarts inequality, for any unit vector u ∈ Sn−1,〈∫ b

a
f(t)dt, u

〉
=

∫ b

a
⟨f(t), u⟩dt ≤

∫ b

a
∥f(t)∥dt.

In particular we may let u :=
∫ b
a f(t)dt/∥

∫ b
a f(t)dt∥, assuming that

∫ b
a f(t)dt ̸= 0

(otherwise the lemma is obviously true).

Corollary 0.6.2. If (M, g) = (Rn, ⟨⟩) then dg(p, q) = ∥p− q∥.

Proof. First note that if we set c(t) := (1− t)p+ tq, then

Length[c] :=

∫ 1

0
∥p− q∥ dt = ∥p− q∥.

So dg(p, q) ≤ ∥p − q∥. It remains then to show that dg(p, q) ≥ ∥p − q∥. The later
inequality holds because for all curves c : [a, b] → Rn∫ b

a
∥c′(t)∥ dt ≥

∥∥∥∥∫ b

a
c′(t)dt

∥∥∥∥ = ∥c(b)− c(a)∥.
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The previous result shows that (M,dg) is a metric space whenM is the Euclidean
space Rn and g, which induces d, is the standard innerproduct. Next we show that
this is the case for all Riemannian manifolds. To this end we first need a local
lemma:

Lemma 0.6.3. Let (B, g) be a Riemannian manifold, where B := B
n
r (o) ⊂ Rn.

Then there exists m > 0 such that for any piecewise C1 curve c : [a, b] → B with
c(a) = o and c(b) ∈ ∂B we have Length[c] > m.

Proof. Define f : Sn−1×B → R by f(u, p) := gp(u, u). Note that, since g is positive
definite, f > 0. Thus since f is continuous and Sn−1 × B is compact f ≥ λ2 > 0.
Consequently, bilinearity of g yields that

gp(v, v) ≥ λ2∥v∥2.

The above inequality is obvious when ∥v∥ = 0, and when ∥v∥ ≠ 0, observe that
gp(v, v) = gp(v/∥v∥, v/∥v∥)∥v∥2. Next note that

Length[c] =

∫ b

a

√
gc(t)(c′(t), c′(t)) dt ≥ λ

∫ b

a
∥c′(t)∥ dt.

But
∫ b
a ∥c′(t)∥ is just the length of c with respect to the standard metric on Rn.

Thus, by the previous proposition,∫ b

a
∥c′(t)∥ dt ≥ ∥c(b)− c(a)∥ = r.

So setting m := λr finishes the proof.

The proof of the next observation is immediate:

Lemma 0.6.4. If f : M → N is an isometry, then Length[c] = Length[f ◦ c] for
any piecewise C1 curve c : [a, b] →M .

Note that if (M, g) is a Riemannian manifold and f : M → N is a diffeomorphism
between M and any smooth manifold N , then we may push forward the metric of
M by defining

df(g)p(X,Y ) := gf−1(p)(df
−1(X), df−1(Y )).

Then f is an isometry between (M, g) and (N, df(g)). In particular we may assume
that any local charts (U, ϕ) on a Riemannian manifold (M, g) is an isometry, with
respect to the push forward metric dϕ(g) on ϕ(U). This observation, together with
the previous lemma easily yields that:

Proposition 0.6.5. If (M, g) is any Riemannian manifold then (M,dg) is a metric
space.
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Proof. It is immediate that d is symmetric and satisfies the triangle inequality.
Furthermore it is clear that d is always nonnegative. Showing that d is positive
definite, however, requires more work. Specifically, we need to show that when
p ̸= q, then d(p, q) > 0. Suppose p ̸= q. Then, since M is Hausdorff, there exists
an open neighborhood V of p such that q ̸∈ V . Let (U, ϕ) be a local chart centered
at p. Choose r so small that Br(o) ⊂ ϕ(V ∩ U), and set W := ϕ−1(Br(o)). Then
ϕ : W → Br(o) is a diffeomorphism, and we may equip Br(o) with the push forward
metric dϕ(g) which will turn ϕ into an isometry. Now let c : [a, b] → M be any
piecewise C1 curve with c(a) = p and c(b) = q. Then there exist a ≤ b′ ≤ b

