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2.7 Smooth submanifolds

Let N be a smooth manifold. We say that M C N™ is an n-dimensional
smooth submanifold of N, provided that for every p € M there exists a local
chart (U, ¢) of N centered at p such that

o(UNM)=R" x{o},
where o denotes the origin of R™*,
Proposition 1. A smooth submanifold M C N is a smooth manifold.

Proof. Since M C N, M is Hausdorf and has a countable basis. For every
p € M, let (U, ¢) be a local chart of M with ¢(UNM) = R" x {o}. Set U :=
UNM, and ¢ := ¢|iz. Then ¢: U — R" x {0} ~ R" is a homeomorphism,
and thus M is a toplogical manifold. It remains to show that M is smooth.
To see this note that if (V%) is the restriction of another local chart of N
to M. Then ¢ o (¢)' =1 o ¢_1|$(U)’ which is smooth. O

The above proof shows how M induces a differential structure on N.
Whenver we talk of a submanifold M as a smooth manifold in its own right,
we mean that M is equipped with the differential structue which it inherits
from N.

Theorem 2. Let f: M™ — N™ be a smooth map of constant rank k (i.e.,
rank(df,) = k, for allp € M ). Then, for any ¢ € N, f~'(q) is an (n — k)-

dimensional smooth submanifold of M.

Proof. Let p € f~'(q). By the rank theorem there exists local neighborhoods
(U,¢) and (V,4) of M and N centered at p and ¢ respectively such that

fx)=vofop Hat,. . a") = («',...,2%0,...,0).
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Next note that

SUNfHg)=¢U)Ndof o (0)=R"Nf (o) ={o} x R"*.

Thus f~'(q) is a smooth submanifold of N (To be quite strict, we need to
show that ¢(UNf~1(q)) = R"*x {0}, but this is easily achieved if we replace
1 with 6 o1, where §: R™ — R is the diffeomorphism which switches the
first k and last m — k cordinates). OJ

Exercise 3. Use the previous result to show that S™ is smooth n-dimensional
submanifold of R™"*1.

Another application of the last theorem is as follows:

Example 4. SL, is a smooth submanifold of GL,. To see this define
f: GL, — R by f(A) := det(A). Then SL, = f~'(1), and thus it re-
mains to show that f has constant rank on GL,. Since this rank has to
be either 1 or 0 at each point (why?), it suffices to show that the rank is
not zero anywhere, i.e., it is enough to show that for every A € GL,, there
exists X € TyGL, such that df4(X) # 0. To see this, let X = [a] where
a: (—€,e) — GL, is the curve given by a(t) := (1 — t)A. Note that, since
det is contiuous, det(a(t)) # 0, for all ¢ € (—¢, €), once we make sure that e
is small enough. Thus « is indeed well-defined. Now recall that

de(X) = [f o Oé] S Tf(A)R.

Further recall that there is a canonical isomorphism 6: Ty 4R — R given
by 0([]) =+(0). Thus

Oodfa(X) = (foa)(0)=det(A) #£D0.
So, since 6 is an isomorphism, df4(X) # 0, as desired.

Exercise 5. Show that O,, is a smooth n(n —1)/2-dimensional submanifold
of GL,. (Hint: Define f: GL, — GL, by f(A) := AT A. Then show that
TaGL, is given by the equivalence class of curves of the form A + ¢B where
B is any n x n matrix. Finally, show that df4(T4GL,) is isomorphic to the
space of symmetric n X n matrices).

Note that if A € O,, the det(4) = £1. Thus O,, has two components.
The component with positive determinant is known as the special orthogonal
group SO,,.

Exercise 6. Show that SOs is diffeomorphic to RP3.



2.8 Smooth immersions and embeddings

We say, f: M — N is a smooth embedding if f(M) is a smooth submanifold
of N and f: M — f(M) is a diffetomorphism. If f: M — N is a local
smooth embedding, i.e., every p € M has an open neighborhood U such that
f: U — N is a smooth embedding, we say that f is a smoothe immersion.

Theorem 7. Let f: M™ — N be a smooth map. Then f is an immersion if
and only if f has constant rank n on M.

Proof. If f is an immersion, then it is obvious from the definition of immer-
sion (and the chain rule), that f has everywhere full rank (becuase then,
locally, f o f~! is the identity map).

