Sep 18, 2001

Math 550 Vector Analysis Fall 2001, USC

Practice Quiz 3

1. (Point to line) Show that the distance between a point p and a line ℓ in space is given by

$$\operatorname{dist}(p,\ell) = \frac{|\vec{qp} \times u|}{\|u\|}$$

where q is any point on ℓ , and u is a direction vector of ℓ .

Hints: $d = \|\vec{qp}\| \sin \theta$, see the above figure.

2. (Point to plane) Show that the distance between a point p and a plane Π in space is given by

$$\operatorname{dist}(p,\Pi) = \frac{|\vec{qp} \cdot n|}{\|n\|},$$

where q is any point on ℓ , and u is a direction vector of ℓ .

Hints: $d = \|\vec{qp}\| \cos \theta$, see the above figure.

3. (Line to plane) Show that if a line ℓ does not intersect a plane Π , then the distance between them is given by

$$\operatorname{dist}(\ell, \Pi) = rac{|\vec{qp} \cdot n|}{\|n\|},$$

where p is any point on ℓ , q is any point in Π , and n is a normal vector to Π .

Hints: Convince yourself that $dist(\ell, \Pi) = dist(p, \Pi)$.

4. (Plane to plane) Show that the distance between two parallel planes Π_1 and Π_2 is given by

$$\operatorname{dist}(\Pi_1, \Pi_2) = \frac{|\overrightarrow{p_1 p_2} \cdot n|}{\|n\|},$$

where p_1 and p_2 are any pairs of points of Π_1 and Π_2 respectively, and n is normal vector to Π or Π_2 .

Hints: Convince yourself that $dist(\Pi_1, \Pi_2) = dist(p_1, \Pi_2)$.

4. (Line to line) Show that the distance between two *skew* lines ℓ_1 and ℓ_2 is given by

$$dist(\ell_1, \ell_2) = \frac{|p_1 p_2 \cdot (u_1 \times u_2)|}{\|u_1 \times u_2\|}$$

where p_1 and p_2 are any pairs of points of and u_1 and u_2 are direction vectors for ℓ_1 and ℓ_2 respectively. (Skew means that the lines neither intersect, nor are parallel.)

Hints: Let Π_1 and Π_2 be planes which are orthogonal to $u_1 \times u_2$ and passing through p_1 and p_2 respectively. Convince yourself that $dist(\ell_1, \ell_2) = dist(\Pi_1, \Pi_2)$.

 $\mathtt{Iat}_{E} \mathtt{X} \ldots \ldots \ldots \mathcal{M} \mathcal{G}$