Lecture Notes 6

2.5 The inverse function theorem

Recall that if $f: M \to N$ is a diffeomorphism, then df_p is nonsingular at all $p \in M$ (by the chain rule and the observation that $f \circ f^{-1}$ is the identity function on M). The main aim of this section is to prove a converse of this phenomenon:

Theorem 1 (The Inverse Function Theorem). Let $f: M \to N$ be a smooth map, and $\dim(M) = \dim(N)$. Suppose that df_p is nonsingular at some $p \in M$. Then f is a local diffeomorphism at p, i.e., there exists an open neighborhood U of p such that

- 1. f is one-to-one on U.
- 2. f(U) is open in N.
- 3. $f^{-1}: f(U) \to U$ is smooth.

In particular, $d(f^{-1})_{f(p)} = (df_p)^{-1}$.

A simple fact which is applied a number of times in the proof of the above theorem is

Lemma 2. Let $f: M \to N$, and $g: N \to L$ be diffeomorphisms, and set $h:=g \circ f$. If any two of the mappings f, g, h are diffeomorphisms, then so is the third.

In particular, the above lemma implies

Proposition 3. If Theorem 1 is true in the case of $M = \mathbb{R}^n = N$, then, it is true in general.

¹Last revised: February 13, 2005

Proof. Suppose that Theorem 1 is true in the case that $M = \mathbf{R}^n = N$, and let $f \colon M \to N$ be a smooth map with df_p nonsingular at some $p \in M$. By definition, there exist local charts (U,ϕ) of M and (V,ψ) of N, centered at p and f(p) respectively, such that $\tilde{f} := \phi^{-1} \circ f \circ \psi$ is smooth. Since ϕ and ψ are diffeomorphisms, $d\phi_p$ and $d\psi_{f(p)}$ are nonsingular. Consequently, by the chain rule, $d\tilde{f}_o$ is nonsingular, and is thus a local diffeomorphism. More explicitly, there exists open neighborhoods A and B of the origin o of \mathbf{R}^n such that $\tilde{f} \colon A \to B$ is a diffeomorphism. Since $\phi \colon \phi^{-1}(A) \to A$ is also a diffeomorphism, it follows that $\phi \circ \tilde{f} \colon \phi^{-1}(A) \to B$ is a diffeomorphism. But $\phi \circ \tilde{f} = f \circ \psi$. So $f \circ \psi \colon \phi^{-1}(A) \to B$ is a diffeomorphism. Finally, since $\psi \colon \psi^{-1}(B) \to B$ is a diffeomorphism, it follows, by the above lemma, that $f \colon \phi^{-1}(A) \to \psi^{-1}(B)$ is a diffeomorphism.

So it remains to prove Theorem 1 in the case that $M = \mathbb{R}^n = N$. To this end we need the following fact. Recall that a metric space is said to be complete provided that every Cauchy sequence of that space converges.

Lemma 4 (The contraction Lemma). Let (X,d) be a complete metric space, and $0 \le \lambda < 1$. Suppose that there exists mapping $f: X \to X$ such that $d(f(x_1), (x_2)) \le \lambda d(x_1, x_2)$, for all $x_1, x_2 \in X$. Then there exists a unique point $x \in X$ such that f(x) = x.

Proof. Pick a point $x_0 \in X$ and set $x_n := f^n(x)$, for $n \ge 1$. We claim that $\{x_n\}$ is a Cauchy sequence. To this end note that

$$d(x_n, x_{n+m}) = d(f^n(x_0), f^n(x_m)) \le \lambda^n d(x_0, x_m).$$

Further, by the triangle inequality

$$d(x_0, x_m) \leq d(x_0, x_1) + d(x_1, x_2) + \dots + d(x_{m-1}, x_m)$$

$$\leq (1 + \lambda + \lambda^2 + \dots + \lambda^m) d(x_0, x_1)$$

$$\leq \frac{1}{1 - \lambda} d(x_0, x_1).$$

So, setting $K := d(x_0, x_1)/(1 - \lambda)$, we have

$$d(x_n, x_{n+m}) \le \lambda^n K.$$

Since K does not depend on m or n, the last inequality shows that $\{x_n\}$ is a Cauchy sequence, and therefore, since X is complete, it has a limit point, say x_{∞} . Now note that, since $d: X \times X \to \mathbf{R}$ is continuous (why?),

$$d(x_{\infty}, f(x_{\infty})) = \lim_{n \to \infty} d(x_n, f(x_n)) = 0.$$

Thus X_{∞} is a fixed point of f. Finally, note that if a and b are fixed points of f, then

$$d(a,b) = d(f(a), f(b)) \le \lambda d(a,b),$$

which, since $\lambda < 1$, implies that d(a,b) = 0. So f has a unique fixed point. \square

Exercise 5. Does the previous lemma remain valid if the condition that $d(f(x_1), (x_2)) \leq \lambda d(x_1, x_2)$ is weakened to $d(f(x_1), (x_2)) \leq d(x_1, x_2)$?