Conversely, suppse that f has constan rank n. Then, by the rank theorem,
for every p € M, there exists local charts (U, ¢) and (V,v) of M and N
centered at p and f(p) respectively such that

f@y=1ofoe t(at,...,a") = («*...,2"0,...,0).

So f is one-to-one. Thus (since M is locally compact, and N is hausdorf) f
is a local homeomoprhim. In particular, after replacing U by a smaller open
neighborhood of p which has compact closure inside U, we may assume that
f7t: f(U) — U is well defined and continuous (we can always perform such
a shrinking of U, since U is homeomoprphic to R"; in particular, we may
replace U by ¢~ !(int B;(0))). Next note that

(VN f0) =0(f(U)) = f(6(U)) = [(R") = R" x {o}.

Thus f(U) is a smoooth submanifold of N. It remains, therefore, only to
show that f~' is smooth. To this end note that f~': R” x {o} — f(U) is
well defined. Further, since, as we showed above, ¢: f(U) — R" x {o}, it
follows that

¢lof oy =f"
on U. Since each of the maps on the left hand side of the above equation is
smooth, f~! is smooth. O

The following corollaries of the above theorem are immediate:

Corollary 8. Let f: M — N be a smooth map. Then f is a smooth em-
bedding if and only if f is a homeomorphism onto its image and f has full
rank.



Corollary 9. Let f: M — N be a smooth map, and suppose that M 1is
compact. Then f is a smooth embedding if and only if f is one-to-one and
has full rank.

Next we are going to use the last corollary to show that

Theorem 10. Every smooth compact manifold M™ may be smoothly embed-
ded in a Fuclidean space.

The proof of the above is a refinement of the proof we had given earlier
for the existence of topological embeddings in Euclidean space. First we need
to prove the following basic fact:

Lemma 11 (Existence of the smooth step function). Forany0 < a <
b there exits a smooth function o,p: R — R such that 0,5, = 0 on (—oo,rq]
and o =1 on [rg, 00).

Proof. Define ¢: R — R by
0 if z <0,
¢lz) = {e‘l/’” if x > 0.
Then ¢ is smooth. Next define #: R — R by
0(z) == ¢z —a)p(b — x).

Then 6 is smooth, § > 0 on (a,b), and § = 0 on (—o00, a]U [b, 00). Finally set

G
| fab O(x) dx

Exercise 12. Show that the function ¢ in the above lemma is smooth.
Now we are ready to prove the main result of this section.

Proof of Theorem 10. As we had argued earlier, since M is compact, there
exists a finite cover U;, 1 <7 < m, of M and homeomorphisms ¢;: U; — R",
such that V; := ¢; !(int B"(1)) also cover M.

Now define A: R" — R by A(z) := 012(||z]), where o is the step fucntion
defined above. Since || - || is smooth on R™ — {0} and \ is constant on an
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open neighborhood of o, it follows that that A is smooth. In particular note
that A =1 on B"(1) and A = 0 on R" — B"(2). So if we define A\;: M — R
by settting A;(p) := A(¢i(p)) in case p € U; and \;(p) := 0 otherwise, then
Ai=1onV;and \; =0 on M — ¢;*(B"(2)). In addition, we claim that,
since M is hausorf, )\; is smooth. To see this, let K; := ¢; }(B"(2)). Then K;
is compact. So K; is closed, since M is hausdorf. This yields that M — K;
is open. In particular, since K; C U;, {U;, M — K;} is an open cover of M.
Since \; is smooth on U; (where it is the composition of smooth functions)
and )\; is smooth on M — K; (where \; = 0) it follows that \; is smooth.
Next define fi: M — R" by f;(p) = Xi(p)¢i(p) if p € U;, and f;(p) = 0
otherwise. Then f; is smooth, since, similar to the argument we gave for \;
above, f; is smooth on U; and M — K;. Finally, define f: M — R™"+D by

F) = (M@, A®), 1), -, fm(P))-

Since each component function of f is smooth, f is smooth. We claim that f
is the desired embedding. To this end, since f is smooth, and M is compact,
it suffices to check that f is one-to-one and is an immersion.

To see that f is an immersion, note that, since V; cover M and \; = 1 on
V;, at least one component function f; is a diffeomorphism of a neighborhood
of p into R", and so has rank n at p. This implies that the rank of f is at
least n, which since dim(M) = n, implies in turn that rank of f is equal to
n.

