MIDTERM 1

Time: 75min

1. Row reduce to reduced Echelon form: $\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 6 & 7 & 8 & 4\end{array}\right]$.
2. Decide if $\left[\begin{array}{c}0 \\ -6 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ 4 \\ -2\end{array}\right]$, and $\left[\begin{array}{c}-8 \\ -4 \\ 3\end{array}\right]$ are linearly independent.
3. Set up (but do not solve) the system of linear equations which we need in order to find an interpolating polynomial of degree 2 for the data $(1,5)$, $(2,3)$, and $(3,4)$.
4. Describe the solution set in \mathbf{R}^{3} of $x_{1}+3 x_{2}-8 x_{3}=0$.
5. Find the matrix of the linear transformation which rotates points clockwise by 45°.
6. True or False: Justify your answers.
(a) If a set of vectors is linearly independent, then each vector is a linear combination of others.
(b) If a system $A \mathbf{x}=\mathbf{b}$ has more than one solution, then so does the system $A \mathbf{x}=\mathbf{0}$.
(c) If a matrix A has more columns than rows, then the homogenous system $A \mathrm{x}=\mathbf{0}$ has a nontrivial solution.

Problems 1 to 5 are worth 15 points each, and 6 is worth 30 points.
${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$