Next we recall

Lemma 6 (The mean value theorem). Let $f: \mathbf{R}^n \to \mathbf{R}$ be a C^1 functions. Then for every $p, q \in \mathbf{R}^n$ there exists a point s on the line segment connecting p and q such that

$$f(p) - f(q) = Df(s)(p - q) = \sum_{i=1}^{n} D_i f(s_i)(p^i - q^i).$$

Exercise 7. Prove the last lemma by using the mean value theorem for functions of one variable an the chain rule. (*Hint:* Parametrize the segment joining p and q by tq + (1 - t)p, $0 \le t \le 1$).

The above lemma implies:

Proposition 8. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a C^1 function, U be a convex open neighborhood of o in \mathbb{R}^n , and set

$$K := \sup \left\{ \left| D_j f^i(p) \right| \mid 1 \le i \le m, 1 \le j \le n, p \in U \right\}$$

Then, for every $p, q \in U$,

$$||f(p) - f(q)|| \le \sqrt{mn} K||p - q||$$

Proof. First note that

$$||f(p) - f(q)||^2 = \sum_{i=1}^{m} (f^i(p) - f^i(q))^2.$$

Secondly, by the mean value theorem (Lemma 6), there exists, for every i a point s_i on the line segment connecting p and q such that

$$f^{i}(p) - f^{i}(q) = Df^{i}(s_{i})(p - q) = \sum_{j=1}^{n} D_{j}f^{i}(s_{j})(p^{j} - q^{j}).$$

Since U is convex, $s_i \in U$, and, therefore, by the Cauchy-Schwartz inequality

$$|f^{i}(p) - f^{i}(q)| \le \sqrt{\sum_{j=1}^{n} D_{j} f^{i}(s_{j})^{2}} \sqrt{\sum_{j=1}^{n} (p^{j} - q^{j})^{2}} \le \sqrt{n} K ||p - q||.$$

So we conclude that

$$||f(p) - f(q)||^2 \le m n K^2 ||p - q||^2$$
.

Finally, we recall the following basic fact

Lemma 9. Let $f: \mathbf{R}^n \to \mathbf{R}^m$, and $p \in \mathbf{R}^n$. Suppose there exists a linear transformation $A: \mathbf{R}^n \to \mathbf{R}^m$ such that

$$f(x) - f(p) = A(p - x) + r(x, p)$$

where $r \colon \mathbf{R}^2 \to \mathbf{R}$ is a function satisfying

$$\lim_{x \to p} \frac{r(x, p)}{\|x - p\|} = 0.$$

Then all the partial derivatives of f exist at p, and A is given by the jacobian matrix $Df(p) := (D_1 f(p), \ldots, D_n f(p))$ whose columns are the partial derivatives of f. In particular, A is unique. Conversely, if all the partial derivative $D_i f(p)$ exist, then A := Df(p) satisfies the above equation.

Proof. Let e_1, \ldots, e_n be the standard basis for \mathbb{R}^n . Then

$$D_i f(p) = \lim_{t \to 0} \frac{f(p + te_i) - f(p)}{t} = \lim_{t \to 0} \frac{A(te_i) + r(p + te_i, p)}{t} = A(e_i).$$

Thus all the partial derivatives of f exist at p, and $D_i f(p)$ coincides with the i^{th} column of (the matrix representation) of A. In particular, A = Df(p) and therefore A is unique.

Conversely, suppose that all the partial derivatives $D_i f(p)$ exist and set

$$r(x, p) := f(x) - f(p) - Df(p)(p - x).$$

By the mean value theorem,

$$r(x,p) = (Df(s) - Df(p))(p - x)$$

for some s on the line segment joining p and s. Thus it follows that

$$\lim_{x \to p} \frac{r(x, p)}{\|x - p\|} = \lim_{x \to p} (Df(s) - Df(p)) \left(\frac{p - x}{\|p - x\|}\right) = 0,$$

as desired. \Box

Now we are finally ready to prove the main result of this section.