To see that f is one-to-one, suppose that f(p) = f(q). Then f;(p) = fi(q),
and A;(p) = Xi(q). Since V; cover M, p € V; for some fixed j. Consequently

Ai(q) = Ai(p) # 0,

which yields that ¢ € U;. Since p,q € Uj, it follows, from definition of f;,
that

Ai(p)di(p) = fi(p) = fi(a) = A;(0)¢;(q).
So we conclude that ¢;(p) = ¢,(¢), which yields that p = ¢. O

2.9 Tangent bundle

If M™ is a smooth manifold then we set

TM := U T,M.
peEM
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Note that if X € T'M, then X € T,M for a unique p € M. This defines a
natural projection 7w: T'M — M.

Recall that for each p € R" there exists a canonical isomorphism 6,: T,R" —
R" (given by 6,[a] := &/(0)). Using this we may define a bijection §: TR" —
R"™ x R" by setting:

Q(X) = (W(X),@W(X)(X)).

We topologize TR"™ by declaring that 6 is a homeomorphism, i.e., we say
that U C TR™ is open if and only if §(U) is open. Further, we may use 6 to
endow TR"™ with the standard differential structure of R". Thus TR" is a
smooth 2n-dimensional manifold.

Next note that if f: M — N is smooth then we may define a mapping
df: TM — TN by setting df |1, » = df,. If fis a diffeomorphism, then df is
a bijection. Thus if (U, ¢) is a local chart of M, then we obtain a bijection
from TU to R™ x R" given by

05(X) = (gb(p),%(p) (dgb(X))), where p:=n(X).

Requiring 6 to be a homeomorphism topologizes T'M. More explicitly, note
that if (U;, ¢;) is an atlas for M, then TU; cover TM. We say that V- C T M
is open if 0,,(V NTU;) is open for every i. We define the tangent bundle of
M as TM endowed with this topology. In particular, (T'U;,0,,) is an atlas
for T M, and thus T'M is a 2n-manifold, once we check that:

Exercise 13. Show that T M is hausdorfl and has a countable basis.
Furthermoe we can show:

Proposition 14. If M"™ is a smooth manifold, then T'M 1is a smooth 2n-
manifold.

Proof. It remains only to verify that the local charts (T'U;, 6,,) are compat-
ible, i.e., 4, o 9(;3_1 is smooth (whenever TU; N TU; # (). To see this let
(z,y) € R™ x R", and suppose that

X = H(Ejl(x,y).

Then 0y, (X) = (2,y). Thus = ¢;(p), where p := 7(X), and y =
0. (dg;(X)). So we have

p=2¢;'(z), and X =d¢;"(0;"(y)).
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Now note that
Op, 005 (2,y) = 04,(X)
= <¢z‘ (p), 9@(19) (dﬁbz‘(X)))
= (650 67" @), B0 (0010 676 ) ).

Thus, since ¢; o (bj’l is smooth, it follows that 6, o 6;],1 is smooth. O]

A wvector field is a mapping X : M — T'M such that 7(X(p)) = p for all
p € M. We say that M™ is parallelizable if there are n continuos vector fields
on M which are linearly independent at each point.

Exercise 15. Show that T'M is homeomprphic to M x R™ if and only if M
is parallelizable. In particular, 7'S' is homeomorphic to S* x R.

Suppose that to each T,M there is associated an inner product, i.e., a
positive definite symmetric bilinear map ¢,: T,M x T,M — R. Then we
may define a mapping f: TM — R by f(X) := g-(x)(X, X). If f is smooth,
we say that g is a smooth Riemannian metric, and (M, g) is a Riemannian
manifold. For example, if M is any smooth manifold, and f: M — R" is
any smooth immersion, then we may define a Riemannian metric on f by

gp(X, Y):= <dfp(X)v dfp(Y>>a

where (-,-) is the standard inner product on R". In particular, since every
compact manifold admits a smooth embedding into a Euclidean space, it
follows that every compact smooth manifold admits a smooth Riemannian
metric. If M is a smooth Riemannian manifold then the unit tangnet bundle
UTM is defined as the set of tangent vectors of M of length 1.

Exercise 16. Show that the unit tangent bundle of a smooth n-manifold is
a smooth 2n — 1 manifold.

Exercise 17. Show that 7"S? is diffeomorphic to RP?.



