Linear Algebra
Spring 2001, USC

QUIZ 9

Time: 10min

1. Find a basis for the set of vectors in R^{3} in the plane $x+2 y+z=0$ (Hint: think of the equation as a system of homogenous equations).
2. Suppose $R^{5}=\operatorname{Span}\left\{v_{1}, \ldots, v_{5}\right\}$. Explain why $\left\{v_{1}, \ldots, v_{5}\right\}$ is a basis for R^{5}.

Hints: follow these steps (each step is worth 2 points):
(i) What is the definition of basis?
(ii) What property should the set $\left\{v_{1}, \ldots, v_{5}\right\}$ have in order to be a basis for R^{5} ?
(iii) Let A be a matrix with $\left\{v_{1}, \ldots, v_{5}\right\}$ as columns, and consider the system $A x=b$ where b is a vector in R^{5}. Why is this system consistent for all b in R^{5} ?
(iv) If the above system is always consistent, then what can we conclude about the columns of A ? Why?

Problem 1 is worth 7 points and Problem 2 is worth 8 points.

