Linear Algebra
Spring 2001, USC

QUIZ 8

1. Use elementary row operations to find the determinant of the following Vandermonde matrix:

$$
A=\left[\begin{array}{lll}
1 & x_{1} & \left(x_{1}\right)^{2} \\
1 & x_{2} & \left(x_{2}\right)^{2} \\
1 & x_{3} & \left(x_{3}\right)^{2}
\end{array}\right]
$$

2. Prove that given 3 points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ in \mathbf{R}^{2}, with x_{1}, x_{2} and x_{3} all distinct, there exists a second order polynomial $p(x)=$ $a x^{2}+b x+c$ such that $y_{1}=p\left(x_{1}\right), y_{2}=p\left(x_{2}\right)$ and $y_{3}=p\left(x_{3}\right)$.

Hints: follow these steps:
(i) Write a system of three linear equations.
(ii) Put the system in the matrix notation.
(iii) Observe that the coefficient matrix is in the Vandermonde form.
(iv) What can you conclude from that? Why?

Problem 1 is worth 7 points and Problem 2 is worth 8 points.

