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Lecture Notes 1

1 Topological Manifolds

The basic objects of study in this class are manifolds. Roughly speaking, these are
objects which locally resemble a Euclidean space. In this section we develop the
formal definition of manifolds and construct many examples.

1.1 The Euclidean space

By R we shall always mean the set of real numbers. The set of all n-tuples of real
numbers R" := {(p!,... ,p") | p' € R} is called the Euclidean n-space. So we have

peER" «— p=(p',...,p"), p'€R.
Let p and ¢q be a pair of points (or vectors) in R". We define p + ¢ := (p' +
q',...,p" +q"). Further, for any scalar r € R, we define rp := (rp',... ,rp"). It is
easy to show that the operations of addition and scalar multiplication that we have
defined turn R" into a vector space over the field of real numbers. Next we define
the standard inner product on R" by

n_n

(p.q) =p'q" +...+p"q".

Note that the mapping (-,-): R” x R™ — R is linear in each variable and is sym-
metric. The standard inner product induces a norm on R"™ defined by

Ip|| == (p,p)"/>.

If p € R, we usually write |p| instead of ||p]|.

Exercise 1.1.1. (The Cauchy-Schwartz inequality) Prove that |(p, )| < ||p|| ||4]l,
for all p and ¢ in R™ (Hints: If p and ¢ are linearly dependent the solution is clear.
Otherwise, let f(A) := (p—Ag,p—Aq). Then f(\) > 0. Further, note that f(\) may
be written as a quadratic equation in A\. Hence its discriminant must be negative).

The standard Euclidean distance in R" is given by

dist(p,q) == [lp — ql|-
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Exercise 1.1.2. (The triangle inequality) Show that dist(p,q) + dist(g,7) >
dist(p,r) for all p, ¢ in R™. (Hint: use the Cauchy-Schwartz inequality).

By a metric on a set X we mean a mapping d: X x X — R such that
1. d(p,q) = 0, with equality if and only if p = q.

2. d(p,q) = d(g;p)-

3. d(p,q) +d(q,r) = d(p,r).

These properties are called, respectively, positive-definiteness, symmetry, and the
triangle inequality. The pair (X, d) is called a metric space. Using the above exercise,
one immediately checks that (R",dist) is a metric space. Geometry, in its broadest
definition, is the study of metric spaces.

Finally, we define the angle between a pair of vectors in R" by

1 ()
Il llall

angle(p, q) := cos

Note that the above is well defined by the Cauchy-Schwartz inequality.

Exercise 1.1.3. (The Pythagorean theorem) Show that in a right triangle the
square of the length of the hypotenuse is equal to the sum of the squares of the length
of the sides (Hint: First prove that whenever (p,q) = 0, ||p||*> + |lq||*> = |lp — ¢l
Then show that this proves the theorem.).

Exercise 1.1.4. Show that the sum of angles in a triangle is 7.

1.2 Topological spaces

By a topological space we mean a set X together with a collection T of subsets of
X which satisfy the following properties:

1. XeT,and D e T.
2. fU, Uy eT,then Uy NU; €T.
3. U, €T, i €1, then ;U €T.

The elements of T" are called open sets. Note that property 2 implies that any
finite intersection of open sets is open, and property 3 states that the union of any
collection of open sets is open. Any collection of subsets of X satisfying the above
properties is called a topology on X.



Exercise 1.2.1 (Metric Topology). Let (X, d) be a metric space. For any p € X,
and r > 0 define the ball of radius r centered at p as

B.(p) :={x € X | d(z,p) <r}.

We say U C X is open if for each point p of U there is an r > 0 such that B,.(p) C U.
Show that this defines a topology on X. In particular, (R",dist) is a topological
space.

Thus every metric space is a topological space. The converse, however, is not
true. See Appendix A in Spivak.

Exercise 1.2.2. Show that the intersection of an infinite collection of open subsets
of R™ may not be open.

Let o denote the origin of R", that is
0:=(0,...,0).
The n-dimensional Euclidean sphere is defined as
S":= {x € R"™ | dist(z,0) = 1}.
The next exercise shows how we may define a topology on S”.

Exercise 1.2.3 (Subspace Topology). Let X be a topological space and suppose
Y C X. Then we say that a subset V' of Y is open if there exists an open subset
U of X such that V = U NY. Show that with this collection of open sets, Y is a
topological space.

The n-dimensional torus 7" is defined as the cartesian product of n copies of
Sl
" :=S' x ... x Sl
The next exercise shows that 7™ admits a natural topology:

Exercise 1.2.4 (The Product Topology). Let X; and X5 be topological spaces,
and X7 X Xs be their Cartesian product, that is

X1 X X9 = {(.Tl,l‘g) ’ﬁl € Xj and 2o € Xy }

We say that U C X7 x Xg is open if U = U; x Uy where U; and Us are open subsets
of X1 and X5 respectively. Show that this defines a topology on X7 x Xo.

A partition P of a set X is defined as a collection P;, ¢ € I, of subsets of X such
that X C U;P; and P; N P; = () whenever ¢ # j. For any « € X, the element of P
which contains z is called the equivalence class of x and is denoted by [z]. Thus we
get a mapping 7: X — P given by w(z) := [z]. Suppose that X is a topological
space. Then we say that a subset U of P is open if 771(U) is open in X.



Exercise 1.2.5 (Quotient Topology). Let X be a topological space and P be a
partition of X. Show that P with the collection of open sets defined above is a
topological space.

