MIDTERM 2

1. Use determinants to decide if $\left[\begin{array}{c}0 \\ -6 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ 4 \\ -2\end{array}\right]$, and $\left[\begin{array}{c}-8 \\ -4 \\ 3\end{array}\right]$ are linearly independent.
2. Find a basis for the $\operatorname{Col} A$ and $\operatorname{Nul} A$, where $A=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 6 & 7 & 8 & 4\end{array}\right]$.
3. Find a 3×3 matrix, using homogenous coordinates, which rotates the $x y$-plane by 90° counterclockwise about the point $(1,0)$.
4. Find inverse of the matrix $\left[\begin{array}{ccc}1 & 5 & 0 \\ -2 & -7 & 6 \\ 1 & 3 & -4\end{array}\right]$ if it exists.
5. True or False: Justify your answers. This means that you should give a proof if the answer is affirmative, or produce a counterexample otherwise.
(a) Let A be an $m \times n$ matrix. Then the linear transformation $T: R^{n} \rightarrow R^{m}$, given by $T(x)=A x$ is one to one provided that $\operatorname{Rank}(A)=n$. (Hint: use the rank theorem).
(b) In R^{2} rotations and reflections always commute.
(c) If we rescale the x-axis in R^{2} by a factor of 2 and the y-axis by a factor of 3 , then the area of every region in R^{2} changes by a factor of 6 .
(d) If A and P are square matrices with P invertible, then $\operatorname{det}\left(P A P^{-1}\right)=\operatorname{det} A$.

Problems 1 to 4 are worth 15 points each, and 5 is worth 40 points.

