Apr 5, 2001

Math 544 Linear Algebra Spring 2001, USC

QUIZ 8

Time: 10min

1. Use elementary row operations to find the determinant of the following *Vandermonde* matrix:

$$A = \begin{bmatrix} 1 & x_1 & (x_1)^2 \\ 1 & x_2 & (x_2)^2 \\ 1 & x_3 & (x_3)^2 \end{bmatrix}.$$

2. Prove that given 3 points (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) in \mathbb{R}^2 , with x_1 , x_2 and x_3 all distinct, there exists a second order polynomial $p(x) = ax^2 + bx + c$ such that $y_1 = p(x_1)$, $y_2 = p(x_2)$ and $y_3 = p(x_3)$.

Hints: follow these steps:

- (i) Write a system of three linear equations.
- (ii) Put the system in the matrix notation.
- (iii) Observe that the coefficient matrix is in the Vandermonde form.
- (iv) What can you conclude from that? Why?

Problem 1 is worth 7 points and Problem 2 is worth 8 points.

 ${\rm Iat}_{E^{X}} \ldots \ldots \ldots \mathcal{MG}$