Midterm 1

Time: 50min

1. Show that if the diagonals of a parallelogram have the same length then the parallelogram is a rectangle.
2. Find the distance between the point $(3,4,5)$ and the plane $2 x+y+3 z=5$.
3. Show that for any collection of n real numbers $x_{1}, x_{2}, \ldots, x_{n}$,

$$
\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \leq \sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}
$$

4. Find the equation of the tangent plane to the surface given by $x^{3}+y^{3}+$ $z^{3}=7$ at the point $(0,-1,2)$.
5. Show that if the velocity of a path is always orthogonal to its position vector, that is $\mathbf{x}^{\prime}(t)$ is orthogonal to $\mathbf{x}(t)$ for all t, then the path lies on a sphere centered at the orgin.
6. Let $f(x, y)=\left(x^{2}+y^{2}, x\right)$ and $g(r, \theta)=(r \cos \theta, r \sin \theta)$. Compute $D(f \circ g)$.
7. Find the length of the helix $\mathbf{x}(t)=(\cos t, \sin t, t)$ for $0 \leq t \leq 2 \pi$.
8. (Extra Credit) Show that the orbit of a planet always lies in a plane which passes through the sun.

Each problem is worth 15 pts.
${ }^{\mathrm{L}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$