such that c[a, b′] ⊂ W and c(b′) ∈ ∂W (to find b′ let
◦
W := ϕ−1(Br(o)) be the

interior of W , then c−1(
◦
W ) is an open subset of [a, b] which contains a, and we

may let b′ be the upperbound of the component of c−1(
◦
W ) which contains a.) Let

c : [a, b′] → W be the restriction of c. Then obviously Length[c] ≥ Length[c]. But
Length[c] = Length[ϕ ◦ c] since ϕ is an isometry, and by the previous lemma then
length of any curve in (Bn

r (o), dϕ(g)) which begins at the center of the ball and ends
at its boundary is bounded below by a positive constant.

Now recall that any metric space has a natural topology. In particular (M,dg)
is a topological space. Next we show that this topological space is identical to the
original M .

Lemma 0.6.6. Let (M, g1), (M, g2) be Riemannian manifolds, and suppose M is
compact. Then there exist a constant λ > 0 such that for any p, q ∈M we have

dg1(p, q) ≥ λ dg2(p, q).

Proof. Define f : Sn−1 ×M → R by f(u, p) := g1p(u, u)/g
2
p(u, u). Note that, since

g is positive definite, f > 0. Thus since f is continuous and Sn−1 ×M is compact
f ≥ λ2 > 0. Consequently, bilinearity of g yields that

g1p(v, v) ≥ λ2 g2p(v, v),

for all v ∈ Rn. Next note that the above inequality yields

Lengthg1 [c] =

∫ b

a

√
g1c(t)(c

′(t), c′(t)) dt ≥ λ

∫ b

a

√
g2c(t)(c

′(t), c′(t)) dt = λLengthg2 [c].

for any curve c : [a, b] → M . In particular the above inequalities hold for all curves
c : [a, b] →M with c(a) = p and c(b) = q.

Proposition 0.6.7. The metric space (M,dg), endowed with its metric topology, is
homeomorphic to M with its standard topology.
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Proof. There are two parts to this argument:
Part I: We have to show that every open neighborhood U of M is open in its

metric topology, i.e., for every p ∈ U there exists an r > 0 such that Bg
r (p) ⊂ U ,

where
Bg

r (p) := {q ∈M | dg(p, q) < r}.

To see this first note that, as we showed in the proof of the previous proposition,
there exists an open neighborhood V of p with V ⊂ U such that there exists a home-
omorphism ϕ : V → B

n
1 (o). Now, much as in the proof of the previous proposition,

if we endow B
n
1 (o) with the push forward metric induced by ϕ then (B

n
1 (o), dϕ(g))

becomes isometric to (V , g). But recall that, as we showed in the earlier proposition,
the distance of any point in the boundary ∂Bn

1 (o) = Sn of B
n
1 (o) from the origin o

was bigger than some constant, say λ. Thus the same is true of the distance of ∂V
from p. In particular, if we choose r < λ, then Bg

r (p) ⊂ V ⊂ U .
Part II: We have to show that every metric ball Bg

r (p) is open inM , i.e., at every
q ∈ Bg

r (p) we can find a open neighborhood U of q in M such that U ⊂ Bg
r (p). To

see this let V be an open neighborhood of p such that there exists a homeomorphism
ψ : V → B

n
1 (o), and endow B

n
1 (o) with the push forward metric dψ(g). Then the

distance of ψ(V ∩Bg
r (p)) from o is equal to r, with respect to the metric dψ(g). So,

by the previous proposition, this distance, with respect to the Euclidean metric on
B

n
1 (o) must be at least λr > 0. Thus if we choose r′ < λr, then the Euclidean ball

Bn
r′(o) ⊂ ψ(V ). Consequently, U := ψ−1(Bn

r′(o)) ⊂ V , and U is open in M , since
Bn

r′(o) is open.
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