1. Find inverse of the matrix $\left[\begin{array}{ccc}\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\end{array}\right]$ if it exists.
2. (a) Write a 2×2 matrix, which rotates the $x y$-plane by 45° (clockwise) through the origin, then reflects through the y-axis. (b) What is the image of the point $(3,5)$ under this transformation?
3. (a) Find a polynomial of degree 2 which interpolates the points $(-1,1)$, $(0,0)$, and $(1,2)$. (b) Prove that given any set of 3 points in the plane with distinct first coordinates, we may find a polynomial of degree 2 which interpolates these points.
4. Prove that through any given set of 5 points in the plane there passes a conic curve, i.e., a curve given by the equation $a x^{2}+b y^{2}+c x y+d x+e y+f=0$.
5. Find the eigenvalues and eigenvectors of $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$.
6. True or False: Justify your answers. This means that you should give a proof if the answer is affirmative, or produce a counterexample otherwise.
(a) If a set of vectors is linearly dependent, then each vector is a linear combination of others.
(b) The area of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\pi a b$.
(c) Every polynomial of degree 3 may be expressed as a linear combination of $1,2 t,-2+4 t^{2}$, and $-12 t+8 t^{3}$.
(d) Any set of 3 vectors which spans R^{3} is a basis for R^{3}.
(e) Any linear transformation $T: R^{n} \rightarrow R^{m}$ which preserves volumes (and areas) must be one-to-one.

Problems 1 to 5 are worth 15 points each, and 6 is worth 25 points.

