Final Exam

Choose **ONLY 10 OF THE FOLLOWING 13** problems. In addition, you may also do problem 14.

1. Prove

- (a) $||u \times v||^2 = ||u||^2 ||v||^2 (u \cdot v)^2$
- (b) The diagonals of a prallelogram are orthogonal if and only if the parallelogram is a rhombus.
- 2. Find the distance between
- (a) The point (3, 4, 5) and the plane 2x + y + 3z = 5.
- (b) The lines $\ell_1(t) = t(8, -1, 0) + (-1, 3, 5)$ and $\ell_2(t) = t(0, 3, 1) + (0, 3, 4)$.
- **3.** Evaluate
- (a) $\int_{-\infty}^{\infty} e^{-x^2} dx$.
- (b) $\int_0^2 \int_{y/2}^1 e^{-x^2} dx dy$
- **4.** Find the center of mass of the icecream cone given by $x^2 + y^2 + z^2 \le 1$ and $z \ge \sqrt{x^2 + y^2}$ if the density is $\delta(x, y, z) = \sqrt{x^2 + y^2 + z^2}$.
- **5.** Find the average value of the y coordinate of the semicircle $x^2 + y^2 = 1$, y > 0.
- **6.** Find the average value of the z coordinate of the hemisphere $x^2 + y^2 + z^2 = 1$, z > 0.
- 7. State Green's theorem and use it to compute the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$
- 8. Show that the gravitational vector filed $\mathbf{F} := -\frac{\mathbf{r}}{\|\mathbf{r}\|^3}$ is conservative. What is the total work done in moving a particle from a point \mathbf{r}_0 to a point \mathbf{r}_1 . (Extra Credit: Use Stokes theorem to show that if a vector field is conservative, then total work along any closed path is zero.)
- 9. State Gauss's theorem and use it to show that the volume of any cone

with base D and height h is given by 1/3Area(D)h.

- **10.** (a) Show that the length of the graph of the function y = f(x), $a \le x \le b$, is given by $\int_a^b \sqrt{1 + f'(x)^2} \, dx$. (Extra Credit: Find a similar formula for the length of the graph of a curve given by the polar equation $r = f(\theta), a \le \theta \le b$).
- **11.** (a) Show that the area of a surface given by rotating the graph of the function y = f(x), $a \le x \le b$, around x-axis is given by

$$2\pi \int_a^b f(x)\sqrt{1+f'(x)^2}dx.$$

(Extra Credit: Show that the area of a sphere cut by a pair of parallel planes depends only on the distance between the two planes).

- 12. State Stokes theorem and verify that it holds for the vector field $\mathbf{F}(x, y, z) := (x + z, y + z, z^2)$ on the hemisphere given by $x^2 + y^2 + z^2 = 1$ and z > 1.
- 13. Suppose that a particle of mass m moves on a path $\mathbf{c}(t)$ in the gravitational vectorfield \mathbf{F} according to Newton's second law: $\mathbf{F}(\mathbf{c}(t)) = m\mathbf{c}''(t)$. Show that (a) the angular momentum $\mathbf{h}(t) := \mathbf{c}(t) \times \mathbf{c}'(t)$ stays constant in time, and (b) $\mathbf{c}(t) \cdot \mathbf{h}(t) = 0$. What can we conclude from (a) and (b) with regard to the path of the particle?
- 14. (Extra Credit). Show that there is no gravitational force inside a hollow planet.
- Each problem is worth 10 points. Extra credits in problems 8, 10 and 11 is worth an additional 5 points each.