MIDTERM

Choose 5 of the following 8 problems. Wrrite complete answers.

1. Show that if a closed planar curve lies inside a circle of radius r then its curvature is bigger than or equal to $1 / r$ at some point.
2. Show that if the curvature of a planar curve is monotone, then it has no self intersections.
3. Compute the curvature and torison of the helix $(r \cos (t), r \sin (t), h t)$, where r and h are constants.
4. Show that if the principal normals of a planar curve all pass through the same point, then the curve is a circle.
5. Show that the tantrix of a closed curve intersects every great circle.
6. Let $\alpha: I \rightarrow \mathbf{R}^{3}$ be a unit speed curve whose torsion never vanishes. Suppose that the binormal vector $B: I \rightarrow \mathbf{S}^{2}$ is known. Show that we can then recover the curvature and torsion of α.
7. Suppose that $\alpha: I \rightarrow \mathbf{R}^{2}$ is a closed curve such that for any constant s, $\|\alpha(t+s)-\alpha(t)\|$ is constant for all $t \in I$. Show that α is a circle.
8. Show that the only closed planar curve of constant curvature is a circle.
