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2.2 Definition of Tangent Space

If M is a smooth n-dimensional manifold, then to each point p of M we may
associate an n-dimensional vector space TpM which is defined as follows. Let

CurvespM := {α : (−ε, ε) → M | α(0) = p }
be the space of smooth curves on M centered at p. We say that a pair of
curve α, β ∈ CurvespM are tangent at p, and we write α ∼ β, provided that
there exists a local chart (U, φ) of M centered at p such that

(φ ◦ α)′(0) = (φ ◦ β)′(0).

Note that if (V, ψ) is any other local chart of M centered at p, then, by the
chain rule,

(ψ ◦ α)′(0) = (ψ ◦ φ−1 ◦ φ ◦ α)′(0)

=
[
(ψ ◦ φ−1)′(φ(α(0))

]
◦

[
(φ ◦ α)′(0)

]
=

[
(ψ ◦ φ−1)′(φ(β(0))

]
◦

[
(φ ◦ β)′(0)

]
= (ψ ◦ β)′(0).

Thus ∼ is well-defined, i.e., it is indpendent of the choice of local coordinates.
Further, one may easily check that ∼ is an equivalence relation. The set of
tangent vectors of M at p is defined by

TpM := CurvespM/ ∼ .

Next we describe how TpM may be given the structure of a vector space.
Let (U, φ) denote, as always, a local chart of M centered at p, and recall that
n = dim(M). Then we define a mapping f : TpM → Rn by

φ∗([α]) := (φ ◦ α)′(0).
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Exercise 1. Show that the above mapping is well-defined and is a bijection.

Since φ∗ is a bijection, we may use it to identify TpM with Rn and, in
particular, define a vector space structure on TpM . More explicitly, we set

[α] + [β] := φ−1
∗

(
φ∗([α]) + φ∗([β])

)
,

and
λ[α] := φ−1

∗
(
λφ∗([α])

)
.

2.3 Derivations

Here we give a more abstract, but useful, characterization for the tangent
space of a manifold, which reveals the intimate connection between tangent
vectors and directional derivatives.

Let C∞(M) denote the space of smooth functions on M and p ∈ M . We
say that two functions f, g ∈ C∞(M) have the same germ at p, and write
f ∼p g, provided that there exists an open neighborhood U of p such that
f |U = g|U . The reslting equivalence classes then defines the space of germ of
smooth functions of M at p:

Cp(M) := C∞M/ ∼p .

Note that we can add and multiply the elements of CpM in an obvious way,
and with respect to these operations one may easily check that Cp(M) is an
algebra over the field of real numbers R.

We say that a mapping D : Cp(M) → R is a derivation provided that D
is linear and satisfies the Leibnitz rule, i.e.,

D(fg) = Df · g(p) + f(p) · Dg

for all f , g ∈ Cp(M). If D1 and D2 are a pair of such derivations, then we
define their sum by (D1 +D2)f := D1f +D2f , and for any λ ∈ R, the scalar
product is given (λD)f := λ(Df).

Exercise 2. Show that the set of derivations of CpM forms a vector space
with respect to the operations defined above.

Note that each element X ∈ TpM gives rise to a derivation of Cp(M) if,
for any f ∈ Cp(M), we set

Xf := (f ◦ αX)′(0),
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where αX : (−ε, ε) → M is a curve which belongs to the equivalence class
denoted by X, i.e., X = [αX ].

Exercise 3. Check that Xf is well-defined and is indeed a derivation.

A much less obvious fact, whose demonstrationis the main aim of this
section, is that, conversely, every derivation of Cp(M) corresponds to (the
directional derivative determined by) a tangent vecor. More formally, if DpM
denotes the space of derivations of CpM , then

Theorem 4. TpM is isomorphic to DpM .

The rest of this section is devoted to the proof of the above result. To this
end we need a pair of lemmas. Let 0 ∈ Cp(M) denote the constant function
zero, i.e. 0(p) := 0.

Lemma 5. If f ∈ CpM is a constant function, then Df = 0, for any D ∈
DpM .

Proof. First note that, since f is constant, say f(p) = λ,

D(f) = D(f · 1) = D(λ · 1) = λD(1),

where 1 denotes the constant fucntion 1(p) = 1. Further,

D(1) = D(1 · 1) = D(1) · 1 + 1 · D(1) = 2D(1).

Thus D(1) = 0, which in turn yields that D(f) = 0.