Proof of Theorem 1. By 3 we may assume that $M = \mathbf{R}^n = N$. Further, after replacing f(x) with $(Df(p))^{-1}f(x-p) - f(p)$ we may assume, via Lemma 2, that

$$p = o$$
, $f(o) = o$, and $Df(o) = I$,

where I denotes the identity matrix. Now define $g: \mathbf{R}^n \to \mathbf{R}^n$ by

$$q(x) = x - f(x).$$

Then g(o) = o, and Dg(o) = 0. Thus, by Proposition 8, there exists r > 0 such that for all $x_1, x_2 \in B_r(o)$, the closed ball of radius r centered at o,

$$||g(x_1) - g(x_2)|| \le \frac{1}{2} ||x_1 - x_2||.$$

In particular, $||g(x)|| = ||g(x) - g(o)|| \le ||x||/2$. So $g(B_r(o)) \subset B_{r/2}(o)$. Now, for every $y \in B_{r/2}(o)$ and $x \in B_r(o)$ define

$$T_y(x) := y + g(x) = y + x - f(x).$$

Then, by the triangle inequality, $||T_y(x)|| \leq r$. Thus $T_y: B_r(o) \to B_r(o)$. Further note that

$$T_y(x) = x \iff y = f(x).$$

in particular, T_y has a unique fixed point on $B_r(o)$ if and only if f is one-to-one on $B_r(o)$. But

$$||T_y(x_1) - T_y(x_2)|| = ||g(x_1) - g(x_2)|| \le \frac{1}{2}||x_1 - x_2||.$$

Thus by Lemma 4, T_y does indeed have a unique fixed point, and we conclude that f is one-to-one on $B_r(o)$. In particular, we let U be the interior of $B_r(o)$.

Next we show that f(U) is open. To this end it suffices to prove that $f^{-1}: f(B_r(o)) \to B_r(o)$ is continuous. To see this note that, by the definition of g and the triangle inequality,

$$||g(x_1) - g(x_2)|| = ||(x_1 - x_2) - (f(x_1) - f(x_2))|| \ge ||x_1 - x_2|| - ||f(x_1) - f(x_2)||.$$

Thus,

$$||f(x_1) - f(x_2)|| \ge ||x_1 - x_2|| - ||g(x_1) - g(x_2)|| = \frac{1}{2}||x_1 - x_2||,$$

which in turn implies

$$||y_1 - y_2|| \ge \frac{1}{2} ||f^{-1}(y_1) - f^{-1}(y_2)||.$$

So f^{-1} is continuous.

It remains to show that f^{-1} is smooth on f(U). To this end, note that by Lemma 9, for every $p \in U$,

$$f(x) - f(p) = Df(p)(x - p) + r(x, p).$$

Now multiply both sides of the above equality by $A := (Df(p))^{-1}$, and set y := f(x), q := f(p). Then

$$A(y-q) = f^{-1}(y) - f^{-1}(q) + Ar(f^{-1}(y), f^{-1}(q)),$$

which we may rewrite as

$$f^{-1}(y) - f^{-1}(q) = A(y-q) + \overline{r}(y,q),$$

where

$$\overline{r}(y,q) := Ar(f^{-1}(y), f^{-1}(q)).$$

Finally note that

$$\lim_{y \to q} \frac{\overline{r}(y,q)}{\|y-q\|} = A \lim_{y \to q} \frac{r(f^{-1}(y), f^{-1}(q))}{\|y-q\|} \le 2A \lim_{y \to q} \frac{r(f^{-1}(y), f^{-1}(q))}{\|f^{-1}(y) - f^{-1}(q)\|} = 0.$$

Thus, again by Lemma 9, f^{-1} is differentiable at all $p \in U$ and

$$D(f^{-1})(p) = \left(Df(f^{-1}(p))\right)^{-1}.$$

Since the right hand side of the above equation is a continuous function of p (because f is C^1 and f^{-1} is continuous), it follows that f^{-1} is C^1 . But if f is C^r , then the right hand side of the above equation is C^r (since Df is C^{∞} everywhere), which in turn yields that f^{-1} is C^{r+1} . So, by induction, f^{-1} is C^{∞} .

