Practice Quiz 3

1. (Point to line) Show that the distance between a point p and a line ℓ in space is given by

$$
\operatorname{dist}(p, \ell)=\frac{|\stackrel{\rightharpoonup}{q p} \times u|}{\|u\|}
$$

where q is any point on ℓ, and u is a direction vector of ℓ.

Hints: $d=\|\overrightarrow{q p}\| \sin \theta$, see the above figure.
2. (Point to plane) Show that the distance between a point p and a plane Π in space is given by

$$
\operatorname{dist}(p, \Pi)=\frac{|\stackrel{\rightharpoonup}{q p} \cdot n|}{\|n\|}
$$

where q is any point on ℓ, and u is a direction vector of ℓ.

Hints: $d=\|\overrightarrow{q p}\| \cos \theta$, see the above figure.
3. (Line to plane) Show that if a line ℓ does not intersect a plane Π, then the distance between them is given by

$$
\operatorname{dist}(\ell, \Pi)=\frac{|\overrightarrow{q p} \cdot n|}{\|n\|},
$$

where p is any point on ℓ, q is any point in Π, and n is a normal vector to Π.

Hints: Convince yourself that $\operatorname{dist}(\ell, \Pi)=\operatorname{dist}(p, \Pi)$.
4. (Plane to plane) Show that the distance between two parallel planes Π_{1} and Π_{2} is given by

$$
\operatorname{dist}\left(\Pi_{1}, \Pi_{2}\right)=\frac{\left|\overrightarrow{p_{1} p_{2}} \cdot n\right|}{\|n\|}
$$

where p_{1} and p_{2} are any pairs of points of Π_{1} and Π_{2} respectively, and n is normal vector to Π or Π_{2}.

Hints: Convince yourself that $\operatorname{dist}\left(\Pi_{1}, \Pi_{2}\right)=\operatorname{dist}\left(p_{1}, \Pi_{2}\right)$.
4. (Line to line) Show that the distance between two skew $\operatorname{lines} \ell_{1}$ and ℓ_{2} is given by

$$
\operatorname{dist}\left(\ell_{1}, \ell_{2}\right)=\frac{\left|\stackrel{\rightharpoonup}{p_{1}} p_{2} \cdot\left(u_{1} \times u_{2}\right)\right|}{\left\|u_{1} \times u_{2}\right\|}
$$

where p_{1} and p_{2} are any pairs of points of and u_{1} and u_{2} are direction vectors for ℓ_{1} and ℓ_{2} respectively. (Skew means that the lines neither intersect, nor are parallel.)

Hints: Let Π_{1} and Π_{2} be planes which are orthogonal to $u_{1} \times u_{2}$ and passing through p_{1} and p_{2} respectively. Convince yourself that $\operatorname{dist}\left(\ell_{1}, \ell_{2}\right)=$ $\operatorname{dist}\left(\Pi_{1}, \Pi_{2}\right)$.

