Final Exam

Choose ONLY 10 OF THE FOLLOWING 13 problems. In addition, you may also do problem 14.

1. Prove
(a) $\|u \times v\|^{2}=\|u\|^{2}\|v\|^{2}-(u \cdot v)^{2}$
(b) The diagonals of a prallelogram are orthogonal if and only if the parallelogram is a rhombus.
2. Find the distance between
(a) The point $(3,4,5)$ and the plane $2 x+y+3 z=5$.
(b) The lines $\ell_{1}(t)=t(8,-1,0)+(-1,3,5)$ and $\ell_{2}(t)=t(0,3,1)+(0,3,4)$.
3. Evaluate
(a) $\int_{-\infty}^{\infty} e^{-x^{2}} d x$.
(b) $\int_{0}^{2} \int_{y / 2}^{1} e^{-x^{2}} d x d y$
4. Find the center of mass of the icecream cone given by $x^{2}+y^{2}+z^{2} \leq 1$ and $z \geq \sqrt{x^{2}+y^{2}}$ if the density is $\delta(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$.
5. Find the average value of the y coordinate of the semicircle $x^{2}+y^{2}=1$, $y>0$.
6. Find the average value of the z coordinate of the hemisphere $x^{2}+y^{2}+z^{2}=$ $1, z>0$.
7. State Green's theorem and use it to compute the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
8. Show that the gravitational vector filed $\mathbf{F}:=-\frac{\mathbf{r}}{\|\mathbf{r}\|^{3}}$ is conservative. What is the total work done in moving a particle from a point $\mathbf{r}_{\mathbf{0}}$ to a point r_{1}. (Extra Credit: Use Stokes theorem to show that if a vector field is conservative, then total work along any closed path is zero.)
9. State Gauss's theorem and use it to show that the volume of any cone
with base D and height h is given by $1 / 3$ Area $(D) h$.
10. (a) Show that the length of the graph of the function $y=f(x), a \leq$ $x \leq b$, is given by $\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x$. (Extra Credit: Find a similar formula for the length of the graph of a curve given by the polar equation $r=f(\theta), a \leq \theta \leq b)$.
11. (a) Show that the area of a surface given by rotating the graph of the function $y=f(x), a \leq x \leq b$, around x-axis is given by

$$
2 \pi \int_{a}^{b} f(x) \sqrt{1+f^{\prime}(x)^{2}} d x
$$

(Extra Credit: Show that the area of a sphere cut by a pair of parallel planes depends only on the distance between the two planes).
12. State Stokes theorem and verify that it holds for the vector field $\mathbf{F}(x, y, z):=\left(x+z, y+z, z^{2}\right)$ on the hemisphere given by $x^{2}+y^{2}+z^{2}=1$ and $z>1$.
13. Suppose that a particle of mass m moves on a path $\mathbf{c}(t)$ in the gravitational vectorfield \mathbf{F} according to Newton's second law: $\mathbf{F}(\mathbf{c}(t))=m \mathbf{c}^{\prime \prime}(t)$. Show that (a) the angular momentum $\mathbf{h}(t):=\mathbf{c}(t) \times \mathbf{c}^{\prime}(t)$ stays constant in time, and (b) $\mathbf{c}(t) \cdot \mathbf{h}(t)=0$. What can we conclude from (a) and (b) with regard to the path of the particle?
14. (Extra Credit). Show that there is no gravitational force inside a hollow planet.

Each problem is worth 10 points. Extra credits in problems 8, 10 and 11 is worth an additional 5 points each.