Exercise 10. Give a simpler proof of the inverse function theorem for the special case of mappings $f : \mathbf{R} \to \mathbf{R}$.

2.6 The rank theorem

The inverse function theorem we proved in the last section yields the following more general result:

Theorem 11 (The rank theorem). Let $f: M \to N$ be a smooth map, and suppose that $rank(df_p) = k$ for all $p \in M$, then, for each $p \in M$, there exists local charts (U, ϕ) and (V, ψ) of M and N centered at p and f(p) respectively such that

$$\psi \circ f \circ \phi^{-1}(x_1, \dots, x_n) = (x_1, \dots, x_k, 0, \dots, 0).$$

Exercise 12. Show that to prove the above theorem it suffices to consider the case $M = \mathbb{R}^n$ and $N = \mathbb{R}^m$. Furthermore, show that we may assume that p = o, f(o) = o, and the $k \times k$ matrix in the upper left corner of the jacobian matrix Df(o) is nonsingular.

Proof. Suppose that the conditions of the previous exercise hold. Define $\phi \colon \mathbf{R}^n \to \mathbf{R}^n$ by

$$\phi(x) := (f^1(x), \dots, f^k(x), x^{k+1}, \dots, x^n).$$

Then

$$D\phi(o) = \begin{pmatrix} \frac{\partial(f^1,\dots,f^k)}{(x^1,\dots,x^k)}(o) & * \\ 0 & I_{n-k} \end{pmatrix}.$$

Thus $D\phi(o)$ is nonsingular. So, by the inverse function theorem, ϕ is a local diffeomorphism at o. In particular ϕ^{-1} is well defined on some open neighborhood U of o. Let $\pi_i \colon \mathbf{R}^{\ell} \to \mathbf{R}$ be the projection onto the i^{th} coordinate. Then, for $1 \le i \le k$, $\pi_i \circ \phi = f^i$. Consequently, $f^i \circ \phi^{-1} = \pi_i$. Thus, if we set $\tilde{f}^i := f^i \circ \phi^{-1}$, for $k+1 \le i \le m$, then

$$f \circ \phi^{-1}(x) = (x^1, \dots, x^k, \tilde{f}^{k+1}(x), \dots, \tilde{f}^m(x))$$

for all $x \in U$. Next note that

$$D(f \circ \phi^{-1})(o) = \begin{pmatrix} I_k & 0 \\ * & \frac{\partial(\tilde{f}^{k+1}, \dots, \tilde{f}^m)}{(x^{k+1}, \dots, x^n)}(o) \end{pmatrix}.$$

On the other hand, $D(f \circ \phi^{-1})(o) = D(f)(p) \circ D(\phi^{-1})(o)$. Thus

$$rank(D(f \circ \phi^{-1})(o)) = rank(D(f)(p)) = k,$$

because $D(\phi^{-1}) = D(\phi)^{-1}$ is nonsingular. The last two equalities imply that

$$\frac{\partial(\tilde{f}^{k+1},\dots,\tilde{f}^m)}{(x^{k+1},\dots,x^n)}(o)=0,$$

where 0 here denotes the matrix all of whose entries is zero. So we conclude that the functions $\tilde{f}^{k+1}, \ldots, \tilde{f}^m$ do not depend on x^{k+1}, \ldots, x^n . In particular, if V is a small neighborhood of o in \mathbf{R}^m , then the mapping $T: V \to \mathbf{R}^m$ given by

$$T(y) := (y^1, \dots, y^k, y^{k+1} + f^{k+1}(y^1, \dots, y^k), \dots, y^m + f^m(y^1, \dots, y^k))$$

is well defined. Now note that

$$DT(o) = \left(\begin{array}{cc} I_k & * \\ 0 & I_{m-k} \end{array}\right).$$

Thus, by the inverse function theorem, $\psi := T^{-1}$ is well defined on an open neighborhood of o in \mathbb{R}^m . Finally note that

$$\psi \circ f \circ \phi^{-1}(x) = \psi(x^1, \dots, x^k, \tilde{f}^{k+1}(x), \dots, \tilde{f}^m(x))$$

$$= \psi \circ T(x^1, \dots, x^k, 0, \dots, 0)$$

$$= (x^1, \dots, x^k, 0, \dots, 0),$$

as desired.

Exercise 13. Show that there exists no C^1 function $f \colon \mathbf{R}^2 \to \mathbf{R}$ which is one-to-one.