Lecture Notes 0

Basics of Euclidean Geometry

By \mathbf{R} we shall always mean the set of real numbers. The set of all n-tuples of real numbers $\mathbf{R}^{n}:=\left\{\left(p^{1}, \ldots, p^{n}\right) \mid p^{i} \in \mathbf{R}\right\}$ is called the Euclidean n-space. So we have

$$
p \in \mathbf{R}^{n} \Longleftrightarrow p=\left(p^{1}, \ldots, p^{n}\right), \quad p^{i} \in \mathbf{R} .
$$

Let p and q be a pair of points (or vectors) in \mathbf{R}^{n}. We define $p+q:=\left(p^{1}+\right.$ $\left.q^{1}, \ldots, p^{n}+q^{n}\right)$. Further, for any scalar $r \in \mathbf{R}$, we define $r p:=\left(r p^{1}, \ldots, r p^{n}\right)$. It is easy to show that the operations of addition and scalar multiplication that we have defined turn \mathbf{R}^{n} into a vector space over the field of real numbers. Next we define the standard inner product on \mathbf{R}^{n} by

$$
\langle p, q\rangle=p^{1} q^{1}+\ldots+p^{n} q^{n} .
$$

Note that the mapping $\langle\cdot, \cdot\rangle: \mathbf{R}^{n} \times \mathbf{R}^{n} \rightarrow \mathbf{R}$ is linear in each variable and is symmetric. The standard inner product induces a norm on \mathbf{R}^{n} defined by

$$
\|p\|:=\langle p, p\rangle^{\frac{1}{2}}
$$

If $p \in \mathbf{R}$, we usually write $|p|$ instead of $\|p\|$.
The first nontrivial fact in Euclidean geometry, and an exercise which every geometer should do, is

Exercise 1. (The Cauchy-Schwartz inequality) Prove that

$$
|\langle p, q\rangle| \leqslant\|p\|\|q\|,
$$

for all p and q in \mathbf{R}^{n} (Hints: If p and q are linearly dependent the solution is clear. Otherwise, let $f(\lambda):=\langle p-\lambda q, p-\lambda q\rangle$. Then $f(\lambda)>0$. Further, note that $f(\lambda)$ may be written as a quadratic equation in λ. Hence its discriminant must be negative).

[^0]The standard Euclidean distance in \mathbf{R}^{n} is given by

$$
\operatorname{dist}(p, q):=\|p-q\| .
$$

Exercise 2. (The triangle inequality) Show that

$$
\operatorname{dist}(p, q)+\operatorname{dist}(q, r) \geqslant \operatorname{dist}(p, r)
$$

for all p, q in \mathbf{R}^{n}. (Hint: use the Cauchy-Schwartz inequality).
By a metric on a set X we mean a mapping $d: X \times X \rightarrow \mathbf{R}$ such that

1. $d(p, q) \geqslant 0$, with equality if and only if $p=q$.
2. $d(p, q)=d(q, p)$.
3. $d(p, q)+d(q, r) \geqslant d(p, r)$.

These properties are called, respectively, positive-definiteness, symmetry, and the triangle inequality. The pair (X, d) is called a metric space. Using the above exercise, one immediately checks that (\mathbf{R}^{n}, dist) is a metric space. Geometry, in its broadest definition, is the study of metric spaces.

Finally, we define the angle between a pair of nonzero vectors in \mathbf{R}^{n} by

$$
\operatorname{angle}(p, q):=\cos ^{-1} \frac{\langle p, q\rangle}{\|p\|\|q\|} .
$$

Note that the above is well defined by the Cauchy-Schwartz inequality.
Exercise 3. (The Pythagorean theorem) Show that in a right triangle the square of the length of the hypotenuse is equal to the sum of the squares of the length of the sides (Hint: First prove that whenever $\langle p, q\rangle=0,\|p\|^{2}+$ $\|q\|^{2}=\|p-q\|^{2}$. Then show that this proves the theorem.).

Exercise 4. (Sum of the angles in a triangle) Show that the sum of angles in a triangle is π.

The last exercise requires the use of some trig identities and is computationally intensive.

[^0]: ${ }^{1}$ Last revised: January 29, 2004

