Midterm 1

1. Find a vector of length 5 that points in the direction opposite to $2 \mathbf{i}+\mathbf{j}-\mathbf{k}$.
2. Show that the diagonals of a parallelogram have the same length if and only if the parallelogram is a rectangle.
3. Find the area of the triangle with vertices $(1,0,1),(3,0,1),(1,3,1)$.
4. If $a \times b=\mathbf{i}+\mathbf{j}+\mathbf{k}$, what is $(2 a+b) \times(a-3 b)$?
5. Find the distance between the point $(2,-1)$ and the line $\ell: x=3 t+7, y=$ $5 t-3$.
6. What is the distance between the two planes

$$
5 x-2 y+2 z=12 \quad \text { and } \quad-10 x+4 y-4 z=8 .
$$

7. Find a formula for the distance between the planes $A x+B y+C z=D_{1}$ and $A x+B y+C z=D_{2}$.
8. Show that if a path $x(t)$ lies on a sphere, then $x(t)$ is always perpendicular to its derivative.
9. Show that for any three real numbers a, b, c, we have:

$$
\frac{a+b+c}{3} \leq \sqrt{a^{2}+b^{2}+c^{2}}
$$

Each problem is worth 12pts.
${ }^{\text {La }} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ MG