Exercise 1.2.6 (Torus). Let P be a partition of [0,1] x [0,1] consisting of the
following sets: (i) all sets of the form {(z,y)} where (z,y) € (0,1)x (0,1); (ii) all sets
of the form {(z, 1), (x,0)} where z € (0,1); (iii) all sets of the form {(1,y), (0,y)}
where y € (0,1); and (iv) the set {(0,0),(0,1),(1,0),(1,1)}. Sketch the various
kinds of open sets in P under its quotient topology.

1.3 Homeomorphisms

A mapping f: X — Y between topological spaces is continuous if for every open
set U C X, f~1(U) is open in Y. Intuitively, we may think of a continuous map as
one which sends nearby points to nearby points.

Exercise 1.3.1. Let A, B C R"” be arbitrary subsets, f: A — B be a continuous
map, and p € A. Show that for every ¢ > 0, there exists a § > 0 such that whenever
dist(x,p) < 9, then dist(f(x), f(p)) <.

We say that two topological spaces X and Y are homeomorphic if there exists
a bijection f: X — Y which is continuous and has a continuous inverse. The main
problem in topology is deciding when two topological spaces are homeomorphic.

Exercise 1.3.2. Show that S” — {(0,0,...,1)} is homeomorphic to R".

Exercise 1.3.3. Let X :=[1,0] x [1,0], 71 be the subspace topology on X induced
by R? (see Exercise 1.2.3), T be the product topology (see Exercise 1.2.4), and T3
be the quotient topology of Exercise 1.2.6. Show that (X, T}) is homeomorphic to
(X, Ty), but (X,T3) is not homeomorphic to either of these spaces.

The n-dimensional Euclidean open ball of radius r centered at p is defined by
UM(p) == {z € R" | dist(x,p) < r}.
Exercise 1.3.4. Show that U'(0) is homeomorphic to R".
For any a, b € R, we set
[a,b] :={z e R|a <z <D},

and
(a,b) :={z € R|a <z <b}.

Exercise 1.3.5. Let P be a partition of [0, 1] consisting of all sets {z} where = €
(0,1) and the set {0,1}. Show that P, with respect to its quotient topology, is

homeomorphic to S' (Hint: consider the mapping f: [0,1] — S! given by f(t) =
2mit
e,



Exercise 1.3.6. Let P be the partition of [0,1] x [0, 1] described in Exercise 1.2.6.
Show that P, with its quotient topology, is homeomorphic to T2

Let P be the partition of S™ consisting of all sets of the form {p, —p} where
p € S™. Then P with its quotient topology is called the real projective space of
dimension n and is denoted by RP™.

Exercise 1.3.7. Let P be a partition of B?(0) consisting of all sets {z} where
r € U?%(0), and the all the sets {z, —x} where x € S!. Show that P, with its
quotient topology, is homeomorphic to RP2.

Next we show that S™ is not homeomorphic to R™. This requires us to recall
the notion of compactness.

We say that a collection of subsets of X cover X, if X lies in the union of
these subsets. Any subset of a cover which is again a cover is called a subcover. A
topological space X is compact if every open cover of X has a finite subcover.

Exercise 1.3.8. Show that if X is compact and Y is homeomorphic to X, then Y
is compact as well.

Exercise 1.3.9. Show that if X is compact and f: X — Y is continuous, then
f(X) is compact.

Exercise 1.3.10. Show that every closed subset of a compact space is compact.
We say that a subset of X is closed if its complement is open.

Exercise 1.3.11. Show that a subset of R may be both open and closed. Also
show that a subset of R may be neither open nor closed.

The n-dimensional Euclidean ball of radius r centered at p is defined by
B)'(p) := {z € R" | dist(x,p) < r}.

A subset A of R" is bounded if A C BJ'(0) for some r € R. The following is one of
the fundamental results of topology.

Theorem 1.3.12. A subset of R™ is compact if and only if it is closed and bounded.
The above theorem can be used to show:
Exercise 1.3.13. Show that S™ is not homeomorphic to R™.

Next, we show that R? is not homeomorphic to R!. This can be done by using
the notion of connectedness.

We say that a topological space X is connected if and only if the only subsets of
X which are both open and closed are () and X.



Exercise 1.3.14. Show that if X is connected and Y is homeomorphic to X then
Y is connected.

Exercise 1.3.15. Show that if X is connected and f : X — Y is continuous, then
f(X) is connected.

We also have the following fundamental result:
Theorem 1.3.16. R and all of its intervals [a,b], (a,b) are connected.

We say that X is path connected if for every xg, 1 € X, there is a continuous
mapping f: [0,1] — X such that f(0) = z¢ and f(1) = 2.

Exercise 1.3.17. Show that if X is path connected and Y is homeomorphic to X
then Y is path connected.

Exercise 1.3.18. Show that if X is path connected, then it its connected.

Exercise 1.3.19. Show that R? is not homeomorphic to R!. (Hint: Suppose that
there is a homeomorphism f: R?> — R. Then for a point p € R?, f is a homeomor-
phism between R? —p and R — f(p).)

The technique hinted in Exercise 1.3.19 can also be used in the following:

Exercise 1.3.20. Show that the figure “8”, with respect to its subspace topology,
is not homeomorphic to S!.

Finally, we show that R"™ is not homeomorphic to R™ if m # n. This is a
difficult theorem requiring homology theory; however, it may be proved as an easy
corollary of the generalized Jordan curve thoerem:

Theorem 1.3.21 (Genralized Jordan). Let X C R"™ be homeomorphic to S™
(with respect to the subspace topology). Then R™ — S™ is not connected.

Use the above theorem to solve the following:

Exercise 1.3.22. Show that R"™ is not homeomorphic to R™ unles m = n.



