Math 550 Vector Analysis Fall 2001, USC

PRACTICE QUIZ 2

1. (Law of sines) Use cross products to prove the identity:

$$\sin(\theta + \phi) = \sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi).$$

Hints: Let $u = \cos(\theta)\mathbf{i} + \sin(\theta)\mathbf{j}$, and $v = \cos(\phi)\mathbf{i} - \sin(\phi)\mathbf{j}$. Sketch these vectors, for small θ and ϕ , to see that the angle between them is $\theta + \phi$, and compute the norm of $u \times v$.

2. (Pythagorean theorem in 3D) Let *abcd* be a tetrahedron, and A, B, C, and D be the area of the faces opposite to the vertices a, b, c, and d respectively. Suppose that the three adjacent faces at the vertex a all have a right angle at a. Show that

$$A^2 = B^2 + C^2 + D^2.$$

Hints: Let a = (0,0,0), and note that $A^2 = \frac{1}{2} \| \overrightarrow{bc} \times \overrightarrow{bd} \|^2$.

3. Let *abcd* be an arbitrary tetrahedron and A, B, C, and D be as in the previous problem. Let u_a be a unit vector which is orthogonal to the face *bcd*, and points outside of the tetrahedron. Similarly, define u_b , u_c , and u_d . Show that

$$Au_a + Bu_b + Cu_c + Du_d = 0.$$

Hints: Let u, v, w denote 3 adjacent edges of the tetrahedron, and write each of the terms in the above equation as an appropriate cross product (recall the right hand rule to get the directions right).

- 4. Show that a result similar to the formula in problem 3 holds for all convex polytopes such as the cube or any other of the platonic solids. *Hint:* These solids are decomposable into tetrahedra.
- **Note:** The converse of problem of 4 is also true. That is, given n unit vectors u_i , and numbers A_i such that $\sum_{i=1}^n A_i u_i = 0$, there exists a convex polytope with n faces which have area A_i and are perpendicular to u_i (this is a theorem of Minkowski).
- 5. [Extra Credit] For an arbitrary tetrahedron *abcd*, prove that

$$||ac||^{2} + ||bd||^{2} \le ||bc||^{2} + ||ad||^{2} + 2||ab|| ||cd||,$$

and equality holds if and only if \overrightarrow{ab} and \overrightarrow{dc} are parallel.

 $\mathtt{Iat}_{E} \mathtt{X} \quad \ldots \quad \ldots \quad \mathcal{MG}$