Lemma 6. Let f : Rn → R be a smooth function. Then, for any p ∈ Rn,
there exist smooth functions gi : Rn → R, i = 1, . . . , n, such that

gi(p) =
∂f

∂xi

(p),

and

f(x) = f(p) +
n∑

i=1

gi(x)(xi − pi).
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Proof. The fundamental theorem of calculus followed by chain rule implies
that

f(x) − f(p) =

∫ 1

0

d

dt
f(tp + (1 − t)x)dt

=

∫ 1

0

n∑
i=1

∂f

dxi

∣∣∣
tp+(1−t)x

(xi − pi)dt

=
n∑

i=1

∫ 1

0

∂f

dxi

∣∣∣
tp+(1−t)x

dt(xi − pi).

So we set

gi(x) :=

∫ 1

0

∂f

dxi

∣∣∣
tp+(1−t)x

dt.

Now we are ready to prove the main result of this section

Proof of Theorem 4. Recall that if (U, φ) is a local chart of M centered at p,
then the mapping [α] �→ (φ◦α)′(0) is an isomorphism between TpM and Rn.
Similarly, f �→ f ◦ φ−1 is an isomorphism between CpM and CoR

n, which
yields that DpM is isomorphic to DoR

n. So it remains to show that DoR
n

is isomorphic to Rn.
Let xi : Rn → R, given by xi(p) := pi, be the coordinate functions of Rn.

It is easy to check that the mapping

DoR
n � D

F�−→ (Dx1, . . . , Dxn) ∈ Rn

is a homomorphism. Furhter, F is one-to-one because, by the previous lem-
mas,

Df = 0 +
n∑

i=1

(Dgi · xi(o) + gi(o) · Dxi) =
n∑

i=1

∂f

∂xi

(o)Dxi.

In particular, knowledge of Dxi uniquely determines D. Finally it remains to
show that F is onto. To this end note that to each X = (X1, . . . , Xn) ∈ Rn,
we may assign a derivation of CpR

n given by

DX :=
n∑

i=1

X i ∂

∂xi

∣∣∣
x=o

.

Then one may quickly check that F (DX) = X.
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Exercise 7. Show that any local chart (U, φ) of M centered at p determines
a basis Eφ

1 , . . . Eφ
n for TpM as follows. For every f ∈ CpM , set:

Eφ
i f :=

∂(f ◦ φ−1)

∂xi

(o).

2.4 The differential map

Let f : M → N be a smooth map, and p ∈ M . Then the differential of f at
p is the mapping dfp : TpM → Tf(p)N given by

dfp([α]) := [f ◦ α].

Exercise 8. Show that if f : Rn → Rm and we identify TpR
n and Tf(p)R

m

with Rn and Rm respectively in the standard way (i.e., via the mapping [α] �→
α′(0)) then dfp may be identified with the linear transformation determined
by the jacobian matrix (∂f i/∂xj) (in particular, dfp is a generalization of the
standard derivative Df(p) of maps between Euclidean spaces).

Using the characterization of TpM as the space of derivations over the
germ of smooth functions of M at p, one may give an alternative definition
of dfp as follows. Given X ∈ TpM , we define[

dfp(X)
]
g := X(g ◦ f),

for any g ∈ Cf(p)N . Thus dfp(X) ∈ Df(p)N � Tf(p)N . Note that if X = [α],
then

X(g ◦ f) = (g ◦ f ◦ α)′(0) = [f ◦ α]g.

Thus the two definitions of dfp presented above are indeed equivalent. Using
the second definition, one may immediately check that dfp is a homomor-
phism. Another fundamental property is:

Exercise 9 (The chain rule). Show that if f : M → N and g : N → L are
smooth maps, then, for any p ∈ M ,

d(g ◦ f)p = dgf(p) ◦ dfp.

We say f : M → N is a diffeomorphism if f is a homeomorphism, and
f and f−1 are smooth. If there exists a diffeomorphism between a pair of
manifolds we say that these manifolds are diffeomorphic.
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Exercise 10. Show that if f : M → N is a diffeomorphism, then dfp is an
isomorphism for all p ∈ M . In particular, conclude that if M and N are
diffeomorphic, then dim(M) = dim(N).

Note that the last statement if the above exercise also follows from the
standard fact in Algebraic topology that Rn and Rm are homemorphic only
if m = n. However, this fact is consequence of homology theory, whereas
the above exercise rests only on the basic properties of the differential map.
Many results in algebraic toplogy admit more transparent or elegant proofs
if one can make use of a differential structure.
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