Final Exam

1. Show that the midpoints of any quadrilateral determine a parallelogram.
2. Find a formula for the length of a curve given by $r=f(\theta)$ in polar coordinates. (Hint: this curve may be parametrized as $(f(\theta) \cos (\theta), f(\theta) \sin (\theta)$).
3. Show that the orbit of a planet always lies in a plane which passes through the sun (Hint: Let $r(t)$ be the position vector of the planet, with respect to the sun and differentiate $r \times r^{\prime}$).
4. Find the maximum and minimum values of $f(x, y)=x^{2}+x y+y^{2}$ on the disk $x^{2}+y^{2} \leq 4$.
5. Show that for any n positive real numbers $x_{1}, \ldots x_{n}$,

$$
\sqrt[n]{x_{1} x_{2} \ldots x_{n}} \leq \frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

(Hint: Maximize $x_{1}^{2} \ldots x_{n}^{2}$ subject to the constraint $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=a^{2}$.)
6. Show that the area of a surface given by rotating the graph of a function $f(x), a \leq x \leq b$, around the x-axis is given by $2 \pi \int_{a}^{b} f(x) \sqrt{1+f^{\prime}(x)^{2}} d x$. Use this result to show that the area of a sphere cut by a pair of parallel planes depends only on the distance between the two planes.
7. Find the average height (i.e., z-coordinate) of the hemisphere $x^{2}+y^{2}+z^{2}=$ $1, z \geq 1$).
8. Find the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ by using Green's theorem.
9. Show that if B is a solid in R^{3}, then

$$
\operatorname{Volume}(B)=\frac{1}{3} \int_{\partial B} x d y \wedge d z-y d x \wedge d z+z d x \wedge d y
$$

10. Evaluate $\int_{X} \omega$ where X is the helicoid

$$
X(s, t)=(s \cos t, s \sin t, t), \quad 0 \leq s \leq 1, \quad 0 \leq t \leq 4 \pi
$$

and $\omega=z d x \wedge d y+3 d z \wedge d x-x d y \wedge d z$.
11 (Extra Credit). Show that there is no force of gravity inside a hollow planet.

Each problem is worth 10pts.

IATEX . ${ }^{\text {MG }}$

